首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in vitro binding properties of the novel muscarinic antagonist [3H]AF-DX 116 were studied using a rapid filtration technique. Association and dissociation rates of [3H]AF-DX 116 binding were rapid at 25 degrees C (2.74 and 2.70 X 10(7) min-1 M-1 for K+1; 0.87 and 0.93 min-1 for k-1) but 20-40 times slower at 0-4 degrees C (0.13 and 0.096 X 10(7) min-1 M-1 for k+1; 0.031 and 0.022 min-1 for k-1 in cerebral cortical and cardiac membranes, respectively). Kinetic dissociation constants (Kds) were estimated to be 31.8 nM and 30.9 nM at 25 degrees C; 23.1 nM and 0-4 degrees C for the cerebral cortex and heart, respectively. In saturation studies, [3H]AF-DX 116 labeled 29 percent of the total [3H](-)QNB binding sites in the cerebral cortical membranes and 87 percent in the cardiac membranes, with Kd values of 28.9 nM and 17.9 nM, respectively. Muscarinic antagonists inhibited [3H]AF-DX 116 binding in a rank order of potency of atropine greater than dexetimide greater than AF-DX 116 greater than PZ greater than levetimide in both tissues. Except for PZ/[3H]AF-DX 116 and AF-DX 116/[3H]AF-DX 116 in the cerebral cortex, all the antagonist competition curves had Hill coefficients close to one. Carbachol and oxotremorine produced shallow inhibition curves against [3H]AF-DX 116 binding in both tissues. Regional distribution studies with [3H](-)QNB, [3H]PZ and [3H]AF-DX 116 showed that most of the muscarinic receptors in the cerebral cortex, hippocampus, nucleus accumbens and corpus striatum are of the M1 subtype while those in the brainstem, cerebellum and other lower brain regions are of the M2 subtype. These results indicate that [3H]AF-DX 116 is a useful probe for the study of heterogeneity of muscarinic cholinergic receptors.  相似文献   

2.
Recent studies have demonstrated that the majority of muscarinic receptors in rabbit peripheral lung homogenates bind pirenzepine with high affinity (putative M1 subtype). In experiments of AF-DX 116 inhibiting [3H](-)quinuclidinyl benzilate or [3H]pirenzepine, we found similar inhibitory constants for AF-DX 116 binding in rat heart and rabbit peripheral lung that were 4-fold smaller (i.e. of higher affinity) than the inhibitory constant for rat cerebral cortex. This result demonstrates heterogeneity of the M1 muscarinic receptor subtype between peripheral lung and cerebral cortex.  相似文献   

3.
We have utilized the LKB Ultrofilm method of autoradiography to anatomically localize putative M1 and M2 muscarinic receptor subtypes in human stellate ganglia. Ten micron sections were labeled in vitro with either 1 nM of the classical antagonist [3H](-)quinuclidinyl benzilate ([3H](-)QNB) or 20 nM of the non-classical antagonist [3H]pirenzepine ([3H]PZ), using 1 microM atropine sulfate to define non-specific binding for both ligands. Our results indicate that [3H](-)QNB and [3H]PZ binding sites are distributed within the principal ganglion cells and nerve bundles.  相似文献   

4.
Forskolin and vasoactive intestinal polypeptide (VIP) were shown to increase cyclic AMP accumulation in a human neuroblastoma cell line, SK-N-SH cells. The alpha 2-adrenergic agonist UK 14304 decreased forskolin-stimulated cyclic AMP levels by 40 +/- 2%, with an EC50 of 83 +/- 20 nM. This response was blocked by pretreatment with pertussis toxin (PT) (EC50 = 1 ng/ml) or by the alpha 2-antagonists yohimbine, idazoxan, and phentolamine. Antagonist IC50 values were 0.3 +/- 0.1, 2.2 +/- 0.3, and 1.4 +/- 0.1 microM, respectively. This finding suggests the presence of normal inhibitory coupling of SK-N-SH cell alpha 2-adrenergic receptors to adenylate cyclase via the inhibitory GTP-binding protein species, Gi. Muscarinic receptors in many target cell types are coupled to inhibition of adenylate cyclase. However, in SK-N-SH cells, muscarinic agonists synergistically increased (67-95%) the level of cyclic AMP accumulation elicited by forskolin or VIP. EC50 values for carbamylcholine (CCh) and oxotremorine facilitation of the forskolin response were 1.2 +/- 0.2 and 0.3 +/- 0.1 microM, respectively. Pharmacological studies using the muscarinic receptor subtype-preferring antagonists 4-diphenylacetoxy-N-methylpiperidine, pirenzepine, and AF-DX 116 indicated mediation of this response by the M3 subtype. IC50 values were 14 +/- 1, 16,857 +/- 757, and 148,043 +/- 16,209 nM, respectively. CCh-elicited responses were unaffected by PT pretreatment. Muscarinic agonist binding affinity was indirectly measured by the ability of CCh to compete for [3H]quinuclidinyl benzilate binding sites on SK-N-SH cell membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The M1-selective (high affinity for pirenzepine) muscarinic acetylcholine receptor (mAChR) antagonist pirenzepine displaced both N-[3H]methylscopolamine [( 3H]NMS) and [3H]quinuclidinylbenzilate from intact human SK-N-SH neuroblastoma cells with a low affinity (Ki = 869-1,066 nM), a result indicating the predominance of the M2 or M3 (low affinity for pirenzepine) receptor subtype in these cells. Whereas a selective M2 agent, AF-DX 116 [11-2[[2-[(diethylamino)methyl]-1-piperidinyl]- acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one) bound to the mAChRs with a very low affinity (Ki = 6.0 microM), 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP), an agent that binds with high affinity to the M3 subtype, potently inhibited [3H]NMS binding (Ki = 7.2 nM). 4-DAMP was also 1,000-fold more effective than AF-DX 116 at blocking stimulated phosphoinositide (PPI) hydrolysis in these cells. Covalent labeling studies (with [3H]propylbenzilycholine mustard) suggest that the size of the SK-N-SH mAChR (Mr = 81,000-98,000) distinguishes it from the predominant mAChR species in rat cerebral cortex (Mr = 66,000), an M1-enriched tissue. These results provide the first demonstration of a neural M3 mAChR subtype that couples to PPI turnover.  相似文献   

6.
Muscarinic receptors in brain membranes from honey bees, houseflies, and the American cockroach were identified by their specific binding of the non-selective muscarinic receptor antagonist [3H]quinuclidinyl benzilate ([3H]QNB) and the displacement of this binding by agonists as well as subtype-selective antagonists, using filtration assays. The binding parameters, obtained from Scatchard analysis, indicated that insect muscarinic receptors, like those of mammalian brains, had high affinities for [3H]QNB (KD = 0.47 nM in honey bees, 0.17 nM in houseflies and 0.13 nM in the cockroach). However, the receptor concentration was low (108, 64.7, and 108 fmol/mg protein for the three species, respectively). The association and dissociation rates of [3H]QNB binding to honey bee brain membranes, sensitivity of [3H]QNB binding to muscarinic agonists, and high affinity for atropine were also features generally similar to muscarinic receptors of mammalian brains. In order to further characterize the three insect brain muscarinic receptors, the displacement of [3H]QNB binding by subtype-selective antagonists was studied. The rank order of potency of pirenzepine (PZ), the M1 selective antagonist, 11-[2-[dimethylamino)-methyl)1-piperidinyl)acetyl)-5,11- dihydro-6H-pyrido(2,3-b)-(1,4)-benzodiazepin-6 one (AF-DX 116), the M2-selective antagonist, and 4-DAMP (4-diphenylacetoxy-N-methylpiperidine methiodide) the M3-selective antagonist, was also the same as that of mammalian brains, i.e., 4-DAMP greater than PZ greater than AF-DX 116. The three insect brain receptors had 27-50-fold lower affinity for PZ (Ki 484-900 nM) than did the mammalian brain receptor (Ki 16 nM), but similar to that reported for the muscarinic receptor subtype cloned from Drosophila. Also, the affinity of insect receptors for 4-DAMP (Ki 18.9-56.6 nM) was much lower than that of the M3 receptor, which predominates in rat submaxillary gland (Ki of 0.37 nM on [3H]QNB binding). These drug specificities of muscarinic receptors of brains from three insect species suggest that insect brains may be predominantly of a unique subtype that is close to, though significantly different from, the mammalian M3 subtype.  相似文献   

7.
The activity of the muscarinic cholinergic system (acetylcholine, ACh; acetylcholinesterase, AChE; choline acetyltransferase, ChAT; muscarinic acetylcholine receptors) was studied in the carp brain. The ACh content (13.9 ± 1.1 nmol/g wet tissue) was estimated by gas chromatography after microwave irradiation focused to the head. The AChE and ChAT activities were 153 ± 13 nmol/min/mg protein and 817 ± 50 pmol/min/mg protein, respectively. The characteristics of [3H](−)quinuclidinyl benzilate ([3H](−)QNB) and [3H]pirenzepine ([3H]PZ) binding were also studied in brain membranes. Their specific binding was linearly dependent on the protein content and they appeared to bind with high affinity to a single, saturable binding site. A dissociation constant (Kd) of 47 ± 6.3 pM and a maximum number of binding sites (Bmax) of 627 ± 65 fmol/mg protein were obtained for [3H](−)QNB, with a Kd value of 3.85 ± 0.67 nM and a Bmax value of 95.3 ± 6.25 fmol/mg protein for [3H]PZ binding. The [3H]PZ binding amounted to only 15% of the [3H](−)QNB-labeled sites, as estimated from the ratio of the Bmax values of [3H](−)QNB and [3H]PZ, suggesting a low density of M1 subtype. Atropine sulfate, atropine methylnitrate and PZ inhibited the binding of both radioligands with Hill slopes (nH) close to unity. The nH value of AF-DX 116 was close to 1 against [3H](−)QNB binding, while it was 0.75 against [3H]PZ binding. The displacement curves of oxotremorine and carbachol were shallow for the binding of both radioligands. The rank order of potency of muscarinic ligands against [3H](−)QNB binding (Ki nM) was atropine sulfate (0.55) > atropine methylnitrate (1.61) > PZ (61.19) > oxotremorine (156.3) > AF-DX 116 (307) > carbachol (1301), while in the case of [3H]PZ binding it was atropine sulfate (0.24) > atropine methylnitrate (0.34) > PZ (10.38) > AF-DX 116 (55.87) > oxotremorine (62.79) > carbachol (1696). The results indicate the presence of a well-developed muscarinic cholinergic system with predominantly M2 receptors in the carp brain.  相似文献   

8.
Pirenzepine, a potent antimuscarinic agent with apparent selectivity for a subtype (M1) of muscarinic receptors, was used in tritiated form to characterize its binding to human brain tissue. Specific [3H]pirenzepine binding showed rapid association and dissociation. From kinetic and competitive binding experiments, its KD was 5.5 nM and 9 nM, respectively. Regional distribution of [3H]pirenzepine binding determined in parallel with [3H]quinuclidinyl benzilate binding, a nonselective muscarinic antagonist, indicated a significant correlation for the maximum number of binding sites for the two radioligands in 13 brain regions, with the highest amount of binding for each in the putamen and the least in the cerebellum. Binding for [3H]pirenzepine averaged 57% of that for [3H]quinuclidinyl benzilate, with a range of 20% (cerebellum) to 77% (frontal cortex). Most antidepressants and neuroleptics tested had affinities for [3H]pirenzepine binding sites that were not significantly different from their previously reported values obtained with the use of [3H]quinuclidinyl benzilate.  相似文献   

9.
Heterogeneity of the muscarinic receptor population in the rat central and peripheral lung was found in competition binding experiments against [3H]quinuclidinyl benzilate [( 3H]QNB) using the selective antagonists pirenzepine, AF-DX 116 and hexahydrosiladifenidol (HHSiD). Pirenzepine displaced [3H]QNB with low affinity from preparations of central airways indicating the absence of M1 receptors in the trachea and bronchi. Muscarinic receptors in the central airways are comprised of both M2 and M3 receptors since AF-DX 116, an M2-selective antagonist, bound with high affinity to 70% of the available sites while HHSiD, an M3-selective antagonist bound with high affinity to the remaining binding sites. In the peripheral lung, pirenzepine bound with high affinity to 14% of the receptor population, AF-DX 116 bound with high affinity to 79% of the binding sites while HHSiD bound with high affinity to 18% of the binding sites. The presence of M1 receptors in the peripheral airways but not in the central airways was confirmed using [3H]telenzepine, an M1 receptor ligand. [3H]Telenzepine showed specific saturable binding to 8% of [3H]QNB labeled binding sites in homogenates of rat peripheral lung, while there was no detectable specific binding in homogenates of rat trachea or heart. The results presented here demonstrate that there are three muscarinic receptor subtypes in rat lungs, and that the distribution of the different subtypes varies within the lungs. Throughout the airways, the dominant muscarinic receptor subtype is M2. In the trachea and bronchi the remaining receptors are M3, while in the peripheral lungs, the remaining receptors are both M1 and M3.  相似文献   

10.
To investigate the pharmacological effect of a novel compound YM796, we performed radioligand binding experiments and correlative biochemical experiments using the transfected murine fibroblast B82 cells which expressed the m1 and m2 muscarinic receptor genes (cloned cell lines designated as LK3-3 and M2LKB2-2, respectively). [3H](-)methyl-3-quinuclidinyl benzilate [( 3H](-)MQNB) binding in these transfected cell lines was inhibited by different optical isomers of YM796 and other muscarinic drugs, atropine, pirenzepine, AF-DX 116, as well as selected agonists. (-)YM796, (+)YM796 and (+/-)YM796 inhibited [3H](-)MQNB binding in LK3-3 cells with Ki values of 16.4 microM, 30.1 microM and 21.8 microM and in M2LKB2-2 cells with Ki values of 52.0 microM, 108 microM and 77.1 microM, respectively. From functional assays we found the two isomers, (-)YM796 and (+)YM796 had different intrinsic activities for the M1 and M2 muscarinic receptors. (-)YM796 revealed agonistic activity: stimulation of [3H]IP1 accumulation in LK3-3 cells with an EC50 value of 26.5 microM, which was less efficacious (the Emax value was 5.6 times basal) than carbachol, a full agonist (the Emax value was 17.2 times basal). Interestingly, (-)YM796 did not show significant inhibition of cAMP formation in M2LKB2-2 cells except at extremely high concentrations (greater than 1mM). (+)YM796 exhibited no significant efficacy for the M1 and M2 muscarinic receptors. These results suggest that (-)YM796 represents a muscarinic partial agonist with functional selectivity for the M1 muscarinic receptors whereas (+)YM796 shows no efficacy for either M1 or M2 muscarinic receptors in these transfected cells.  相似文献   

11.
Characterization of muscarinic receptor subtypes in human tissues   总被引:5,自引:0,他引:5  
The affinities of selective, pirenzepine and AF-DX 116, and classical, N-methylscopolamine and atropine, muscarinic cholinergic receptor antagonists were investigated in displacement binding experiments with [3H]Pirenzepine and [3H]N-methylscopolamine in membranes from human autoptic tissues (forebrain, cerebellum, atria, ventricle and submaxillary salivary glands). Affinity estimates of N-methylscopolamine and atropine indicated a non-selective profile. Pirenzepine showed differentiation between the M1 neuronal receptor of the forebrain and the receptors in other tissues while AF-DX 116 clearly discriminated between muscarinic receptors of heart and glands. The results in human tissues confirm the previously described selectivity profiles of pirenzepine and AF-DX 116 in rat tissues. These findings thus reveal the presence also in man of three distinct muscarinic receptor subtypes: the neuronal M1, the cardiac M2 and the glandular M3.  相似文献   

12.
Abstract: : Muscarinic acetylcholine receptor expression and function in cultured rat neostriatal neurons were examined. All experiments were performed on intact neurons grown in vitro for 12-14 days. The muscarinic antagonist N-[3H]methylscopolamine ([3H]NMS) binds to a single site in cultures with a KD of 89 pM and a Bmax of 187 fmol/mg of protein, or 32,000 sites/neuron. Competition studies using [3H]NMS were performed to determine what receptor sur > types were present. Nonlinear analysis of competition curves was best described with a single binding site for atropine, pirenzepine, and AF-DX 116 {11-[[2-[(diethylamino)-methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-one}, with Ki values of 0.6, 62, and 758 nM, respectively. These results indicate that the muscarinic receptors present in neostriatal cultures are of the M1subtype, having high affinity for pirenzepine and low affinity for AF-DX 116. In contrast with antagonists, carbachol displaced [3H]NMS from two sites with Ki values of 6.5 and 147 μM, with the higher-affinity form predominant (83% of sites). The M1 receptor subtype was linked to phosphoinositide turnover. Carbachol stimulated the formation of phosphoinositides with an EC50 of 37 μM and was antagonized by atropine. At equimolar doses, pirenzepine was more potent than AF-DX 116 at antagonizing the response.  相似文献   

13.
IMR-32 and SK-N-MC cells were found to contain [3H]quinuclidinyl benzilate specific binding sites inhibited by pirenzepine in a manner suggesting the presence of both M1-type and M2-type muscarinic receptor recognition sites. Neither cell had detectable [3H]8-OH-DPAT binding sites. Carbachol stimulated the rate of inositol phospholipid breakdown in IMR-32 and SK-N-MC human neuroblastoma cells with an EC50 value of about 50 microM in both cases. Pirenzepine inhibited the carbachol (100 microM)-stimulated inositol phospholipid breakdown in both cells with Hill slopes of unity and IC50 values of 15 nM (IMR-32) and 12 nM (SK-N-MC). The 5-HT1A receptor agonist 8-OH-DPAT competitively inhibited carbachol-stimulated inositol phospholipid breakdown with pA2 values of 5.78 (IMR-32) and 5.61 (SK-N-MC). These values are consistent with the inhibitory potency of 8-OH-DPAT towards [3H]quinuclidinyl benzilate binding in these cells. The 5-HT agonists 5-MeODMT and buspirone at micromolar concentrations inhibited carbachol-stimulated breakdown in IMR-32 cells. The inhibition by 8-OH-DPAT and 5-MeODMT was not affected by preincubation with (-)alprenolol. 5-HT (10-100 microM) was without effect on either basal or carbachol-stimulated breakdown. It is concluded that IMR-32 and SK-N-MC neuroblastoma cells express muscarinic M1-type but not serotoninergic receptors coupled to phosphoinositide-specific phospholipase C. 8-OH-DPAT acts as a weak antagonist at these muscarinic receptors.  相似文献   

14.
The presynaptic muscarinic autoreceptor of Torpedo marmorata electric organ has been characterised by radioligand binding studies using the subtype-selective antagonists pirenzepine, (+)-telenzepine, methoctramine, and AF-DX 116. The presynaptic receptor had relatively high affinity for the M1 antagonists pirenzepine and (+)-telenzepine (Ki = 35 and 7 nM, respectively) and lower affinities for the M2 antagonists AF-DX 116 and methoctramine (Ki = 311 and 277 nM, respectively). Comparison of these binding data with those from an M2 receptor (rat heart membranes) assayed under identical conditions and with data in the recent literature suggests that the Torpedo muscarinic autoreceptor has a pharmacology most similar to the M1 pharmacological subtype of muscarinic acetylcholine receptor.  相似文献   

15.
Saturation experiments with the muscarinic antagonist [3H]N-methylscopolamine ([3H]NMS) indicated that cerebellar granule cells in primary culture possess a high density of muscarinic acetylcholine receptors (mAChRs): Bmax = 1.85 +/- 0.01 pmol/mg of protein at 10 days in culture; KD = 0.128 +/- 0.01 nM. The selective M1 antagonist pirenzepine displaced [3H]NMS binding with a low affinity (Ki = 273 +/- 13 nM), whereas the M2/M3 muscarinic antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide competed with [3H]NMS with Ki values in the nanomolar range, a result suggesting that some of the mAChRs on cerebellar granule cells belong to the M3 subtype. Methoctramine, which discriminates between M2 and M3 subtypes with high and low affinity, respectively, displayed a high and low affinity for [3H]NMS binding sites (Ki(H) = 31 +/- 5 nM; Ki(L) = 2,620 +/- 320 nM). These results provide the first demonstration that both M2 and M3 mAChR subtypes may be present on cultured cerebellar cells. In addition, complete death of neurons induced by N-methyl-D-aspartate (100 microM for 1 h) reduced by 85% the specific binding of [3H]NMS, a result indicating that most mAChRs were associated with neuronal components. Finally, the evolution of the density of mAChRs, labeled by [3H]NMS, correlated with the neuronal maturation during the in vitro development of these cells.  相似文献   

16.
The subtype of muscarinic receptor which mediates cAMP attenuation is not established. Therefore, several selective muscarinic antagonists were used to characterize the subtype of muscarinic receptor coupled to the inhibition of hormone-stimulated cAMP accumulation using NG108-15 neuroblastoma x glioma hybrid cells. These cells were prelabeled with [2-3H]-adenine, washed, and resuspended in a culture medium containing the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.5 mM). The labeled cells were preincubated with the different antagonists 12-15 min. before they were challenged with agonists. The formation of [3H]-cAMP was activated by PGE1 (1 microM) or forskolin (1 microM). In all cases, [3H]-cAMP formed was separated and measured. Carbachol (100 microM) and McN-A343 (10 mM) were used as standard muscarinic agonists. These studies gave the following results: a) McN-A343 (10 mM), an M1 receptor agonist, was only a partial agonist causing 40% inhibition of cAMP accumulation indicating that this effect was not mediated by an M1 receptor; b) The M1-selective antagonist, pirenzepine, exhibited low affinity (pA2 6.2) further suggesting that an M1 receptor was not coupled to the attenuation of cAMP accumulation; c) Two selective M2 antagonists (AF-DX 116 and methoctramine) and M3 antagonist (HHSiD) were used to further characterize these muscarinic receptors. The order of all antagonists based on their affinities (pA2 values) could be arranged in the following order: atropine (9.0) > methoctramine (7.6) > HHSiD (6.9) > AF-DX 116 (6.6) > pirenzepine (6.2). HHSiD exhibits the same degree of affinity to M2 receptors of other tissues as it does to those of NG cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Previous studies describe decreased acetylcholine synthesis in brain as well as neurobehavioural evidence for a central muscarinic cholinergic deficit in pyrithiamine-induced thiamine-deficient rats. In order to further evaluate this possibility, quantitative autoradiographic procedures using [3H]quinuclidinyl benzilate (for total muscarinic binding sites), [3H]pirenzepine (for muscarinic M1 sites) and [3H]AF-DX 384 (for muscarinic M2 sites) were performed at early (presymptomatic) and late (symptomatic) stages of thiamine deficiency induced in rats by administration of the central thiamine antagonist, pyrithiamine. No significant alterations in densities of M1, M2 or total muscarinic binding sites were observed in any brain structure evaluated at either early or late stages of thiamine deficiency. These findings do not support a major role for modifications of muscarinic cholinergic function in the pathogenesis of the neurological symptoms of thiamine deficiency.  相似文献   

18.
The binding characteristics and distribution of M1 and M2 muscarinic cholinergic receptors and high-affinity choline uptake sites were studied in the striatum of the rat at 3-4 and 9-12 weeks of age after exposure to unilateral perinatal hypoxic-ischemic brain injury. High-affinity choline uptake sites were labeled with [3H]hemicholinium-3, M1 receptors with [3H]pirenzepine, and M2 receptors with [3H]AF-DX 116. Saturation experiments revealed a significant decrease in the maximal binding capacity (Bmax) for [3H]pirenzepine-labeled M1 receptors in the lesioned caudate/putamen complex in immature rats with moderate brain injury, in comparison with controls. In contrast, the Bmax value for [3H]hemicholinium-3-labeled high-affinity choline uptake sites was significantly increased. No changes in dissociation constants (KD) were observed. These changes were most pronounced in the dorsolateral region of striatum. Striatal regional distribution of [3H]AF-DX 116 was not affected. In mature rats, binding of [3H]pirenzepine returned to control values, whereas [3H]hemicholinium binding showed a persistent increase (23%). The increase in [3H]hemicholinium-3 binding, as a specific marker of cholinergic nerve terminals, is consistent with our prior morphologic studies demonstrating relative preservation of cholinergic neurons and neuropil, and supports the concept that striatal cholinergic systems are resistant to hypoxic-ischemic injury.  相似文献   

19.
1. Kinetic, saturation and inhibition radioligand binding experiments with [3H]-N-methylscopolamine and [3H]quinuclidinyl benzilate were used to characterize the muscarinic cholinergic receptor in opossum (Didelphis virginiana, Kerr) submandibular salivary gland membranes. 2. The receptor density in opossum submandibular gland was found to be more than 3-fold higher than in rat, and 22-fold higher than in human, submandibular glands. 3. Inhibitor equilibrium dissociation constants for the antagonists pirenzepine, dicyclomine, atropine, N-methylscopolamine and AF-DX 116 revealed that the muscarinic receptor present in opossum submandibular gland appears to be the M1 subtype rather than the M3 subtype found in human and rat.  相似文献   

20.
The antagonist binding properties of rat pancreatic and cardiac muscarinic receptors were compared. In both tissues pirenzepine (PZ) had a low affinity for muscarinic receptors labelled by (3H)N-methylscopolamine [3)NMS) (KD values of 140 and 280 nM, respectively, in pancreatic and cardiac homogenates). The binding properties of pancreatic and cardiac receptors were, however, markedly different. This was indicated by different affinities for dicyclomine, (11-([(2-[diethylamino)-methyl)-1-piperidinyl] acetyl)-5, 11-dihydro-6H-pyrido(2,3-b)(1,4) benzodiazepin-6-on) (AFDX-116), 4-diphenylacetoxy-N-methyl-piperidine methobromide (4-DAMP) and hexahydrosiladifenidol (HHSiD). Pancreatic and cardiac muscarinic receptors also showed different (3H)NMS association and dissociation rates. These results support the concept of M2 receptor heterogeneity and confirm that M2 receptor subtypes have different binding kinetic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号