首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
Protein-tyrosine phosphatases (PTPs) have an important role in cell survival, differentiation, proliferation, migration and other cellular processes in conjunction with protein-tyrosine kinases. Still relatively little is known about the function of PTPs in vivo. We set out to systematically identify all classical PTPs in the zebrafish genome and characterize their expression patterns during zebrafish development. We identified 48 PTP genes in the zebrafish genome by BLASTing of human PTP sequences. We verified all in silico hits by sequencing and established the spatio-temporal expression patterns of all PTPs by in situ hybridization of zebrafish embryos at six distinct developmental stages. The zebrafish genome encodes 48 PTP genes. 14 human orthologs are duplicated in the zebrafish genome and 3 human orthologs were not identified. Based on sequence conservation, most zebrafish orthologues of human PTP genes were readily assigned. Interestingly, the duplicated form of ptpn23, a catalytically inactive PTP, has lost its PTP domain, indicating that PTP activity is not required for its function, or that ptpn23b has lost its PTP domain in the course of evolution. All 48 PTPs are expressed in zebrafish embryos. Most PTPs are maternally provided and are broadly expressed early on. PTP expression becomes progressively restricted during development. Interestingly, some duplicated genes retained their expression pattern, whereas expression of other duplicated genes was distinct or even mutually exclusive, suggesting that the function of the latter PTPs has diverged. In conclusion, we have identified all members of the family of classical PTPs in the zebrafish genome and established their expression patterns. This is the first time the expression patterns of all members of the large family of PTP genes have been established in a vertebrate. Our results provide the first step towards elucidation of the function of the family of classical PTPs.  相似文献   

3.
Protein tyrosine phosphorylation is thought to be a unique feature of multicellular animals. Interestingly, the genome of the unicellular protist Monosiga brevicollis reveals a surprisingly high number and diversity of protein tyrosine kinases, protein tyrosine phosphatases (PTPs), and phosphotyrosine-binding domains. Our study focuses on a hypothetical SH2 domain-containing PTP (SHP), which interestingly has a predicted structure that is distinct from SHPs found in animals. In this study, we isolated cDNA of the enzyme and discovered that its actual sequence was different from the predicted sequence as a result of non-consensus RNA splicing. Contrary to the predicted structure with one SH2 domain and a disrupted phosphatase domain, Monosiga brevicollis SHP (MbSHP) contains two SH2 domains and an intact PTP domain, closely resembling SHP enzymes found in animals. We further expressed the full-length and SH2 domain-truncated forms of the enzyme in Escherichiacoli cells and characterized their enzymatic activities. The double-SH2 domain-truncated form of the enzyme effectively dephosphorylated a common PTP substrate with a specific activity among the highest in characterized PTPs, while the full-length and the N-terminal SH2 domain-truncated forms of the enzyme showed much lower activity with altered pH dependency and responses to ionic strength and common PTP inhibitors. This indicates that SH2 domains suppress the catalytic activity. SHP represents a highly conserved ancient PTP, and studying MbSHP should provide a better understanding about the evolution of tyrosine phosphorylation.  相似文献   

4.
Edwards K  Davis T  Marcey D  Kurihara J  Yamamoto D 《Gene》2001,275(2):195-205
The FERM-PTPs are a group of proteins that have FERM (Band 4.1, ezrin, radixin, moesin homology) domains at or near their N-termini, and PTP (protein tyrosine phosphatase) domains at their C-termini. Their central regions contain either PSD-95, Dlg, ZO-1 homology domains or putative Src homology 3 domain binding sites. The known FERM-PTPs fall into three distinct classes, which we name BAS, MEG, and PEZ, after representative human PTPs. Here we analyze Pez, a novel gene encoding the single PEZ-class protein present in Drosophila. Pez cDNAs were sequenced from the distantly related flies Drosophila melanogaster and Drosophila silvestris, and found to be highly conserved except in the central region, which contains at least 21 insertions and deletions. Comparison of fly and human Pez reveals several short conserved motifs in the central region that are likely protein binding sites and/or phosphorylation sites. We also identified novel invertebrate members of the BAS and MEG classes using genome data, and generated an alignment of vertebrate and invertebrate FERM domains of each class. 'Specialized' residues were identified that are conserved only within a given class of PTPs. These residues highlight surface regions that may bind class-specific ligands; for PEZ, these residues cluster on and near FERM subdomain F1. Finally, the PTP domain of fly Pez was modeled based on known PTP tertiary structures, and we conclude that Pez is likely a functional phosphatase despite some unusual features of the active site cleft sequences. Biochemical confirmation of this hypothesis and genetic analysis of Pez are currently underway.  相似文献   

5.
Protein tyrosine phosphatases (PTPs) play key roles in switching off tyrosine phosphorylation cascades, such as initiated by cytokine receptors. We have used substrate-trapping mutants of a large set of PTPs to identify members of the PTP family that have substrate specificity for the phosphorylated human GH receptor (GHR) intracellular domain. Among 31 PTPs tested, T cell (TC)-PTP, PTP-beta, PTP1B, stomach cancer-associated PTP 1 (SAP-1), Pyst-2, Meg-2, and PTP-H1 showed specificity for phosphorylated GHR that had been produced by coexpression with a kinase in bacteria. We then used GH-induced, phosphorylated GH receptor, purified from overexpressing mammalian cells, in a Far Western-based approach to test whether these seven PTPs were also capable of recognizing ligand-induced, physiologically phosphorylated GHR. In this assay, only TC-PTP, PTP1B, PTP-H1, and SAP-1 interacted with the mature form of the phosphorylated GHR. In parallel, we show that these PTPs recognize very different subsets of the seven GHR tyrosines that are potentially phosphorylated. Finally, mRNA tissue distribution of these PTPs by RT-PCR analysis and coexpression of the wild-type PTPs to test their ability to dephosphorylate ligand-activated GHR suggest PTP-H1 and PTP1B as potential candidates involved in GHR signaling.  相似文献   

6.
In the course of determining the expression profiles of protein tyrosine phosphatases in lactating mammary gland, we found the expression of an isoform for a putative cytosolic and cytoskeleton-associated protein tyrosine phosphatase PTP36. Further detailed RT-PCR and Northern blot analyses revealed the expression of several isoforms for PTP36 in a tissue-dependent manner. We have cloned the cDNAs encoding four truncated isoforms for PTP36 and designated PTP36-A, -B, -C, and -D, respectively. PTP36-A and -C had new sequences generated due to frameshift, whereas PTP36-B and -D were in-frame variants. Gly- and Glu-rich domains and a putative PTP domain were missing from PTP36-A, but the band 4.1 domain remained. PTP36-B retained the band 4.1 and PTP domains but lacked Pro-, Gly- and Glu-rich domains. Most domain structures were lacking in PTP36-C and -D. Interestingly, PTP36-C contained an incomplete band 4.1 domain, but the newly created sequence exhibited high homology to human nebulette, which was also suggested to associate with cytoskeletons. When transiently expressed in COS7 and HEK293 cells, not only the wild type but also all the isoforms were recovered in Triton X-100-insoluble cytoskeleton-associated fractions and this distribution was not affected by mechanical cell detachment and treatment with a kinase inhibitor staurosporine. Such cellular distribution of PTP36 was also observed in stable COS7 clones. Further studies using deletion mutants suggested that the first 30 amino acids as well as the band 4.1 domain of PTP36 were involved in association with Triton X-100 insoluble cytoskeletons. Tissue-dependent expression and deletion in domain structures might reflect the biological significance of the isoforms for PTP36 in certain physiological conditions.  相似文献   

7.
Protein tyrosine phosphatases (PTPs) regulate various physiological events in animal cells. They comprise a diverse family which are classified into two categories, receptor type and nonreceptor type. From the domain organization and phylogenetic tree, we have classified known PTPs into 17 subtypes (9 receptor-type and 8 nonreceptor-type PTPs) which are characterized by different organization of functional domain and independent cluster in tree. The receptor type PTPs are thought to be implicated in cell–cell adhesion by association of cell adhesion molecules. Since sponges are the most primitive multicellular animals and are thought to be lacking cell cohesiveness and coordination typical of eumetazoans, cloning and sequencing of PTP cDNAs of Ephydatia fluviatilis (freshwater sponge) have been conducted by RT-PCR to determine whether or not sponges have PTP genes in their genomes. We have isolated nine PTPs, of which five are possibly receptor type. A phylogenetic tree including the sponge PTPs revealed that most of the gene duplications that gave rise to the 17 subtypes had been completed in the very early evolution of animals before the parazoan–eumetazoan split, the earliest branching among extant animal phyla. The family tree also revealed the rapid evolutionary rate of PTP subtypes in the early stage of animal evolution. Received: 22 October 1998 / Accepted: 27 November 1998  相似文献   

8.
Protein tyrosine phosphatases (PTPs) constitute a large and structurally diverse family of signaling enzymes that control the cellular levels of protein tyrosine phosphorylation. Malfunction of PTP activity has significant implications in many human diseases, and the PTP protein family provides an exciting array of validated diabetes/obesity (PTP1B), oncology (SHP2), autoimmunity (Lyp), and infectious disease (mPTPB) targets. However, despite the fact that PTPs have been garnering attention as novel therapeutic targets, they remain largely an untapped resource. The main challenges facing drug developers by the PTPs are inhibitor specificity and bioavailability. Work over the last ten years has demonstrated that it is feasible to develop potent and selective inhibitors for individual members of the PTP family by tethering together small ligands that can simultaneously occupy both the active site and unique nearby peripheral binding sites. Recent results with the bicyclic salicylic acid pharmacophores indicate that the new chemistry platform may provide a potential solution to overcome the bioavailability issue that has plagued the PTP drug discovery field for many years. Structural analysis of PTP-inhibitor complexes reveals molecular determinants important for the development of more potent and selective PTP inhibitors, thus offering hope in the medicinal chemistry of a largely unexploited protein class with a wealth of attractive drug targets.  相似文献   

9.
Corticotropin signal transduction pathway involves serine/threonine protein phosphorylation. Recent reports suggest that protein tyrosine dephosphorylation may also be an integral component of that pathway. The present study was performed to investigate the role played by protein tyrosine phosphatases (PTPs) on acute response to corticotropin and the hypothetical regulation of PTPs by this hormone. We have used two powerful cell permeant PTP inhibitors, phenylarsine oxide (PAO) and pervanadate (PV), in order to examine the relevance of PTP activity on hormone-stimulated and 8-bromo-adenosine 3',5'-phosphate (8Br-cAMP is a permeant analogue of adenosine 3',5'-phosphate)-stimulated steroidogenesis in adrenal zona fasciculata (ZF) cells. In both cases, PAO and PV inhibited the steroid production in a dose-dependent fashion, and had no effect on steroidogenesis supported by a permeant analogue of cholesterol. The effect of hormonal stimulation on PTP activity was analyzed in rat adrenal ZF. In vivo corticotropin treatment reduced phosphotyrosine content in endogenous proteins and produced a transient increase of PTP activity in the cytosolic fraction, reaching a maximum (twofold) after 15 min. Incubation of adrenal ZF with 8Br-cAMP also produced PTP activation, suggesting that it can be mediated by cAMP-dependent protein kinase (PKA)-dependent phosphorylation. Detection of PTP activity in an in-gel assay showed three corticotropin-stimulated soluble PTPs with molecular masses of 115, 80 and 50 kDa. In summary, we report for the first time a hormone-dependent PTP activation in a steroidogenic tissue and provide evidence that PTP activity plays an important role in corticotropin signal pathway, acting downstream of PKA activation and upstream of cholesterol transport across the mitochondrial membrane.  相似文献   

10.
11.
The receptor-type protein tyrosine phosphatases (RPTPs) are integral membrane proteins composed of extracellular adhesion molecule-like domains, a single transmembrane domain, and a cytoplasmic domain. The cytoplasmic domain consists of tandem PTP domains, of which the D1 domain is enzymatically active. RPTPkappa is a member of the R2A/IIb subfamily of RPTPs along with RPTPmu, RPTPrho, and RPTPlambda. Here, we have determined the crystal structure of catalytically active, monomeric D1 domain of RPTPkappa at 1.9 A. Structural comparison with other PTP family members indicates an overall classical PTP architecture of twisted mixed beta-sheets flanked by alpha-helices, in which the catalytically important WPD loop is in an unhindered open conformation. Though the residues forming the dimeric interface in the RPTPmu structure are all conserved, they are not involved in the protein-protein interaction in RPTPkappa. The N-terminal beta-strand, formed by betax association with betay, is conserved only in RPTPs but not in cytosolic PTPs, and this feature is conserved in the RPTPkappa structure forming a beta-strand. Analytical ultracentrifugation studies show that the presence of reducing agents and higher ionic strength are necessary to maintain RPTPkappa as a monomer. In this family the crystal structure of catalytically active RPTPmu D1 was solved as a dimer, but the dimerization was proposed to be a consequence of crystallization since the protein was monomeric in solution. In agreement, we show that RPTPkappa is monomeric in solution and crystal structure.  相似文献   

12.
The exponential growth of sequence data has become a challenge to database curators and end-users alike and biologists seeking to utilize the data effectively are faced with numerous analysis methods. Here, with practical examples from our bioinformatics analysis of the protein tyrosine phosphatases (PTPs), we show how computational analysis can be exploited to fuel hypothesis-driven experimental research through the exploration of online databases. We cover the following elements: (i) similarity searches and strategies to collect a non-redundant database of tyrosine-specific PTP domains; (ii) utilization of this database to classify human, fly, and worm PTPs (based on alignments and phylogenetic analysis); (iii) three-dimensional structural analysis to identify conserved regions (structure-function) and non-conserved selectivity-determining regions (substrate specificity); and (iv) genomic analysis, including mapping of exon structure, identification of pseudogenes, and exploration of disease databases. We discuss the importance of manual curation, illustrating examples in which pseudogenes give rise to predicted proteins in GenBank and note that domain servers, such as PFAM and SMART, erroneously include dual-specificity and lipid phosphatases in their collection of tyrosine-specific PTPs. To capitalize on our annotated set of 402 PTP domains (from 47 species and five phyla), we identify sequence conservation across taxonomic categories and explore structure-function relationships among tandem domain receptor-like PTPs. We define three Src homology 2 domain-containing PTP genes in stingray, zebrafish, and fugu and speculate on their evolutionary relationship with human pseudogenes. Our annotated sequences, along with a web service for phylogenetic classification of PTP domains, are available online (http://ptp.cshl.edu and http://science.novonordisk.com/ptp).  相似文献   

13.
14.
Leishmania braziliensis M2903 contains a highly amplified small chromosome. This work is aimed at resolving its structural organization and determining whether this unusual chromosome contains specific genes encoding proteins with important functions in disease pathology or drug resistance. Our results show that the M2903 250-kb small chromosome contains LD1 sequences and has an inverted repeat structure. The LD1 sequences and two cDNAs (cDNA2 and cDNA53) were mapped on a cosmid contig, and the two cDNAs and the corresponding genomic fragments from the small chromosome were sequenced. The gene encoding cDNA2 predicts a putative GTP-binding protein with homology to other GTP-binding proteins only in the G-1 domain region; however, four other conserved motifs can be recognized. Sequence similarity to cDNA53 is located in at least five chromosomes, and its small chromosome copy is a pseudogene. An open reading frame downstream of the cDNA53 pseudogene predicts another GTP-binding protein that belongs to a new G-protein family with an unusual conserved GTP-binding domain and a newly characterized conserved sequence motif. A portion of this GTP-binding protein gene was studied previously in L. aethiopica as a recombinant antigen that reacts with human antibodies.  相似文献   

15.
Protein tyrosine phosphatases (PTPs) constitute a large family of enzymes that play key roles in cell signaling. Deregulation of PTP activity results in aberrant tyrosine phosphorylation, which has been linked to the etiology of several human diseases, including cancer. Since phosphate removal by the PTPs can both enhance and antagonize cellular signaling, it is essential to elucidate the physiological context in which PTPs operate. Two powerful proteomic approaches have been developed to rapidly establish the exact functional roles for every PTP, both in normal cellular physiology and in pathogenic conditions. In the first, an affinity-based substrate-trapping approach has been employed for PTP substrate identification. Identification and characterization of specific PTP-substrate interactions will associate functions with PTP as well as implicate PTP to specific signaling pathways. In the second, a number of activity-based PTP probes have been developed that can provide a direct readout of the functional state of the PTPs in complex proteomes. The ability to profile the entire PTP family on the basis of changes in their activity is expected to yield new functional insights into pathways regulated by the PTPs and contribute to the discovery of PTPs as novel therapeutic targets. Effective application of these proteomic techniques will accelerate the functional characterization of PTPs, thereby facilitating our understanding of PTPs in cell signaling and in diseases.  相似文献   

16.
A human cDNA was isolated encoding a protein with significant sequence similarity (41% identity) to the BVP RNA 5'-phosphatase from the Autographa californica nuclear polyhedrosis virus. This protein is a member of the protein-tyrosine phosphatase (PTP) superfamily and is identical to PIR1, shown by Yuan et al. (Yuan, Y., Da-Ming, L., and Sun, H. (1998) J. Biol. Chem. 272, 20347-20353) to be a nuclear protein that can associate with RNA or ribonucleoprotein complexes. We demonstrate that PIR1 removes two phosphates from the 5'-triphosphate end of RNA, but not from mononucleotide triphosphates. The specific activity of PIR1 with RNA is several orders of magnitude greater than that with the best protein substrates examined, suggesting that RNA is its physiological substrate. A 120-amino acid segment C-terminal to the PTP domain is not required for RNA phosphatase activity. We propose that PIR1 and its closest homologs, which include the metazoan mRNA capping enzymes, constitute a subgroup of the PTP family that use RNA as a substrate.  相似文献   

17.
Protein-tyrosine phosphatases (PTPs) are important for the control of proper cellular tyrosine phosphorylation. Despite the large number of PTPs encoded in the human genome and the emerging roles played by PTPs in human diseases, a detailed understanding of the role played by PTPs in normal physiology and in pathogenic conditions has been hampered by the absence of PTP-specific inhibitors. Such inhibitors could serve as useful tools for determining the physiological functions of PTPs and may constitute valuable therapeutics in the treatment of several human diseases. However, because of the highly conserved nature of the active site, it has been difficult to develop selective PTP inhibitors. By taking an approach to tether together two small ligands that can interact simultaneously with the active site and a unique proximal noncatalytic site, we have recently acquired Compound 2 (see Fig. 1), the most potent and selective PTP1B inhibitor identified to date, which exhibits several orders of magnitude selectivity in favor of PTP1B against a panel of PTPs. We describe an evaluation of the interaction between 2 and its analogs with PTP1B and its site-directed mutants selected based on hydrogen/deuterium exchange of PTP1B backbone amides in the presence and absence of 2. We have established the binding mode of Compound 2 and identified 12 PTP1B residues that are important for the potency and selectivity of Compound 2. Although many of the residues important for Compound 2 binding are not unique to PTP1B, the combinations of all contact residues differ between PTP isozymes, which suggest that the binding surface defined by these residues in individual PTPs determines inhibitor selectivity. Our results provide structural information toward understanding of the molecular basis for potent and selective PTP1B inhibition and further establish the feasibility of acquiring potent, yet highly selective, PTP inhibitory agents.  相似文献   

18.
The two protein tyrosine phosphatase (PTP) domains in bi-domain PTPs share high sequence and structural similarity. However, only one of the two PTP domains is catalytically active. Here we describe biochemical studies on the two tandem PTP domains of the bi-domain PTP, PTP99A. Phosphatase activity, monitored using small molecule as well as peptide substrates, revealed that the inactive (D2) domain activates the catalytic (D1) domain. Thermodynamic measurements suggest that the inactive D2 domain stabilizes the bi-domain (D1-D2) protein. The mechanism by which the D2 domain activates and stabilizes the bi-domain protein is governed by few interactions at the inter-domain interface. In particular, mutating Lys990 at the interface attenuates inter-domain communication. This residue is located at a structurally equivalent location to the so-called allosteric site of the canonical single domain PTP, PTP1B. These observations suggest functional optimization in bi-domain PTPs whereby the inactive PTP domain modulates the catalytic activity of the bi-domain enzyme.  相似文献   

19.
Src homology 2 (SH2) domains mediate protein-protein interactions by recognizing short phosphotyrosyl (pY) peptide motifs in their partner proteins. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of pY proteins, counteracting the protein tyrosine kinases. Both types of proteins exhibit primary sequence specificity, which plays at least a partial role in dictating their physiological interacting partners or substrates. A combinatorial peptide library method has been developed to systematically assess the sequence specificity of SH2 domains and PTPs. A "one-bead-one-compound" pY peptide library is synthesized on 90-microm TentaGel beads and screened against an SH2 domain or PTP of interest for binding or catalysis. The beads that carry the tightest binding sequences against the SH2 domain or the most efficient substrates of the PTP are selected by an enzyme-linked assay and individually sequenced by a partial Edman degradation/mass spectrometry technique. The combinatorial method has been applied to determine the sequence specificity of 8 SH2 domains from Src and Csk kinases, adaptor protein Grb2, and phosphatases SHP-1, SHP-2, and SHIP1 and a prototypical PTP, PTP1B.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号