首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The content of myosin in plasmodia of the myxomycete Physarum polycephalum was measured by an immunological technique, quantitative microcomplement (C') fixation. Migrating plasmodia (starved after growth on rolled oats) contained 0.60 +/- 0.08 (SD) mg myosin per g fresh plasmodia. Myosin comprised 0.77% +/- 0.05 (SD) of the total plasmodial protein. When total plasmodial proteins were separated by electrophoresis on SDS-polyacrylamide gels, a large amount of protein appeared in a band comigrating with muscle actin. Densitometry performed after Coomassie blue staining indicated that as much as 15- 25% of the total protein in the plasmodium could be actin. This gives an actin/myosin ratio by weight in the myxomycete plasmodium as high as 19-33, a very "actin-rich" actomyosin compared with rabbit skeletal muscle actomyosin with an actin/myosin ratio of 0.6. Starvation stimulates rapid migration and is correlated with a higher percent of both myosin and actin in the total protein of the plasmodium compared with normally growing cultures. Immunological cross-reaction of myosins from a variety of species was measured by C' fixation using an antiserum produced against purified native myosin from P. polycephalum. Although myxomycete and vertebrate striated muscle myosins have very similar morphological and biochemical properties, and apparently possess similar binding properties to F-actin, only myosins from myxomycetes in the order Physarales, rather closely related to P. polycephalum, gave detectable cross-reactions. This finding suggests that many amino acid sequences in myosin have been variable during evolution.  相似文献   

2.
Thin-spread glycerol-extracted Physarum plasmodia were treated with N-ethylmaleimide (NEM) to block myosin-ATPase and contractility. After supplementing the models with purified plasmodial myosin, they could be reactivated and contracted upon addition of ATP. Fluorescently labeled actomyosin fibers ruptured during contraction, resulting in beaded or rod-like contraction centers. Glycerol-extracted plasmodia lose their negative Ca++-dependence during extraction. Reconstitution of NEM-treated models with plasmodial myosin partly restored this Ca++-sensitivity. Thus, either myosin or a factor associated with it seems to be involved in the Ca++-dependent regulation of cytoplasmic actomyosin contraction in Physarum. NEM-blocked models reconstituted with skeletal muscle myosin were not reactivated by ATP. The same plasmodia subsequently incubated with plasmodial myosin were able to contract.  相似文献   

3.
An actin-like protein was obtained from the plasmodia of a myxomycete, Physarum polycephalum. It forms a complex with muscle myosin A which behaves similarly to the actomyosin from rabbit striated muscle. On the addition of ATP the complex of this protein with myosin A shows a viscosity drop at high concentrations of KCl (~0.5 M). At low concentrations of KCl (~0.05 M) this complex superprecipitates from solutions containing 1 mM MgCl2 and shows Mg-activated ATPase activity. That is, the actin-like protein converts the ATPase of myosin A to the actomyosin type.  相似文献   

4.
A contractile protein closely resembling natural actomyosin (myosin B) of rabbit skeletal muscle was extracted from plasmodia of the slime mold, Physarum polycephalum, by protecting the SH-groups with beta-mercaptoethanol or dithiothreitol. Superprecipitation of the protein induced by Mg2+-ATP at low ionic strength was observed only in the presence of very low concentrations of free Ca2+ ions, and the Mg2+-ATPase [EC 3.6.1.3] reaction was activated 2- to 6-fold by 1 muM of free Ca2+ ions. Crude myosin and actin fractions were separated by centrifuging plasmodium myosin B in the presence of Mg2+-PPi at high ionic strength. The crude myosin showed both EDTA- and Ca2+-activated ATPase activities. The Mg2+-ATPase activity of crude myosin from plasmodia was markedly activated by the addition of pure F-actin from rabbit skeletal muscle. Addition of the F-action-regulatory protein complex prepared from rabbit skeletal muscle as well as the actin fraction of plasmodium caused the same degree of activation as the addition of pure F-actin only in the presence of very low concentrations of Ca2+ ion  相似文献   

5.
The contractile and regulatory proteins of insect flight muscle   总被引:9,自引:2,他引:7       下载免费PDF全文
1. Myosin, actin and the regulatory proteins were prepared from insect flight muscle. 2. The light subunit composition of the myosin differed from that of vertebrate muscle myosin. The ionic strength and pH dependence of the myosin adenosine triphosphatase (ATPase) were measured. 3. Actin was associated with a protein of subunit molecular weight 55000 and was purified by gel filtration. Impure actin had protein bound at a periodicity of about 40nm. 4. Regulatory protein extracts had tropomyosin and troponin components of subunit molecular weight 18000, 27000 and 30000. Crude extracts of regulatory proteins inhibited the ATPase activity of desensitized or synthetic actomyosin; this inhibition was relatively insensitive to high Ca(2+) concentrations. Purified insect regulatory protein produced as much sensitivity to Ca(2+) as did the rabbit troponin-tropomyosin complex. 5. Synthetic actomyosins were made from rabbit and insect proteins. Actomyosins containing insect myosin had a low ATPase activity that was activated by tropomyosin. The Ca(2+) sensitivity of actomyosins containing insect myosin or actin, with added troponin-tropomyosin complex from rabbit, was comparable with that of rabbit actomyosin.  相似文献   

6.
A full-length cDNA coding a calmodulin (CaM)-dependent protein kinase gene was cloned from Physarum plasmodia poly(A)-RNA by polymerase chain reaction with the oligonucleotide primers that were designed after the amino acid sequence of highly conserved regions of myosin light-chain kinase. Sequence analysis of the cDNA revealed that this Physarum kinase was a 42,519-Da protein with an ATP-binding domain, Ser/Thr kinase active site signature, and CaM-binding domain. Expression of the cDNA in Escherichia coli demonstrated that the Physarum kinase in the presence of Ca2+ and CaM phosphorylated the recombinant phosphorylatable light chain (PLc) of Physarum myosin II. The peptide analysis after proteolysis of the phosphorylated PLc indicated that Ser 18 was phosphorylated. The site was confirmed by the failure of phosphorylation of PLc, the Ser 18 of which was replaced by Ala. The physiological role of the kinase will be discussed with special reference to the 55-kDa kinase, which had been previously purified from Physarum plasmodia for phosphorylated PLc.  相似文献   

7.
从多头绒泡菌中纯化了肌球蛋白,并对其亚基组成及ATP酶性质进行了研究。该肌球蛋白是由一种重链(225kD)和两种轻链(20kD,17.5kD)组成的大分子,其亚基之比为HC:LC1:LC2=2:4:2。兔肌F-肌动蛋白能较大激活粘菌肌球蛋白ATP酶活性,Ca~(2+)离子也能提高其活性,Mg~(2+)离子无明显影响。钒酸盐,碘乙酸,对氯汞苯甲酸对其ATP酶活性有显著抑制作用。  相似文献   

8.
Starvation of rats for 48 h increased the activity of PDH (pyruvate dehydrogenase) kinase 2.2-fold in extracts of liver mitochondria, 2.9-fold in PDH complex partially purified therefrom by fractional precipitation, and 5-fold in PDH complex partially purified by gel filtration on Sephacryl S-300. A protein fraction was separated from PDH complex in extracts of rat liver mitochondria by gel filtration or fractional precipitation, which increased the activity of PDH kinase in rat liver and pig heart PDH complexes. The activity of this protein fraction was increased approx. 2.5-fold by 48 h starvation of rats. With highly purified pig heart PDH complex it was shown that the protein fraction increased the Vmax. of the PDH kinase reaction 35-fold (fraction from fed rats) or 82-fold (fraction from starved rats); starvation had no effect on the concentration of protein fraction required to give 0.5 Vmax. Evidence is given that the increase in PDH kinase activity effected in extracts of liver mitochondria by starvation is due to increased activity of kinase activator protein, which is tightly bound by rat liver PDH complex and not removed by a single gel filtration. With pig heart PDH complex, increased PDH kinase activity was retained after gel filtration of an admixture with kinase activator protein from starved rats, but was restored to the control value by a second gel filtration; the alterations in PDH kinase activity were associated with obvious changes in protein bands in SDS gels.  相似文献   

9.
Ca2+-binding protein with the properties of brain modulator protein of 3,5-cyclic nucleotide phosphodiesterase was identified in Physarum polycephalum plasmodia and in Euglena gracilis and Amoeba proteus cells by urea polyacrylamide gel electrophoresis and activation of cyclic nucleotide phosphodiesterase and of myosin light chain kinase.  相似文献   

10.
In the plasmodia of Physarum polycephalum, which show a cyclic contraction-relaxation rhythm of the gel layer, huge aggregates of entangled actin microfilaments are formed at about the onset of the relaxation (R. Nagai, Y. Yoshimoto, and N. Kamiya. 1978. J. Cell Sci. 33:205-225). By treating the plasmodia with Triton X-100, we prepared a demembranated cytoskeleton consisting of entangled actin filaments and found that the actin filaments hardly interact with rabbit skeletal myosin. From the cytoskeleton we purified a novel actin-binding protein which binds stoichiometrically to actin and makes actin filaments curled and aggregated. It also inhibits the ATPase activity as well as the superprecipitation of reconstituted rabbit skeletal muscle actomyosin. This protein has a polypeptide molecular weight of 36,000 and binds 7 mol of actin/mol 36,000 polypeptide.  相似文献   

11.
Natural actomyosin was isolated from skeletal muscle of frogs (Rana catesbeiana) acclimated at 25 degrees C and 5 degrees C. It was found that preparations isolated from warm-acclimated frogs may display considerable degradation of myosin heavy chains as compared with preparations isolated from cold-acclimated frogs. However, degradation may be minimized by inclusion of protease inhibitors during purification, indicating enhanced protease activity in preparations of natural actomyosin from warm-acclimated frogs. When purified in the presence of protease inhibitors, natural actomyosin from both warm-acclimated and cold-acclimated frogs exhibits comparable subunit composition of SDS-gel electrophoresis. The overall gel pattern is similar to that obtained from rabbit natural actomyosin except that in the frog, troponin-T and troponin-C appear to co-migrate with tropomyosin and myosin light chain 2, respectively.  相似文献   

12.
Myosin was isolated from amoebae of Physarum polycephalum and compared with myosin from plasmodia, another motile stage in the Physarum life cycle. Amoebal myosin contained heavy chains (Mr approximately 220,000), phosphorylatable light chains (Mr 18,000), and Ca2+-binding light chains (Mr 14,000) and possessed a two-headed long-tailed shape in electron micrographs after rotary shadow casting. In the presence of high salt concentrations, myosin ATPase activity increased in the following order: Mg-ATPase activity less than K-EDTA-ATPase activity less than Ca-ATPase activity. In the presence of low salt concentrations, Mg-ATPase activity was activated approximately 9-fold by skeletal muscle actin. This actin-activated ATPase activity was inhibited by micromolar levels of Ca2+. Amoebal myosin was indistinguishable from plasmodial myosin in ATPase activities and molecular shape. However, the heavy chain and phosphorylatable light chains of amoebal myosin could be distinguished from those of plasmodial myosin in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, peptide mapping, and immunological studies, suggesting that these are different gene products. Ca2+-binding light chains of amoebal and plasmodial myosins were found to be identical using similar criteria, supporting our hypothesis that the Ca2+-binding light chain plays a key role in the inhibition of actin-activated ATPase activity in Physarum myosins by micromolar levels of Ca2+.  相似文献   

13.
Amoebae and plasmodia constitute the two vegetative growth phases of the Myxomycete Physarum. In vitro and in vivo phosphorylation of actin in plasmodia is tightly controlled by fragmin P, a plasmodium-specific actin-binding protein that enables actin phosphorylation by the actin-fragmin kinase. We investigated whether amoebal actin is phosphorylated by this kinase, in spite of the lack of fragmin P. Strong actin phosphorylation was detected only following addition of recombinant actin-fragmin kinase to cell-free extracts of amoebae, suggesting that amoebae contain a protein with properties similar to plasmodial fragmin. We purified the complex between actin and this protein to homogeneity. Using an antibody that specifically recognizes phosphorylated actin, we demonstrate that Thr203 in actin can be phosphorylated in this complex. A full-length amoebal fragmin cDNA was cloned and the deduced amino acid sequence shows 65% identity with plasmodial fragmin. However, the fragmins are encoded by different genes. Northern blots using RNA from a developing Physarum strain demonstrate that this fragmin isoform (fragmin A) is not expressed in plasmodia. In situ localization showed that fragmin A is present mainly underneath the plasma membrane. Our results indicate that Physarum amoebae express a fragmin P-like isoform which shares the property of binding actin and converting the latter into a substrate for the actin-fragmin kinase.  相似文献   

14.
1. A myosin-actin hybrid complex was used to study actin-associated calcium sensitivity of a "cytoplasmic" actomyosin. The approach should be generally applicable. 2. Low salt extracts of Physarum polycephalum contain actin which remains in solution after centrifugation at 46 000 times g or at 100 000 times g for 1 h. The actin was precipitated by the addition of muscle myosin to the supernatants and detected in the hybrid complex by electron microscopy, sodium dodecyl sulfate gel analysis, super-precipitation and activation of the myosin ATPase activity. Actin was also precipitable from high speed supernatants of brain tissue or platelets. 3. The hybrid complexes from Physarum possessed 1.5-5-fold calcium dependency which could be removed by washing. Reincubation of the washed complex with concentrated wash solution resulted in high calcium sensitivity. On sodium dodecyl sulfate gels, unwashed complexes from Physarum contained high molecular weight material in addition to bands of molecular weights less than actin. The bands in the size range of 39 000 to 18 000 were primarily lost from the Physarum complex concomitantly with loss of calcium dependence. 4. When the Physarum supernatants were made 40 mM in MgCl2, precipitates were formed containing actin which possessed calcium sensitivity which was also lost on washing with low ionic strength solutions. This calcium dependency was partially reversed by the addition of desensitized rabbit actin to the precipitate before assay. 5. Conclusion: calcium regulation of actomyosin in Physarum is mediated primarily by factors that are bound to the actin component. The regulatory factors are soluble in low salt buffers. The molecular weights of the polypeptide chains of several of these factors are similar to those of the troponin polypeptides of striated muscle. In Physarum but not in platelet or brain a prominent polypeptide chain of approx. 55 000 molecular weight also occurs which coprecipitates with the hybrid complex and which is not easily removed.  相似文献   

15.
The two light chains of Physarum myosin have been purified in a 1:1 ratio with a yield of 0.5-1 mg/100 g of plasmodium and a purity of 40- 70%; the major contaminant is a 42,000-dalton protein. The 17,700 Mr Physarum myosin light chain (PhLC1) binds to scallop myofibrils, providing the regulatory light chains (ScRLC) have been removed. The 16,500 Mr light (PhLC2) does not bind to scallop myofibrils. The calcium control of scallop myosin ATPase is lost by the removal of one of the two ScRLC's and restored equally well by the binding of either PhLC1 or rabbit skeletal myosin light chains. When both ScRLC's are removed, replacement by two plasmodial light chains does not restore calcium control as platelet or scallop light chains do. Purified plasmodial actomyosin does not bind calcium in 10(-6) M free calcium, 1 mM MgCl2. No tropomyosin was isolated from Physarum by standard methods. Because the Physarum myosin light chains can substitute only partially for light chains from myosin linked systems, because calcium does not bind to the actomyosin, and because tropomyosin is apparently absent, the regulation of plasmodial actomyosin by micromolar Ca++ may involve other mechanisms, possibly phosphorylation.  相似文献   

16.
The microplasmodia of the slime mold, Physarum polycephalum, coalesce readily upon contact. The nuclei of the resulting macroplasmodia divide in synchrony approx. 6–8 h after coalescence. If prior to coalescence the microplasmodia are maintained on non-nutrient salts solution, followed by continued starvation of the resulting macroplasmodia, the nuclei also will eventually divide, although at a much later time. This mitosis occurs earlier if the starved microplasmodia are irradiated with UV light prior to coalescence. The most pronounced advancement of mitosis was found in plasmodia which were obtained by coalescence of irradiated, starved microplasmodia with non-irradiated ones.  相似文献   

17.
We have purified an actin-binding protein from the plasmodia of a lower eukaryote, Physarum polycephalum, with an apparent molecular mass of 210,000 daltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This protein bound to actin filaments with a stoichiometry of 1:7-8 in a Ca(2+)-calmodulin-dependent manner. Antibody raised against caldesmon from smooth muscle cross-reacted with the 210-kDa protein. In vitro motility assay revealed that the 210-kDa protein increased the sliding velocity of actin filaments on Physarum myosin. The 210-kDa protein more than doubled the actin-activated ATPase activity of Physarum myosin under comparative conditions of in vitro motility assay. Further increases in the concentration of the 210-kDa protein decreased its stimulatory effects. Ca(2+)-calmodulin prevented the stimulatory effects of the 210-kDa protein. Unexpectedly, smooth muscle caldesmon also increased the sliding velocity of actin filaments on smooth muscle myosin at lower concentrations. The well-known inhibitory effect of smooth muscle caldesmon on the actin-myosin interaction was observed with this motility assay when the concentration of the caldesmon was increased further. The stimulatory and inhibitory effects were confirmed by measurements of actin-activated ATPase activity of smooth muscle myosin. From estimations of the intracellular concentrations of the 210-kDa protein and smooth muscle caldesmon in vivo, it appears that effects of the former and the latter on actin-myosin interactions in vivo are stimulatory and inhibitory, respectively.  相似文献   

18.
Fruiting body formation (sporulation) is a distinctive, irreversible differentiation process in the life cycle of the slime mold Physarum polycephalum. The most important requirement for sporulation of Physarum is a period of starvation, and normally sporulation proceeds in the light. It is shown here that by omitting the liquid sporulation medium and elevating the temperature from 21 to 25 degrees C, sporulation can occur routinely in the dark. It is further shown that this autocrine signaling in the dark requires calcium ions and malate. A putative sporulation control factor was detected in conditioned media derived from plasmodia starved in the dark, which was then identified as polymalate. As an additional role for this previously detected polyanion, specific for the plasmodial state of Physarum, it is suggested that the secreted compound serves as a source for both malate and calcium ions and thus promotes sporulation without light signaling.  相似文献   

19.
ATP-dependent interactions between myosin and actin in the lower eukaryote, Physarum polycephalum, are inhibited by micromolar levels of Ca2+. This inhibition is mediated by the binding of Ca2+ to myosin, the phosphorylation of which is required if Ca2+ is to inhibit the activities of myosin (Kohama, K., Trends Pharmacol. Sci. 11, 433-435 (1990)). As the first step to examine whether Ca2+ also regulates phosphorylation in the actomyosin system, we purified myosin light chain kinase (MLCK) of 55 kDa almost to homogeneity. The MLCK activity was high whether or not Ca2+ was present. However, a Ca(2+)-dependent inhibitory factor (CIF) purified from Physarum (Okagaki et al., Biochem. Biophys. Res. Commun. 176, 564-570 (1991)) was shown to reduce the MLCK activity in a Ca(2+)-dependent manner. Using crude preparations, not only MLCK but also myosin heavy chain kinase and actin kinase were shown to be inhibited by Ca2+ half-maximally at micromolar levels. Since CIF is the only Ca(2+)-binding protein in the preparations, we propose that this inhibitory Ca(2+)-regulation of the kinases for actomyosin is mediated by CIF.  相似文献   

20.
Myosin has been separated from Physarum polycephalum actomyosin in confirmation of the results of Hatano and Tazawa. In an intermediate step, myosin-enriched actomyosin has also been obtained. The mean yield of free myosin was 4.4 mg from 100 g of mold. It was obtained as water-clear solutions at µ = 0.055 with calcium ATPase activity of up to 0.5 µM Pi/min per mg. Negatively stained preparations were examined by electron microscopy. Physarum myosin in 0.5 M KCl interacted with actin from rabbit skeletal muscle to form polarized arrowhead complexes similar to but less regular than those of natural actomyosin from muscle or myosin-enriched Physarum actomyosin. The Physarum myosin-enriched actomyosin at low ionic strength displayed evidence of head-to-tail and tail-to-tail aggregation attributable to the myosin component. Yet Physarum myosin alone did not produce detectable filaments at µ = 0.055 at pH 7, 6.5, or 5.8, nor when dialyzed against 0.01 M ammonium acetate, nor when the dielectric constant of the medium was reduced. However, aggregation approaching the extent of ‘thick filaments’ up to 0.3 µ long was found in some preparations of myosin-enriched actomyosin put into solutions containing adenosine triphosphate. Myosin alone in such solutions did not form filaments. The results are compatible with the idea that head-to-tail aggregations are favored by actin-myosin interactions in Physarum, possibly due to alignment of the extended or tail portions of this myosin molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号