首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monoclonal antibodies against spore antigens of Bacillus anthracis   总被引:3,自引:0,他引:3  
Abstract A murine monoclonal antibody produced against heat inactivated spores of Bacillus anthracis Ames, reacted with live or inactivated spores of several anthrax strains in indirect immunofluorescence (IF) tests. The reactive anthrax strain gave only a moderate degree of reaction. No staining of anthrax vegetative cells was observed. The monoclonal did not react with spores of non-anthrax Bacillus strains that gave cross reactions with mouse hyperimmune antiserum raised against Ames spores. The staining of individual spores in B. anthracis preparations was more heterogeneous with the monoclonal antibody than with the hyperimmune serum. Evidence is produced that the epitope for this monoclonal is not stable during long-term storage of inactivated spore preparations, and is not fully available for reaction with antibody until late in spore maturation. The monoclonal did not react by immunoblotting (Western blotting) of spore extracts.  相似文献   

2.
Fluorescein-conjugated rabbit antibodies to formalized spores of Bacillus anthracis were tested against strains of B. anthracis and other Bacillus species in a subjective immunofluorescence test. The lack of reaction of B. anthracis Vollum spores with conjugated antibody raised against B. anthracis Sterne spores indicated that spores of the Vollum strain lacked a major surface antigen present in most of the other anthrax strains tested, including the non-encapsulated strains Sterne and the Soviet ST1, variants cured of the pX01 plasmid that codes for the toxin, and several virulent strains. Four other antibody preparations, raised against B. anthracis Vollum, New Hampshire, Ames and Strain 15, reacted to an approximately similar degree with spores of all four strains and of Sterne, indicating that Vollum has at least one spore antigen in common with these other strains. The anti-Sterne and anti-Vollum conjugates both displayed cross-reactions with spores of strains of B. cereus, B. coagulans, B. subtilis, B. megaterium, B. polymyxa, B. pumilus and B. thuringiensis. Absorption of the anti-anthrax conjugates with B. cereus NCTC 8035 and NCTC 10320 removed all these cross-reactions, demonstrating the existence of spore antigens specific for anthrax.  相似文献   

3.
Fluorescein-conjugated rabbit antibodies to formalized spores of Bacillus anthracis were tested against strains of B. anthracis and other Bacillus species in a subjective immunofluorescence test. The lack of reaction of B. anthracis Vollum spores with conjugated antibody raised against B. anthracis Sterne spores indicated that spores of the Vollum strain lacked a major surface antigen present in most of the other anthrax strains tested, including the non-encapsulated strains Sterne and the Soviet ST1, variants cured of the pX01 plasmid that codes for the toxin, and several virulent strains. Four other antibody preparations, raised against B, anthracis Vollum, New Hampshire, Ames and Strain 15, reacted to an approximately similar degree with spores of all four strains and of Sterne, indicating that Vollum has at least one spore antigen in common with these other strains. The anti-Sterne and anti-Vollum conjugates both displayed cross-reactions with spores of strains of B. cereus, B. coagulans, B. subtilis, B. megaterium, B. polymyxa, B. pumilus and B. thuringiensis. Absorption of the anti-anthrax conjugates with B. cereus NCTC 8035 and NCTC 10320 removed all these cross-reactions, demonstrating the existence of spore antigens specific for anthrax.  相似文献   

4.
A fluorescein-conjugated antibody against formalin-inactivated spores of Bacillus anthracis Vollum reacted only weakly with a variety of Bacillus species in microfluorometric immunofluorescence assays. A conjugated antibody against spores of B. anthracis Sterne showed little affinity for spores of several B. anthracis isolates including B. anthracis Vollum, indicating that more than one anthrax spore serotype exists.  相似文献   

5.
The extractable protein antigens EA1 and EA2 of Bacillus anthracis were prepared from electrophoresis transblots of SDS extracts of vegetative bacteria of the Sterne strain. Hyperimmune guinea-pig antiserum against EA2 failed to react with B. anthracis cells in immunofluorescence (IF) tests. Guinea-pig antiserum against EA1 (anti-EA1) reacted strongly in IF tests with non-encapsulated vegetative cell of 10 of 12 strains of B. anthracis and with cells of strains of B. cereus and B. thuringiensis. The unreactive B. anthracis strains were delta-Vollum-1B-1 and Texas. Encapsulated cells of B. anthracis stained poorly except for small bright regions. Absorption of anti-EA1 with cells of B. cereus NCTC 8035 and NCTC 9946 removed activity towards all B. cereus strains tested, but only partly reduced cross-reaction with B. thuringiensis strains. Absorption of anti-EA1 with B. thuringiensis 4041 removed activity towards this strain and B. cereus strains. Evidence is produced that B. thuringiensis cells grown on nutrient agar possess more cross-reacting antigens than cells grown in nutrient broth. The reaction of anti-EA1 with Bacillus spores immobilized in clumps on microscope slides was attributed to contaminating vegetative debris because well-separated individual spores failed to react. A rapid IF test was developed allowing identification of B. anthracis sampled from overnight cultures on blood plates. When sodium dodecyl sulphate extracts of B. anthracis vegetative cells were analysed on immunoblots (Western blots) by reaction with anti-EA1, a number of bands were visualized in addition to the expected 91 kiloDalton EA1 band. Prior absorption of anti-EA1 with B. cereus or B. thuringiensis cells resulted in the disappearance of most or all of the brands in blots of these species, but had less effect on blots of the B. anthracis strains. All six B. anthracis strains that were blotted including delta-Vollum-1B-1 and Texas, could thus be distinguished from B. cereus and B. thuringiensis by their differential reaction with unabsorbed and absorbed anti-EA1.  相似文献   

6.
Spores of Bacillus anthracis, the causative agent of anthrax, are enclosed by an exosporium, which consists of a basal layer surrounded by a nap of hair-like filaments. The major structural component of the filaments is called BclA, which comprises a central collagen-like region (CLR) and a globular C-terminal domain. Here, the entire CLR coding sequence of BclA was removed, and the resulting protein (tBclA) produced in Escherichia coli. The crystallographic structure of tBclA was determined to 1.35 A resolution, and consists of an all-beta structure with a TNF-like jelly fold topology (12 beta-strands which form 2 beta-sheets of five strands each) consistent with previous studies on wild-type BclA. These globular domains are tightly packed into trimeric structures (surface shape complementarity; S (c) = 0.83), demonstrating that formation of the core structure of BclA is independent of the anchoring collagen-like region. A polyclonal antibody raised against tBclA recognized B. anthracis spores directly, and showed little cross-reactivity (<10%) with the spores of the closely related species Bacillus cereus and Bacillus thuringiensis, when compared to two other polyclonal antibodies raised against B. anthracis spore extracts and inactivated spores. The tBclA protein was used to purify a pool of specific antibodies from bovine colostrum whey samples from cows inoculated with the Sterne strain anthrax vaccine, which also showed reactivity with B. anthracis spores. Together, these results demonstrate that tBclA provides a safer and more effective way to the production and purification of antibodies with high binding affinity for B. anthracis spores. Biotechnol. Bioeng. 2008;99: 774-782. (c) 2007 Wiley Periodicals, Inc.  相似文献   

7.
Bacillus anthracis spore germination is usually detected in vitro by alterations in spore refractility, heat resistance, and stainability. We developed a more quantitative, sensitive, and semi-automated procedure for detecting germination by using a microtiter kinetic reader for fluorescence spectrophotometry. The procedure was based on the increase in fluorescence of spores with time during their incubation in germination medium containing a fluorescent nucleic acid-binding dye which stained germinated B. anthracis but not ungerminated (UG) spores. Spore germination in the presence of several germinants was characterized. Although L-alanine and inosine alone stimulated rapid germination in this assay, a medium containing optimal concentrations of L-alanine, adenosine, and casamino acids gave low background fluorescence, stimulated germination completely, and at a reasonable rate. Suspensions of heat-activated, UG spores of B. anthracis strain Ames were preincubated with antibodies (Abs) against whole spores to assess their effect on germination. Analyses of the germination data obtained revealed significant differences between spores pretreated with these Abs and those treated with non-immune sera or IgG. Germination inhibitory activity (GIA) was detected for several polyclonal rabbit anti-spore Ab preparations. These included anti-Ames strain spore antisera, IgG purified from the latter, and spore affinity-purified Abs from antisera elicited against four strains of B. anthracis. Abs elicited against UG as well as completely germinated Ames spores inhibited germination. Abs were ranked according to their GIA, and those specific for UG spores usually exhibited greater GIA. Direct binding to spores of these Abs was detected by an ELISA with whole un-germinated Ames spores. Although specific binding to spores by the anti-spore Abs was shown, their titers did not correlate with their GIA levels. Current efforts are focused on identifying the spore antigens recognized by the anti-spore Abs, characterizing the role of these targeted antigens in disease pathogenesis, and evaluating the ability of specific anti-spore Abs to protect against infection with B. anthracis.  相似文献   

8.
The sensitivity and specificity of polyclonal and monoclonal antibodies raised against anthrax spore preparations has been assessed by Western blotting. None of the antibodies studied were completely specific in recognizing the anthrax spore surface. A polyclonal serum recognized a wide range of spore surface epitopes and demonstrated limited cross-reaction with the near-neighbour species Bacillus cereus spore surface. Two monoclonal antibodies studied demonstrated more extensive cross-reaction with distant-neighbour species B. globigii and B. subtilis. These monoclonal antibodies did not react with spore surface epitopes but did bind strongly to vegetative cell epitopes in all four Bacillus species studied.  相似文献   

9.
The role of macrophages in the pathogenesis of anthrax is unresolved. Macrophages are believed to support the initiation of infection by Bacillus anthracis spores, yet are also sporicidal. Furthermore, it is believed that the anthrax toxins suppress normal macrophage function. However, the significance of toxin effects on macrophages has not been addressed in an in vivo infection model. We used mutant derivatives of murine macrophage RAW264.7 cells that are toxin receptor-negative (R3D) to test the role of toxin-targeting of macrophages during a challenge with spores of the Ames strain of B. anthracis in both in vivo and in vitro models. We found that the R3D cells were able to control challenge with Ames when mice were inoculated with the cells prior to spore challenge. These findings were confirmed in vitro by high dose spore infection of macrophages. Interestingly, whereas the R3D cells provided a significantly greater survival advantage against spores than did the wild type RAW264.7 cells or R3D-complemented cells, the protection afforded the mutant and wild type cells was equivalent against a bacillus challenge. The findings appear to be the first specific test of the role of toxin targeting of macrophages during infection with B. anthracis spores.  相似文献   

10.
Dual-parameter scatter-flow immunofluorescence analysis of Bacillus spores   总被引:1,自引:0,他引:1  
Using a commercial flow cytometer (Cyto-fluorograf), narrow-forward-angle (NFA) light-scatter signals were detected for spore preparations of Bacillus anthracis Vollum, B. anthracis Sterne, B. cereus NCTC 8035, and B. subtilis var niger. In the flow immunofluorescence (FIF) analysis of spores stained with fluorescein-conjugated hyperimmune antibody to B. anthracis Vollum spores, fluorescence histograms could be acquired by selecting on NFA scatter. Fluorescence data selected on ninety degree scatter were rather noisier. Fluorescence analysis by dual parameter NFA scatter-FIF techniques was shown to have several advantages over the subtraction FIF method reported earlier. The implication from FIF analysis of spore suspensions and corresponding cell-free supernatants that the peak in the fluorescence histogram was caused by signals from fluorescing spores, was confirmed by use of the cell sorter and subsequent microscopy of the sorted samples. Although a proportion of spore aggregates was present in samples sorted from the right-hand tail of the fluorescence histogram, it was demonstrated that the majority of the observed distribution of fluorescence was not due to the formation of aggregates but was rather an expression of variation in the degree of staining of individual spores.  相似文献   

11.
Detection of biological weapons is a primary concern in force protection, treaty verification, and safeguarding civilian populations against domestic terrorism. One great concern is the detection of Bacillus anthracis, the causative agent of anthrax. Assays for detection in the laboratory often employ inactivated preparations of spores or nonpathogenic simulants. This study uses several common biodetection platforms to detect B. anthracis spores that have been inactivated by two methods and compares those data to detection of spores that have not been inactivated. The data demonstrate that inactivation methods can affect the sensitivity of nucleic acid- and antibody-based assays for the detection of B. anthracis spores. These effects should be taken into consideration when comparing laboratory results to data collected and assayed during field deployment.  相似文献   

12.
Both monoclonal and polyclonal antisera were produced against Ceratomyxa shasta. Ascites containing trophozoites of the parasite was collected from infected fish and used as antigen for immunization of mice. The resulting monoclonal antibodies reacted specifically with trophozoite and sporoblast stages but did not react with C. shasta spores by either indirect fluorescent antibody techniques or in Western blots. This indicates that some C. shasta antigens are specific to certain life stages of the parasite. Polyclonal antiserum was produced in a rabbit by injecting a spore protein electro-eluted from an SDS-polyacrylamide gel. This antiserum reacted with both trophozoites and spores by indirect fluorescent antibody techniques and in Western blots. All antisera were tested for cross-reactivity to trout white blood cells, a contaminant of the ascites, and to other myxosporea. Two monoclonal antibodies reacted with white blood cells and myxosporea of the genera Sphaerospora and Myxobilatus. One hybridoma produced antibodies of high specificity for C. shasta pre-spore stages. This is the first report of a monoclonal antibody produced against a myxosporean parasite.  相似文献   

13.
Dormant spores of Bacillus anthracis germinate during host infection and their vegetative growth and dissemination precipitate anthrax disease. Upon host death, bacilli engage a developmental programme to generate infectious spores within carcasses. Hallmark of sporulation in Bacillus spp. is the formation of an asymmetric division septum between mother cell and forespore compartments. We show here that sortase C (SrtC) cleaves the LPNTA sorting signal of BasH and BasI, thereby targeting both polypeptides to the cell wall of sporulating bacilli. Sortase substrates are initially produced in different cell compartments and at different developmental stages but penultimately decorate the envelope of the maturing spore. srtC mutants appear to display no defect during the initial stages of infection and precipitate lethal anthrax disease in guinea pigs at a similar rate as wild-type B. anthracis strain Ames. Unlike wild-type bacilli, srtC mutants do not readily form spores in guinea pig tissue or sheep blood unless their vegetative forms are exposed to air.  相似文献   

14.
Five monoclonal antibodies against bacterial spores of Bacillus cereus T and Clostridium sporogenes PA3679 were developed. Two antibodies (B48 and B183) were selected for their reactivity with B. cereus T spores, two (C33 and C225) were selected for their reactivity with C. sporogenes spores, and one (D89) was selected for its reactivity with both B. cereus and C sporogenes spores. The isotypes of the antibodies were determined to be immunoglobulin G2a (IgG2a) (B48), IgG1 (B183), and IgM (C33, C225, and D89). The antibodies reacted with spores of B. cereus T, Bacillus subtilis subsp. globigii, Bacillus megaterium, Bacillus stearothermophilus, C. sporogenes, Clostridium perfringens, and Desulfotomaculum nigrificans. Antibody D89 also reacted with vegetative cells of B. cereus and C. sporogenes. Analysis of B. cereus spore extracts showed that two of the antigens with which the anti-Bacillus antibodies reacted had molecular masses of 76 kDa and approximately 250 kDa. Immunocytochemical localization indicated that antigens with which B48, B183, and D89 react are on the exosporium of the B. cereus T spore. Antibody D89 reacted with the exosporium and outer cortex of C. sporogenes spores in immunocytochemical localization studies but did not react with extracts of C. sporogenes or B. cereus spores in Western blotting. Some C. sporogenes antigens were not stable during long-term storage at -20 degrees C. Antibodies B48, B183, and D89 should prove to be useful tools for developing immunological methods for the detection of bacterial spores.  相似文献   

15.
A solid phase immunoradiometric assay (IRMA) is described in which Bacillus anthracis spores were heat fixed to the wells of glass multispot microscope slides. Assays for spores of B. anthracis Vollum and Sterne strains with 3H labels were evaluated in the direct and indirect versions. Neither signal nor signal-to-noise characteristics of indirect assays were greatly improved by the use of immunopurified antibody (IPAB) or IgG anti-bacterial reagents rather than antiserum. However, the specificity of the direct and indirect assays for B. anthracis strains and B. cereus NCTC 8035 was altered by immunopurification of the anti-bacterial reagent. Although the signal-to-noise ratio was sometimes higher in indirect than in direct assays, signal values were usually no better. Evidence was produced that the overall ratio of the indirect: direct antibody molecules bound by preparations of B. anthracis spores rarely exceeded two but the antibody-molecular ratio for antigens on extracellular material in spore preparations was much higher than the ratio for antigens on the spores themselves.  相似文献   

16.
Bacillus anthracis is the etiological agent of anthrax. Although anthrax is primarily an epizootic disease; humans are at risk for contracting anthrax. The potential use of B. anthracis spores as biowarfare agent has led to immense attention. Prolonged vaccination schedule of current anthrax vaccine and variable protection conferred; often leading to failure of therapy. This highlights the need for alternative anthrax countermeasures. A number of approaches are being investigated to substitute or supplement the existing anthrax vaccines. These relied on expression of Protective antigen (PA), the key protective immunogen; in bacterial or plant systems; or utilization of attenuated strains of B. anthracis for immunization. Few studies have established potential of domain IV of PA for immunization. Other targets including the spore, capsule, S-layer and anthrax toxin components have been investigated for imparting protective immunity. It has been shown that co-immunization of PA with domain I of lethal factor that binds PA resulted in higher antibody responses. Of the epitope based vaccines, the loop neutralizing determinant, in particular; elicited robust neutralizing antibody response and conferred 97% protection upon challenge. DNA vaccination resulted in varying degree of protection and seems a promising approach. Additionally, the applicability of monoclonal and therapeutic antibodies in the treatment of anthrax has also been demonstrated. The recent progress in the direction of anthrax prophylaxis has been evaluated in this review.  相似文献   

17.
Aims:  Bacillus anthracis strains of various origins were analysed with the view to describe intrinsic and persistent structural components of the Bacillus collagen-like protein of anthracis glycoprotein associated anthrose containing tetrasaccharide in the exosporium.
Methods and Results:  The tetrasaccharide consists of three rhamnose residues and an unique monosaccharide – anthrose. As anthrose was not found in spores of related strains of bacteria, we envisioned the detection of B. anthracis spores based on antibodies against anthrose-containing polysaccharides. Carbohydrate–protein conjugates containing the synthetic tetrasaccharide, an anthrose–rhamnose disaccharide or anthrose alone were employed to immunize mice. All three formulations were immunogenic and elicited IgG responses with different fine specificities. All sera and monoclonal antibodies derived from tetrasaccharide immunized mice cross-reacted not only with spore lysates of a panel of virulent B. anthracis strains, but also with some of the B. cereus strains tested.
Conclusions:  Our results demonstrate that antibodies to synthetic carbohydrates are useful tools for epitope analyses of complex carbohydrate antigens and for the detection of particular target structures in biological specimens.
Significance and Impact of the Study:  Although not strictly specific for B. anthracis spores, antibodies against the tetrasaccharide may have potential as immuno-capturing components for a highly sensitive spore detection system.  相似文献   

18.
Microbe Russian Anti-Plague Research Institute, Saratov A hybrid plasmid pUB110PA-1 demonstrating stable functioning in the cells of Bacillus strains and containing the gene of biosynthesis of Bacillus anthracis protective antigen was constructed. The recombinant strains surpassing the anthrax vaccinal cultures in the secreted synthesis of the protective antigen were obtained and their immunological efficacy was assessed. A single inoculation of Guinea pigs with the dose of 5 x 107 spores of the recombinant strains imparted efficient protection against B. anthracis challenge. Immune responses were characterized by high indices of immunity and titers of antibodies to the protective antigen. In contrast to the anthrax vaccinal preparations, the gene-engineering strains imposed no residual virulence for BALB/n mice and Guinea pigs.  相似文献   

19.
AIMS: To determine the size distribution of the spores of Bacillus anthracis, and compare its size with other Bacillus species grown and sporulated under similar conditions. METHODS AND RESULTS: Spores from several Bacillus species, including seven strains of B. anthracis and six close neighbours, were prepared and studied using identical media, protocols and instruments. Here, we report the spore length and diameter distributions, as determined by transmission electron microscopy (TEM). We calculated the aspect ratio and volume of each spore. All the studied strains of B. anthracis had similar diameter (mean range between 0.81 +/- 0.08 microm and 0.86 +/- 0.08 microm). The mean lengths of the spores from different B. anthracis strains fell into two significantly different groups: one with mean spore lengths 1.26 +/- 0.13 microm or shorter, and another group of strains with mean spore lengths between 1.49 and 1.67 microm. The strains of B. anthracis that were significantly shorter also sporulated with higher yield at relatively lower temperature. The grouping of B. anthracis strains by size and sporulation temperature did not correlate with their respective virulence. CONCLUSIONS: The spores of Bacillus subtilis and Bacillus atrophaeus (previously named Bacillus globigii), two commonly used simulants of B. anthracis, were considerably smaller in length, diameter and volume than all the B. anthracis spores studied. Although rarely used as simulants, the spores of Bacillus cereus and Bacillus thuringiensis had dimensions similar to those of B. anthracis. SIGNIFICANCE AND IMPACT OF THE STUDY: Spores of nonvirulent Bacillus species are often used as simulants in the development and testing of countermeasures for biodefence against B. anthracis. The data presented here should help in the selection of simulants that better resemble the properties of B. anthracis, and thus, more accurately represent the performance of collectors, detectors and other countermeasures against this threat agent.  相似文献   

20.
One method of laboratory- or field-based testing for anthrax is detection of Bacillus anthracis spores by high-affinity, high specificity binding reagents. From a pool of monoclonal antibodies, we selected one such candidate (A4D11) with high affinity for tBclA, a truncated version of the B. anthracis exosporium protein BclA. Kinetic analysis utilising both standard and kinetic titration on a Biacore biosensor indicated antibody affinities in the 300 pM range for recombinant tBclA, and the A4D11 antibody was also re-formatted into scFv configuration with no loss of affinity. However, assays against B. anthracis and related Bacilli species showed limited binding of intact spores as well as significant cross-reactivity between species. These results were rationalized by determination of the three-dimensional crystallographic structure of the scFv-tBclA complex. A4D11 binds the side of the tBclA trimer, contacting a face of the antigen normally packed against adjacent trimers within the exosporium structure; this inter-spore interface is highly conserved between Bacilli species. Our results indicate the difficulty of generating a high-affinity antibody to differentiate between the highly conserved spore structures of closely related species, but suggest the possibility of future structure-based antibody design for this difficult target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号