首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324 has been shown to degrade starch via glucose using a modified Embden-Meyerhof pathway. The first enzyme of this pathway, ADP-dependent glucokinase, was purified 600-fold to homogeneity. The enzyme is a monomeric protein with an apparent molecular mass of 50 kDa. It had a temperature optimum at 83 °C and showed a significant thermostability up to 100 °C. The enzyme was highly specific for ADP and glucose as substrates; it did not use ATP, CDP, UDP, or GDP as phosphoryl donors, or mannose, fructose and fructose 6-phosphate as phosphoryl acceptors (at 80 °C). Only glucosamine was phosphorylated at significant rates. The apparent Km values for ADP and glucose (at 50 °C) were 0.07 mM and 0.78 mM, respectively; the apparent Vmax value was about 50 U/mg at 50 °C and 350 U/mg at 80 °C. Divalent cations were required for maximal activity; Mn2+, Mg2+ and Ca2+, which were most effective, could be replaced partially by Cu2+, Ni2+, Co2+ and Zn2+. The N-terminal amino acid sequence (42 amino acids) of ADP-dependent glucokinase was almost identical to that of ADP-dependent glucokinase from Thermococcus litoralis. In the genome of the closely related Archaeoglobus fulgidus strain VC16 a homologous gene for ADP-dependent glucokinase could not be identified.  相似文献   

2.
Metabolism of fructose arising endogenously from sucrose or mannitol was studied in halophilic archaebacteria Haloarcula vallismortis and Haloferax mediterranei. Activities of the enzymes of Embden-Meyerhof-Parnas (EMP) pathway, Entner-Doudoroff (ED) pathway and Pentose Phosphate (PP) pathway were examined in extracts of cells grown on sucrose or mannitol and compared to those grown on fructose and glucose. Sucrase and NAD-specific mannitol dehydrogenase were induced only when sucrose or mannitol respectively were the growth substrates. Endogenously arising fructose was metabolised in a manner similar to that for exogenously supplied fructose i.e. a modified EMP pathway initiated by ketohexokinase. While the enzymes for modified EMP pathway viz. ketohexokinase, 1-phosphofructokinase and fructose 1,6-bisphosphate aldolase were present under all growth conditions, their levels were elevated in presence of fructose. Besides, though fructose 1,6-bisphosphatase, phosphohexoseisomerase and glucose 6-phosphate dehydrogenase were present, the absence of 6-phosphogluconate dehydratase precluded routing of fructose through ED pathway, or through PP pathway directly as 6-phosphogluconate dehydrogenase was lacking. Fructose 1,6-bisphosphatase plays the unusual role of a catabolic enzyme in supporting the non-oxidative part of PP pathway. However the presence of constitutive levels of glucose dehydrogenase and 2-keto 3-deoxy 6-phosphogluconate aldolase when glucose or sucrose were growth substrates suggested that glucose breakdown took place via the modified ED pathway.Abbreviations EMP Embden Meyerhof Parnas - ED Entner Doudoroff - PP pentose phosphate - KHK ketohexokinase - 1-PFK 1-phosphofructokinase - PEP-PTS phosphoenolpyruvate phosphotransferase - 6-PFK 6-phosphofructokinase - FBPase fructose 1,6-bisphosphatase - PHI phosphohexoseisomerase - G6P-DH glucose 6-phosphate dehydrogenase - 6PG-DH 6-phosphogluconate dehydrogenase - GAPDH glyceraldehyde 3-phosphate dehydrogenase - FIP fructose 1-phosphate - GSH reduced glutathione - 2-ME -mercaptoethanol - FBP fructose 1,6-bisphosphate - KDPG 2-keto 3-deoxy 6-phosphogluconate - F6P fructose 6-phosphatez  相似文献   

3.
The hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324 has been shown to degrade starch via glucose using a modified Embden-Meyerhof pathway. In this pathway phosphorylation of fructose-6-phosphate to fructose-1,6 bisphosphate is catalyzed by an ADP-dependent 6-phosphofructokinase (ADP-PFK), which was purified 1,800-fold to homogeneity. The enzyme is composed of 50 kDa subunits and is eluted from gel filtration as both a homotetramer and a homodimer. It had a temperature optimum at 85°C and showed significant thermostability up to 95°C. Kinetic constants were determined for both reaction directions at pH 6.6 and 80°C. Rate dependence for all substrates followed Michaelis Menten kinetics. The apparent K m for ADP and fructose-6-phosphate (forward reaction) was 0.6 mM and 2.2 mM, respectively; the apparent V max was 1,200 U/mg. ADP-PFK catalyzed in vitro the reverse reaction, with apparent K m for fructose-1,6-bisophosphate and AMP of 5.7 and 1.4 mM, respectively, and a V max value of 85 U/mg. The enzyme did not use ATP, PPi, or acetyl phosphate as phosphoryl donor and was highly specific for fructose-6-phosphate as substrate. The A. fulgidus ADP-PFK did not phosphorylate glucose and thus differs from the bifunctional ADP-PFK/GLK from Methanococcus jannaschii. Divalent cations were required for catalytic activity; Mg2+, which was most effective, could be partially replaced by Mn2+, Ni2+, and Co2+. Enzyme activity was not allosterically regulated by classical effectors of bacterial and eukaryal ATP-PFKs, such as ADP, AMP, phosphoenolpyruvate, or citrate. N-terminal amino acid sequence showed high similarity to known ADP-PFKs. In the genome of Archaeoglobus fulgidus strain VC 16, which is closely related to strain 7324, no homologous gene for ADP-PFK could be identified.Communicated by G. Antranikian  相似文献   

4.
Phosphoglucose isomerase negative mutant of mucoid Pseudomonas aeruginosa accumulated relatively higher concentration of fructose 1,6-bisphosphate (Fru-1,6-P2) when mannitol induced cells were incubated with this sugar alcohol. Also the toluene-treated cells of fructose 1,6-bisphosphate aldolase negative mutant of this organism produced Fru-1,6-P2 from fructose 6-phosphate in presence of ATP, but not from 6-phosphogluconate. The results together suggested the presence of an ATP-dependent fructose 6-phosphate kinase (EC 2.7.1.11) in mucoid P. aeruginosa.Abbreviations ALD Fru-1,6-P2 aldolse - DHAP dihydroxyacetone phosphate - F6P fructose 6-phosphate - G6P glucose 6-phosphate - Gly3P glyceraldehyde 3-phosphate - KDPG 2-keto 3-deoxy 6-phosphogluconate - PFK fructose 6-phosphate kinase - PGI phosphoglucose isomerase - 6PG 6-phosphogluconate  相似文献   

5.
The aim of this work was to discover how leucoplasts from suspension cultures of soybean (Glycine max L.) oxidize hexose monophosphates. Leucoplasts were isolated from protoplast lysates on a continuous gradient of Nycodenz with a yield of 28% and an intactness of 80%. Incubation of the leucoplasts with 14C-labelled substrates led to 14CO2 production, that was dependent upon leucoplast intactness, from [U-14C]glucose 6-phosphate, [U-14C]glucose 1-phosphate, [U-14C] fructose 6-phosphate and [U-14C]glucose+ATP, but not from [U-14C]fructose-1,6-bisphosphate or [U-14C]triose phosphate. The yield from [U-14C]glucose 6-phosphate was at least four times greater than that from any of the other substrates. When [1-14C]-, [2-14C]-, [3,4-14C]-, and [6-14C]glucose 6-phosphate were supplied to leucoplasts significant 14CO2 production that was dependent upon leucoplast intactness was found only for [1-14C]glucose 6-phosphate. It is argued that soybean cell leucoplasts oxidize glucose 6-phosphate via the oxidative pentose phosphate pathway with very little recycling, and that in these plastids glycolysis to acetyl CoA is negligible.S.A.C. thanks the Science and Engineering Research Council for a research studentship.  相似文献   

6.
Glucose metabolism in peripheral blood lymphocytes from the brown trout Salmo trutta has been studied. Glucose is taken up by means of a sodium-independent saturable process (K m=10.8 mmol·l-1), as well as by simple diffusion. Once within the cell, most of glucose is directed to lactate production through either the Embden-Meyerhof pathway or the hexose-monophosphate shunt. Rates of lactate formation are higher than rates of CO2 formation. Glutamine does not exert an effect on either glucose uptake or glucose metabolism. The present study provides information regarding the nature of energy sources for different cell types in salmonids.Abbreviations 3-OMG 3-O-methyl glucose - EM Embden-Meyerhoff pathway - G6D glucose-6-phosphate dehydrogenase - HK hexokinase - HMS hexose monophosphate shunt - ICDH isocitrate dehydrogenase - K m apparent Michaelis constant - LDH lactate dehydrogenase - MCB modified Cortland buffer - PBL peripheral blood lymphocytes - PFK fructose-6-phosphate kinase - PK pyruvate kinase - RBC red blood cells - V max maximal rate of uptake  相似文献   

7.
Summary Glucose metabolism has been studied in Salmo trutta red blood cells. From non-metabolizable analogue (3-O-methyl glucose and l-glucose) uptake experiments it is concluded that there is no counterpart to the membrane transport system for glucose found in mammalian red blood cells. Once within the cells, glucose is directed to CO2 and lactate formation through both the Embden-Meyerhoff and hexose monophosphate shunts; lactate appears as the most important endproduct of glucose metabolism in these cells. From experiments under anaerobic conditions, and in the presence of an inhibitor of pyruvate transfer to mitochondria, most of the CO2 formed appears to derive from the hexose monophosphate pathway. Appreciable O2 consumption has been detected, but there is no clear relationship between this and substrate metabolism. Key enzymes of glucose metabolism hexokinase, fructose-6-phosphate kinase and, probably, pyruvate kinase are out of equilibrium, confirming their regulatory activity in Salmo trutta red blood cells. The presence of isoproterenol, a catecholamine analogue, induces important changes in glucose metabolism under both aerobic and anaerobic conditions, and increases the production of both CO2 and lactate. From the data presented, glucose appears to be the major fuel for Salmo trutta red blood cells, showing a slightly different pattern of glucose metabolism from rainbow trout red blood cells.Abbreviations EM Embden-Meyerhoff pathway - G6D glucose-6-phosphate dehydrogenase - GOT glutamate oxalacetate transaminase - GPI glucose phosphate isomerase - HK hexokinase - HMS hexose monophosphate shunt - IP isoproterenol - LDH lactate dehydrogenase - MCB modified Cortland buffer - OMG 3-O-methyl glucose - PFK fructose-6-phosphate kinase - PK pyruvate kinase - RBC red blood cells - TAC tricarboxylic acid cycle  相似文献   

8.
Carbohydrate uptake and catabolism by the gut microbiota of two species of temperate marine herbivorous fish were investigated using enzyme extracts prepared from microbial pellets. The fish studied were the herring cale Odax cyanomelas (Family Odacidae), which feeds on Ecklonia radiata, and the sea carp Crinodus lophodon (Family Aplodactylidae), which feeds primarily on red and green algae. Constitutive phosphoenolpyruvate phosphotransferase systems for glucose, galactose, fructose and mannitol were present in the microbiota of both fish. Hexokinase, fructokinase and mannitol dehydrogenase activities indicated that transport of the corresponding substrates may be coupled to permeases. Galactokinase activity was only detected in C. lophodon, as expected from its diet. Phosphofructokinase and pyruvate kinase activities were taken to indicate that carbohydrate metabolism proceeded via the fructose bisphosphate pathway. Differences in the transport and metabolism of the different monomers by the microbiota of O. cyanomelas and C. lophodon correlated strongly with predicted monomer availability in the gut of each species, suggesting that the microbiota are an integral component of digestion in these fish. The rates of production in adult fish of acetate, the major short-chain fatty acid, were estimated as 136 mol·h-1 in O. cyanomelas and 166 mol·h-1 in C. lophodon. These rates indicate that microbial fermentation is a potentially important source of energy for the host fish.Abbreviations AK acetate kinase - CTAB cetyl trimethylammonium bromide - FK fructokinase - F1P fructose 1-phosphate - F1PK fructose 1-phosphate kinase - F1-6BP Fructose 1,6-bisphosphate - F6P fructose 6-phosphate - GK galactokinase - Gal1P galactose 1-phosphate - G6P glucose 6-phosphate - HK hexokinase - MDH mannitol dehydrogenase - M1P mannitol 1-phosphate - M1-PDH mannitol 1-phosphate dehydrogenase - PEP phosphoenolpyruvate - PFK phosphofructokinase - PK pyruvate kinase - PTS phosphotransferase system - SCFA short-chain fatty acid(s) - TFA trifluoroacetic acid  相似文献   

9.
Thiobacillus A2 was grown in glucose- or ammonium-limited chemostats and relative contributions of the Embden-Meyerhof (EM), Entner-Doudoroff (ED) and pentose phosphate (PP) pathways to glucose catabolism estimated by 14C-glucose radiorespirometry. In fast growing strain GFI, the EM pathway predominated (41–79%) under all growth conditions with the PP pathway contributing 18–30%. The ED pathway was apparently absent under some conditions of glucose limitation. In contrast, wild type Thiobacillus A2 exhibited predominance of the EM pathway (43–48%) under ammonium-limitation but apparent predominance of the PP pathway (43–55%) under glucose-limitation, although all three pathways were calculated to operate. Under some conditions of glucose limitation the EM pathway was possibly considerably depressed. No clear pattern of response of the three pathways to altered environmental conditions could be deduced, although marked change in pathway activities were obviously induced. Growth yield was apparently unaffected by variation in pathways. The problems of interpreting such complex radiorespirometric data are discussed.Abbreviations EM Embden-Meyerhof - ED Entner-Doudoroff - KDPG 2-keto-3-deoxy-6-phosphogluconate - 6-PG 6-phosphogluconate - PK phosphoketolase - PP pentose phosphate  相似文献   

10.
Thermoproteus tenax is a hyperthermophilic, facultative heterotrophic archaeum. In this organism the utilization of the two catabolic pathways, a variant of the Embden-Meyerhof-Parnas (EMP) pathway and the modified (nonphosphorylative) Entner-Doudoroff (ED) pathway, was investigated and the first enzyme of the ED pathway, glucose dehydrogenase, was characterized. The distribution of the 13C label in alanine synthesized by cells grown with [1-13C]glucose indicated that in vivo the EMP pathway and the modified ED pathway operate parallel, with glucose metabolization via the EMP pathway being prominent. To initiate studies on the regulatory mechanisms governing carbon flux via these pathways, the first enzyme of the ED pathway, glucose dehydrogenase, was purified to homogeneity and its phenotypic properties were characterized. The pyridine-nucleotide-dependent enzyme used both NAD+ and NADP+ as cosubstrates, showing a 100-fold higher affinity for NADP+. Besides glucose, xylose was used as substrate, but with significantly lower affinity. These data suggest that the physiological function of the enzyme is the oxidation of glucose by NADP+. A striking feature was the influence of NADP+ and NAD+ on the quaternary structure and activity state of the enzyme. Without cosubstrate, the enzyme was highly aggregated (mol. mass > 600 kDa) but inactive, whereas in the presence of the cosubstrate the aggregates dissociated into enzymatically active, homomeric dimers with a mol. mass of 84 kDa (mol. mass of subunits: 41 kDa). The N-terminal amino acid sequence showed striking similarity to the respective partial sequences of alcohol dehydrogenases and sorbitol dehydrogenases, but no resemblance to the known pyridine-nucleotide-dependent archaeal and bacterial glucose dehydrogenases. Received: 25 October 1996 / Accepted: 15 April 1997  相似文献   

11.
Enzymes essential to the operation of the Embden-Meyerhof glycolytic pathway, the Entner-Doudoroff pathway and oxidative pentose phosphate pathway were present in Thiobacillus A2 grown on glucose and other sugars. Radiorespirometry under various conditions with Thiobacillus A2 oxidising glucose specifically labelled with 14C in carbon atoms 1, 2, 3, 3+4, 6 or universally labelled demonstrated the simultaneous operation of the Embden-Meyerhof (48%), Entner-Doudoroff (28%), and pentose phosphate (24%) pathways in release of carbon dioxide from glucose. Growth on succinate, or autotrophically on formate or thiosulphate resulted in repression of most enzymes of the pathways, but high aldolase levels were retained indicating its role in gluconeogenesis and the Calvin cycle. Different fructose diphosphatase activities were found in succinate- and thiosulphate-grown organisms. The results indicate that all three major catabolic pathways for glucose function in Thiobacillus A2 grown on sugars. Thiobacillus acidophilus showed a different radiorespirometric pattern and apparently used the Entner-Doudoroff (64.5%) and pentose phosphate (35.5%) pathways, but showed unusually high release of carbon atom 6, as was also found for T. ferrooxidans.Abbreviations EM Embden-Meyerhof - ED Entner-Doudoroff - EDTA ethylene diamine tetra-acetic acid, disodium salt - FDP fructose 1,6-diphosphate - KDPG 2-keto-3-deoxy-6-phosphogluconate - 6-PG 6-phosphogluconate - Pa Pascal (105 Pa=1 bar) - PP pentose phosphate - POPOP 1,4-di[2-(5-phenyloxazolyl)] benzene - PPO 2,5-diphenyloxazole  相似文献   

12.
The clostridia are a diverse group of obligately anaerobic bacteria with potential for the fermentative production of fuels, solvents and other chemicals. Several species exhibit a broad substrate range, but there have been few studies of the mechanisms involved in regulation of uptake and metabolism of fermentable carbohydrates.Clostridium beijerinckii(formerlyClostridium acetobutylicum) NCIMB 8052 exhibited transport activity for hexoses and hexitols. Glucose-grown cells transported glucose and fructose, but not galactose, glucitol (sorbitol) or mannitol, transport of which was induced by growth on the respective substrates. Phosphorylation of glucose, fructose, glucitol and mannitol by cell extracts was supported by phosphoenolpyruvate, indicating the involvement of a phosphotransferase system in uptake of these substrates. Fructose phosphorylation was also demonstrated by isolated membranes in the presence of fructose 1-phosphate, thus identifying this derivative as the product of the fructose phosphotransferase system. The presence of phosphotransferase activities in extracts prepared from cells grown on different carbon sources correlated with transport activities in whole cells, and the pattern of transport activities reflected the substrate preference of cells growing in the presence of glucose and another carbon source. Thus, glucose and fructose were co-metabolised, while utilization of glucitol was prevented by glucose, even in cells which were previously induced for glucitol metabolism. Of the substrates examined, only galactose appeared to be transported by a non-phosphotransferase mechanism, since a significant rate of phosphorylation of this sugar was supported by ATP rather than phosphoenolpyruvate.  相似文献   

13.
 The effect of fructose and glucose on the growth, production of exopolysaccharides and the activities of enzymes involved in the synthesis of sugar nucleotides in Lactobacillus delbrueckii subsp. bulgaricus grown in continuous culture was investigated. When grown on fructose, the strain produced 25 mg l-1 exopolysaccharide composed of glucose and galactose in the ratio 1:2.4. When the carbohydrate source was switched to a mixture of fructose and glucose, the exopolysaccharide production increased to 80 mg l-1, while the sugar composition of the exopolysaccharide changed to glucose, galactose and rhamnose in a ratio of 1:7.0:0.8. A switch to glucose as the sole carbohydrate source had no further effect. Analysis of the enzymes involved in the synthesis of sugar nucleotides indicates that in cell-free extracts of glucose-grown cells the activity of UDP-glucose pyrophosphorylase was higher than that in cell-free extracts of fructose-grown cells. The activities of dTDP-glucose pyrophosphorylase and the rhamnose synthetic enzyme system were very low in glucose-grown cultures but could not be detected in fructose-grown cultures. Cells grown on a mixture of fructose and glucose showed similar enzyme activities as cells grown on glucose. Analysis of the intracellular level of sugar nucleotides in glucose-grown cultures of L. delbrueckii subsp. bulgaricus showed the presence of UDP-glucose and UDP-galactose in a ratio of 3.3:1, respectively, a similar ratio and slightly lower concentrations were found in fructose-grown cultures. The lower production of exopolysaccharides in cultures grown on fructose may be caused by the more complex pathway involved in the synthesis of sugar nucleotides. The absence of activities of enzymes leading to the synthesis of rhamnose nucleotides in fructose-grown cultures appeared to result in the absence of rhamnose monomer in the exopolysaccharides produced on fructose. Received: 1 February 1996/Received revision: 31 May 1996/Accepted: 2 June 1996  相似文献   

14.
Habituated (H) nonorganogenic sugarbeet callus was found to exhibit a disturbed sugar metabolism. In contrast to cells from normal (N) callus, H cells accumulate glucose and fructose and show an abnormal high fructose/glucose ratio. Moreover, H cells which have decreased wall components, display lower glycolytic enzyme activities (hexose phosphate isomerase and phosphofructokinase) which is compensated by higher activities of the enzymes of the hexose monophosphate pathway (glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase). The disturbed sugar metabolism of the H callus is discussed in relation to a deficiency in H2O2 detoxifying systems.Abbreviations 6PG-DH 6-phosphogluconate dehydrogenase - G6P-DH glucose-6-phosphate dehydrogenase - H fully habituated callus - HK hexokinase - HMP hexoses monophosphate - HPI hexose phosphate isomerase - N normal callus - PFK phosphofructokinase  相似文献   

15.
High resolution 13C NMR combined with chemical analysis were used to study the formation of metabolites from [1-13C]-labelled glucose by the salt-tolerant yeast Debaryomyces hansenii after transfer to media containing 8% NaCl. Time course spectroscopy of an aerobic cell suspension showed [1,3-13C]glycerol as the predominant end product. Perchloric acid extracts revealed additional less prominent incorporation of label into arabinitol, trehalose, glutamic acid, and alanine. The incorporation into trehalose and arabinitol showed a transient increase after shift to the high salinity medium. It is concluded that glycerol and arabinitol are the major organic solutes in D. hansenii, the production of glycerol being strongly induced by high salinity. Analysis of labelled extracts of D. hansenii after transfer to 8% NaCl media containing [1-13C]- or [6-13C]glucose, demonstrated that glucose is dissimilated via a combination of the Embden-Meyerhof-Parnas pathway and the pentose phosphate pathway, with the former playing a major role in glycerol formation and the latter in arabinitol production. The almost exclusive labelling of C5 of arabinitol from [6-13C]glucose indicates that the pathway to arabinitol proceeds via reduction of ribulose-5-phosphate.Abbreviations used NMR nuclear magnetic resonance - EMP Emden-Meyerhof-Parnas - PP pentose phosphate - GAP glyceraldehyde phosphate - DHAP dihydroxyacetone phosphate - ppm parts per million  相似文献   

16.
Cells of the cyanobiont Anabaena azollae isolated from the water fern Azolla filiculoides were found to take up and utilize fructose in the light for mixotrophic growth. Fructose was favored by the cyanobiont as a substrate over sucrose and glucose. Cell growth in the presence of 8 mM fructose led to glycogen accumulation in the cells which approached 20% of the cell dry weight within 2 to 3 days, followed by reduction of glycogen content during the fourth day. Glucose-6-phosphate dehydrogenase activity was increased 5–6-fold in the fructose grown cells from the third day of growth onwards. The frequency of heterocysts in fructose-grown cells increased from 6 to 18%, and acetylene reduction by nitrogenase was increased 3-fold in the presence of fructose as compared with control cells, with maximum values observed between the third and fifth day of mixotrophic growth. Fructose-supported growth yielded a 2–4-fold increase in cell dry weight over controls.It is suggested that fructose-supported development and growth of the cyanobiont in batch cultures may resemble its mixotrophic growth and development in situ in the leaf cavity of the host fern Azolla.Abbreviation G6PDH glucose-6-phosphate dehydrogenase  相似文献   

17.
Ian E. Woodrow  Keith A. Mott 《Planta》1993,191(4):421-432
A model of the C 3 photosynthetic system is developed which describes the sensitivity of the steadystate rate of carbon dioxide assimilation to changes in the activity of several enzymes of the system. The model requires measurements of the steady-state rate of carbon dioxide assimilation, the concentrations of several intermediates in the photosynthetic system, and the concentration of the active site of ribulose 1,5-bisphosphate carboxyalse/oxygenase (Rubisco). It is shown that in sunflowers (Helianthus annuus L.) at photon flux densities that are largely saturating for the rate of photosynthesis, the steady-stete rate of carbon dioxide assimilation is most sensitive to Rubisco activity and, to a lesser degree, to the activities of the stromal fructose, 6-bisphosphatase and the enzymes catalysing sucrose synthesis. The activities of sedoheptulose 1,7-bisphosphatase, ribulose 5-phosphate kinase, ATP synthase and the ADP-glucose pyrophosphorylase are calculated to have a negligible effect on the flux under the high-light conditions. The utility of this analysis in developing simpler models of photosynthesis is also discussed.Abbreviations c i intercellular CO2 concentration - C infP supJ control coefficient for enzyme P with respect to flux J - DHAP dihydroxyacetonephosphate - E4P erythrose 4-phosphate - F6P fructose 6-phosphate - FBP fructose 1,6-bisphosphate - FBPase fructose 1,6-bisphosphatase - G3P glyceraldehyde 3-phosphate - G1P glucose 1-phosphate - G6P glucose 6-phosphate - Pi inorganic phosphate - PCR photosynthetic carbon reduction - PGA 3-phosphoglyceric acid - PPFD photosynthetically active photon flux density - R n J response coefficient for effector n with respect to flux J - R5P ribose 5-phosphate - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - Ru5P ribulose 5-phosphate - RuBP ribulose 1,5-bisphosphate - S7P sedoheptulose 7-phosphate - SBP sedoheptulose 1,7-bisphosphate - SBPase sedoheptulose 1,7-bisphosphatase - SPS sucrose-phosphate synthase - Xu5P xylulose 5-phosphate - n P elasticity coefficient for effector n with respect to the catalytic velocity of enzyme P This research was funded by an Australian Research Council grant to I.E.W. and was undertaken during a visity by K.A.M. to the James Cook University of North Queensland. The expert help of Glenys Hanley and Mick Kelly is greatly appreciated.  相似文献   

18.
Some enzymatic activities of the glycolytic and hexose monophosphate pathways of Candida parapsilosis, a yeast lacking alcohol dehydrogenase but able to grow on high glucose concentrations, were compared to those of Saccharomyces cerevisiae. Cells were grown either on 8% glucose or on 2% glycerol and activities measured under optimal conditions. Results were as follows: glycolytic enzymes of C. parapsilosis, except glyceraldehyde 3-phosphate dehydrogenase, exhibited an activity weaker than that of S. cerevisiae, especially when yeasts were grown on glycerol. Fructose-1,6 bisphosphatase, an enzyme implicated in gluconeogenesis and in the hexose monophosphate pathway, and known to be very sensitive to catabolite repression in S. cerevisiae, was always active in C. parapsilosis even when cells were grown on 8% glucose. However, the allosteric properties towards AMP and fructose-2,6-bisphosphate were the same in both strains. Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, two other enzymes of the hexose monophosphate pathway, exhibited a higher activity in C. parapsilosis than in S. cerevisiae. Regulation of two important control points of the glycolytic flux, phosphofructokinase and pyruvate kinase, was investigated. In C. parapsilosis phosphofructokinase was poorly sensitive to ATP but fructose-2,60bisphosphate completely relieved the light ATP inhibition. Pyruvate kinase did not require fructose-1,6-bisphosphate for its activity, and by this way, did not regulate the glycolytic flux. The high glyceraldehyde-3-P-dehydrogenase activity, together with the relative insensitivity of fructose-1,6-bisphosphatase to catabolite repression and the high glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities suggested that in C. parapsilosis, as in other Candida species and opposite to S. cerevisiae, the glucose degradation mainly occurred through the hexose monophosphate pathway, under both growth conditions used.Abbreviations C. parapsilosis Candida parapsilosis - S. cerevisiae Saccharomyces cerevisiae - C. utilis Candida utilis  相似文献   

19.
Starting with a fruK (formerly fpk) mutant of Escherichia coli K12 lacking d-fructose-1-phosphate kinase (E.C. 2.7.1.3.), fructose positive derivatives were isolated after introduction of the cloned gene sorE from Klebsiella pneumoniae coding for an l-sorbose-1-phosphate reductase. The new pathway was shwon to proceed from d-fructose via d-fructose-1-phosphate and d-mannitol-1-phosphate to d-fructose 6-phosphate. It involves a transport system and enzymes encoded in the fru and the mtl operons from E. coli K12 as well as in the sor operon from K. pneumoniae respectively.  相似文献   

20.
The bacterium Oenococcus oeni employs the heterolactic fermentation pathway (products lactate, ethanol, CO2) during growth on fructose as a substrate, and the mannitol pathway when using fructose as an electron acceptor. In this study, [U-13C]glucose, [U-13C]fructose, HPLC, NMR spectroscopy, and enzyme analysis were applied to elucidate the use of both pathways by the hexoses. In the presence of glucose or pyruvate, fructose was metabolized either by the mannitol or the phosphoketolase pathways, respectively. Phosphoglucose isomerase, which is required for channeling fructose into the phosphoketolase pathways, was inhibited by a mixed-type inhibition composed of competitive (K i=180 M) and uncompetitive (Ki=350 M) inhibition by 6-phosphogluconate. Erythrose 4-phosphate inhibited phosphoglucose isomerase competitively (K i=1.3 M) with a low contribution of uncompetitive inhibition (Ki=13 M). The cellular 6-phosphogluconate content during growth on fructose plus pyruvate (<75 M) was significantly lower than during growth on fructose alone or fructose plus glucose (550 and 480 M). We conclude that competitive inhibition of phosphoglucose isomerase by 6-phosphogluconate (and possibly erythrose 4-phosphate) is responsible for exclusion of fructose from the phosphoketolase pathway during growth on fructose plus glucose, but not during growth on fructose plus pyruvate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号