首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
A multitude of different virulence factors as well as the ability to rapidly adapt to adverse environmental conditions are important features for the high pathogenicity of Pseudomonas aeruginosa. Both virulence and adaptive resistance are tightly controlled by a complex regulatory network and respond to external stimuli, such as host signals or antibiotic stress, in a highly specific manner. Here, we demonstrate that physiological concentrations of the human host defense peptide LL-37 promote virulence factor production as well as an adaptive resistance against fluoroquinolone and aminoglycoside antibiotics in P. aeruginosa PAO1. Microarray analyses of P. aeruginosa cells exposed to LL-37 revealed an upregulation of gene clusters involved in the production of quorum sensing molecules and secreted virulence factors (PQS, phenazine, hydrogen cyanide (HCN), elastase and rhamnolipids) and in lipopolysaccharide (LPS) modification as well as an induction of genes encoding multidrug efflux pumps MexCD-OprJ and MexGHI-OpmD. Accordingly, we detected significantly elevated levels of toxic metabolites and proteases in bacterial supernatants after LL-37 treatment. Pre-incubation of bacteria with LL-37 for 2 h led to a decreased susceptibility towards gentamicin and ciprofloxacin. Quantitative Realtime PCR results using a PAO1-pqsE mutant strain present evidence that the quinolone response protein and virulence regulator PqsE may be implicated in the regulation of the observed phenotype in response to LL-37. Further experiments with synthetic cationic antimicrobial peptides IDR-1018, 1037 and HHC-36 showed no induction of pqsE expression, suggesting a new role of PqsE as highly specific host stress sensor.  相似文献   

3.
4.
Pseudomonas aeruginosa produces the cell-to-cell signal molecule 2-heptyl-3-hydroxy-4-quinolone (The Pseudomonas quinolone signal; PQS), which is integrated within a complicated quorum sensing signaling system. PQS belongs to the family of 2-alkyl-4-quinolones (AQs), which have been previously described for their antimicrobial activities. PQS is synthesized via the pqsABCDE operon which is responsible for generating multiple AQs including 2-heptyl-4-quinolone (HHQ), the immediate PQS precursor. In addition, PQS signaling plays an important role in P. aeruginosa pathogenesis because it regulates the production of diverse virulence factors including elastase, pyocyanin and LecA lectin in addition to affecting biofilm formation. Here, we summarize the most recent findings on the biosynthesis and regulation of PQS and other AQs including the discovery of AQs in other bacterial species.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Denitrification is a well-studied respiratory system that is also important in the biogeochemical nitrogen cycle. Environmental signals such as oxygen and N-oxides have been demonstrated to regulate denitrification, though how denitrification is regulated in a bacterial community remains obscure. Pseudomonas aeruginosa is a ubiquitous bacterium that controls numerous genes through cell-to-cell signals. The bacterium possesses at least two N-acyl-L-homoserine lactone (AHL) signals. In our previous study, these quorum-sensing signals controlled denitrification in P. aeruginosa. In addition to the AHL signals, a third cell-to-cell communication signal, 2-heptyl-3-hydroxy-4-quinolone, referred to as the Pseudomonas quinolone signal (PQS), has been characterized. In this study, we examined the effect of PQS on denitrification to obtain more insight into the respiratory regulation in a bacterial community. Denitrification in P. aeruginosa was repressed by PQS, which was partially mediated by PqsR and PqsE. Measuring the denitrifying enzyme activities indicated that nitrite reductase activity was increased by PQS, whereas PQS inhibited nitric oxide reductase and the nitrate-respiratory chain activities. This is the first report to demonstrate that PQS influences enzyme activities, suggesting this effect is not specific to P. aeruginosa. Furthermore, when iron was supplied to the PQS-added medium, denitrifying activity was almost restored, indicating that the iron chelating property of PQS affected denitrification. Thus, our data indicate that PQS regulates denitrification primarily through iron chelation. The PQS effect on denitrification was relevant in a condition where oxygen was limited and denitrification was induced, suggesting its role in controlling denitrification where oxygen is present.  相似文献   

12.
Pseudomonas aeruginosa is an opportunistic pathogen that may cause severe infections in humans and other vertebrates. In addition, a human clinical isolate of P. aeruginosa, strain PA14, also causes disease in a variety of nonvertebrate hosts, including plants, Caenorhabditis elegans, and the greater wax moth, Galleria mellonella. This has led to the development of a multihost pathogenesis system in which plants, nematodes, and insects have been used as adjuncts to animal models for the identification of P. aeruginosa virulence factors. Another approach to identifying virulence genes in bacteria is to take advantage of the natural differences in pathogenicity between isolates of the same species and to use a subtractive hybridization technique to recover relevant genomic differences. The sequenced strain of P. aeruginosa, strain PAO1, has substantial differences in virulence from strain PA14 in several of the multihost models of pathogenicity, and we have utilized the technique of representational difference analysis (RDA) to directly identify genomic differences between P. aeruginosa strains PA14 and PAO1. We have found that the pilC, pilA, and uvrD genes in strain PA14 differ substantially from their counterparts in strain PAO1. In addition, we have recovered a gene homologous to the ybtQ gene from Yersinia, which is specifically present in strain PA14 but absent in strain PAO1. Mutation of the ybtQ homolog in P. aeruginosa strain PA14 significantly attenuates the virulence of this strain in both G. mellonella and a burned mouse model of sepsis to levels comparable to those seen with PAO1. This suggests that the increased virulence of P. aeruginosa strain PA14 compared to PAO1 may relate to specific genomic differences identifiable by RDA.  相似文献   

13.
14.
A stable isotope dilution method was developed to analyse 2-heptyl-3,4-dihydroxyquinoline, also called the Pseudomonas quinolone signal (PQS), directly in Pseudomonas aeruginosa cultures by liquid chromatography coupled to mass spectrometry (LC/MS). PQS, along with the isobaric 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), were quantified in various Pseudomonas liquid cultures using a deuterated PQS analog as internal standard. The kinetic of production of these quinolines in a growing culture of P. aeruginosa PA14 showed that their production starts at the end of the logarithmic growth phase and is maximal at the onset of the stationary growth phase. The concentration of PQS reached a maximum at 13 mg/l and then decreased, while the HQNO concentration reached 18 mg/l and then remained stable. Culture supernatants of P. aeruginosa strains PAO1 and PA14 produced similar concentrations of PQS whereas no PQS or HQNO could be detected in culture supernatants of the P. aeruginosa strain PAK or in the other Pseudomonas species tested, including phytopathogenic pseudomonads.  相似文献   

15.
Pseudomonas aeruginosa is an opportunistic pathogen that is a major cause of mortality in cystic fibrosis (CF) patients. This bacterium has numerous genes controlled by cell to cell signaling, which occurs through a complex circuitry of interconnected regulatory systems. One of the signals is the Pseudomonas Quinolone Signal (PQS), which was identified as 2-heptyl-3-hydroxy-4-quinolone. This intercellular signal controls the expression of multiple virulence factors and is required for virulence in an insect model of P. aeruginosa infection. Previous studies have implied that the intercellular signals of P. aeruginosa are important for human disease, and our goal was to determine whether PQS was produced during human infections. In this report, three types of samples from CF patients infected with P. aeruginosa were analyzed for the presence of PQS. Sputum, bronchoalveolar lavage fluid, and mucopurulent fluid from distal airways of end-stage lungs removed at transplant, all contained PQS, indicating that this cell to cell signal is produced in vivo by P. aeruginosa infecting the lungs of CF patients.  相似文献   

16.
A pathogenesis model based on the interaction between Caenorhabditis elegans and bacterial opportunistic pathogens has recently been developed. In the case of Pseudomonas aeruginosa, the model is based on three different modes of nematode killing (fast killing, slow killing and lethal paralysis) by virulent bacteria that has been incubated in different nutrient media. Using parametric statistics and Probit analysis, we test the reliability of the three different killing systems with respect to bacterial virulence. To accomplish this, we use three P. aeruginosa strains, each with a different level of virulence and one strain of non-virulent Escherichia coli. Probit function proved to be effective in quantifying the virulence of P. aeruginosa. The results of the killing curve analysis using the Probit function demonstrates that the slow-killing test is the most reliable method for quantifying virulence using the C. elegans model of bacterial pathogenesis. Although the greatest virulence differences are observed after long periods of incubation, the Probit analysis clearly shows that the death kinetics of C. elegans depend on the first hours of nematode/bacteria interaction. In contrast, fast killing seems to be non-specific, at least under our experimental conditions, since the killing rates of virulent P. aeruginosa and non-virulent E. coli strains were indistinguishable.  相似文献   

17.
18.
Bacterial pathogenicity is often manifested by the expression of various cell-associated and secreted virulence factors, such as exoenzymes, protease, and toxins. In Pseudomonas aeruginosa, the expression of virulence genes is coordinately controlled by the global regulatory quorum-sensing systems, which includes the las and rhl systems as well as the Pseudomonas quinolone signal (PQS) system. Phenazine compounds are among the virulence factors under the control of both the rhl and PQS systems. In this study, regulation of the phzA1B1C1D1E1 (phzA1) operon, which is involved in phenazine synthesis, was investigated. In an initial study of inducing conditions, we observed that phzA1 was induced by subinhibitory concentrations of tetracycline. Screening of 13,000 mutants revealed 32 genes that altered phzA1 expression in the presence of subinhibitory tetracycline concentrations. Among them, the gene PA0964, designated pmpR (pqsR-mediated PQS regulator), has been identified as a novel regulator of the PQS system. It belongs to a large group of widespread conserved hypothetical proteins with unknown function, the YebC protein family (Pfam family DUF28). It negatively regulates the quorum-sensing response regulator pqsR of the PQS system by binding at its promoter region. Alongside phzA1 expression and phenazine and pyocyanin production, a set of virulence factors genes controlled by both rhl and the PQS were shown to be modulated by PmpR. Swarming motility and biofilm formation were also significantly affected. The results added another layer of regulation in the rather complex quorum-sensing systems in P. aeruginosa and demonstrated a clear functional clue for the YebC family proteins.  相似文献   

19.
20.
Sriramulu DD  Nimtz M  Romling U 《Proteomics》2005,5(14):3712-3721
Pseudomonas aeruginosa is known for the chronic lung colonization of cystic fibrosis (CF) patients in addition to eye, ear and urinary tract infections. With the underlying disease CF patients are predisposed to P. aeruginosa chronic lung infection, which leads to morbidity and mortality. In this study, we compared the protein expression profile of a CF lung-adapted P. aeruginosa strain C with that of the burn-wound isolate PAO. Differentially expressed proteins from the whole-cell, membrane, periplasmic as well as extracellular fraction were identified. The whole-cell proteome of strain C showed down-regulation of several proteins involved in amino acid metabolism, fatty acid metabolism, energy metabolism and adaptation leading to a highly distinct proteome pattern for strain C in comparison to PAO. Analysis of secreted proteins by strain C compared to PAO revealed differential expression of virulence factors under non-inducing conditions. The membrane proteome of strain C showed modulation of the expression of porins involved in nutrient and antibiotic influx. The proteome of the periplasmic space of strain C showed retention of elastase despite that the equal amounts were secreted by strain C and PAO. Altogether, our results elucidate adaptive strategies of P. aeruginosa towards the nutrient-rich CF lung habitat during the course of chronic colonization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号