首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.

Background

Japanese encephalitis (JE) is a major cause of mortality and morbidity for which there is no treatment. In addition to direct viral cytopathology, the inflammatory response is postulated to contribute to the pathogenesis. Our goal was to determine the contribution of bystander effects and inflammatory mediators to neuronal cell death.

Methodology/Principal Findings

Material from a macaque model was used to characterize the inflammatory response and cytopathic effects of JE virus (JEV). Intranasal JEV infection induced a non-suppurative encephalitis, dominated by perivascular, infiltrates of mostly T cells, alongside endothelial cell activation, vascular damage and blood brain barrier (BBB) leakage; in the adjacent parenchyma there was macrophage infiltration, astrocyte and microglia activation. JEV antigen was mostly in neurons, but there was no correlation between intensity of viral infection and degree of inflammatory response. Apoptotic cell death occurred in both infected and non-infected neurons. Interferon-α, which is a microglial activator, was also expressed by both. Tumour Necrosis Factor-α, inducible nitric oxide synthase and nitrotyrosine were expressed by microglial cells, astrocytes and macrophages. The same cells expressed matrix metalloproteinase (MMP)-2 whilst MMP-9 was expressed by neurons.

Conclusions/Significance

The results are consistent with JEV inducing neuronal apoptotic death and release of cytokines that initiate microglial activation and release of pro-inflammatory and apoptotic mediators with subsequent apoptotic death of both infected and uninfected neurons. Activation of astrocytes, microglial and endothelial cells likely contributes to inflammatory cell recruitment and BBB breakdown. It appears that neuronal apoptotic death and activation of microglial cells and astrocytes play a crucial role in the pathogenesis of JE.  相似文献   

2.

Background

Culex tritaeniorhynchus is the primary vector of Japanese encephalitis virus (JEV), a leading cause of encephalitis in Asia. JEV is transmitted in an enzootic cycle involving large wading birds as the reservoirs and swine as amplifying hosts. The development of a JEV vaccine reduced the number of JE cases in regions with comprehensive childhood vaccination programs, such as in Japan and the Republic of Korea. However, the lack of vaccine programs or insufficient coverage of populations in other endemic countries leaves many people susceptible to JEV. The aim of this study was to predict the distribution of Culex tritaeniorhynchus using ecological niche modeling.

Methods/Principal Findings

An ecological niche model was constructed using the Maxent program to map the areas with suitable environmental conditions for the Cx. tritaeniorhynchus vector. Program input consisted of environmental data (temperature, elevation, rainfall) and known locations of vector presence resulting from an extensive literature search and records from MosquitoMap. The statistically significant Maxent model of the estimated probability of Cx. tritaeniorhynchus presence showed that the mean temperatures of the wettest quarter had the greatest impact on the model. Further, the majority of human Japanese encephalitis (JE) cases were located in regions with higher estimated probability of Cx. tritaeniorhynchus presence.

Conclusions/Significance

Our ecological niche model of the estimated probability of Cx. tritaeniorhynchus presence provides a framework for better allocation of vector control resources, particularly in locations where JEV vaccinations are unavailable. Furthermore, this model provides estimates of vector probability that could improve vector surveillance programs and JE control efforts.  相似文献   

3.

Background

Japanese encephalitis (JE) virus infection can cause severe disease in humans, resulting in death or permanent neurologic deficits among survivors. Studies indicate that the incidence of JE is high in northwestern Bangladesh. Pigs are amplifying hosts for JE virus (JEV) and a potentially important source of virus in the environment. The objectives of this study were to describe the transmission dynamics of JEV among pigs in northwestern Bangladesh and estimate the potential impact of vaccination to reduce incidence among pigs.

Methodology/Principal Findings

We conducted a comprehensive census of pigs in three JE endemic districts and tested a sample of them for evidence of previous JEV infection. We built a compartmental model to describe JEV transmission dynamics in this region and to estimate the potential impact of pig vaccination. We identified 11,364 pigs in the study area. Previous JEV infection was identified in 30% of pigs with no spatial differences in the proportion of pigs that were seropositive across the study area. We estimated that JEV infects 20% of susceptible pigs each year and the basic reproductive number among pigs was 1.2. The model suggest that vaccinating 50% of pigs each year resulted in an estimated 82% reduction in annual incidence in pigs.

Conclusions/Significance

The widespread distribution of historic JEV infection in pigs suggests they may play an important role in virus transmission in this area. Future studies are required to understand the contribution of pig infections to JE risk in humans and the potential impact of pig vaccination on human disease.  相似文献   

4.
Nazmi A  Dutta K  Basu A 《PloS one》2011,6(6):e21761

Background

Neuroinflammation associated with Japanese encephalitis (JE) is mainly due to the activation of glial cells with subsequent release of proinflammatory mediators from them. The recognition of viral RNA, in part, by the pattern recognition receptor retinoic acid-inducible gene I (RIG-I) has been indicated to have a role in such processes. Even though neurons are also known to express this receptor, its role after JE virus (JEV) infections is yet to be elucidated.

Methodology/Principal Findings

Upon infecting murine neuroblastoma cells and primary cortical neurons with JEV the expression profile of key proinflammatory cyto/chemokines were analyzed by qRT-PCR and bead array, both before and after ablation of RIG-I. Immunoblotting was performed to evaluate the levels of key molecules downstream to RIG-I leading to production of proinflammatory mediators. Changes in the intracellular viral antigen expression were confirmed by intracellular staining and immunoblotting. JEV infection induced neuronal expression of IL-6, IL-12p70, MCP-1, IP-10 and TNF-α in a time-dependent manner, which showed significant reduction upon RIG-I ablation. Molecules downstream to RIG-I showed significant changes upon JEV-infection, that were modulated following RIG-I ablation. Ablation of RIG-I in neurons also increased their susceptibility to JEV.

Conclusions/Significance

In this study we propose that neurons are one of the potential sources of proinflammatory cyto/chemokines in JEV-infected brain that are produced via RIG-I dependent pathways. Ablation of RIG-I in neurons leads to increased viral load and reduced release of the cyto/chemokines.  相似文献   

5.
6.

Background

Japanese encephalitis (JE) virus (JEV) is a mosquito-borne flavivirus found across Asia that is closely related to West Nile virus. There is no known antiviral treatment for any flavivirus. Results from in vitro studies and animal models suggest intravenous immunoglobulin (IVIG) containing virus-specific neutralizing antibody may be effective in improving outcome in viral encephalitis. IVIG’s anti-inflammatory properties may also be beneficial.

Methodology/Principal Findings

We performed a pilot feasibility randomized double-blind placebo-controlled trial of IVIG containing anti-JEV neutralizing antibody (ImmunoRel, 400mg/kg/day for 5 days) in children with suspected JE at two sites in Nepal; we also examined the effect on serum neutralizing antibody titre and cytokine profiles. 22 children were recruited, 13 of whom had confirmed JE; 11 received IVIG and 11 placebo, with no protocol violations. One child (IVIG group) died during treatment and two (placebo) subsequently following hospital discharge. Overall, there was no difference in outcome between treatment groups at discharge or follow up. Passive transfer of anti-JEV antibody was seen in JEV negative children. JEV positive children treated with IVIG had JEV-specific neutralizing antibody titres approximately 16 times higher than those treated with placebo (p=0.2), which was more than could be explained by passive transfer alone. IL-4 and IL-6 were higher in the IVIG group.

Conclusions/Significance

A trial of IVIG for JE in Nepal is feasible. IVIG may augment the development of neutralizing antibodies in JEV positive patients. IVIG appears an appealing option for JE treatment that warrants further study.

Trial Registration

ClinicalTrials.gov NCT01856205  相似文献   

7.

Background

India is endemic to Japanese encephalitis virus (JEV) and recurrent outbreaks occur mainly in rice growing areas. Pigs are considered to be the amplifying host for JEV and infection in gestating pigs results in reproductive failure. Most studies conducted on JEV infection in Indian pigs have been serological surveys and very little is known about JEV genotypes circulating in pigs. So the potential risk posed by pigs in JEV transmission and the genetic relationship between viruses circulating in pigs, mosquitoes and humans is poorly understood.

Methodology/Principal Findings

This study was conducted in pigs with a history of reproductive failure characterized by stillborn piglets with neuropathological lesions. Japanese encephalitis (JE) suspected brain specimens inoculated intracerebrally into mice and Vero cells resulted in successful isolation of JEV/SW/IVRI/395A/2014. Clinicopathological observations in infected mice, demonstration of JEV antigen in brain, and analysis of the envelope protein identified the swine isolate as being neurovirulent. Phylogenetic analysis based on prM and E gene sequences showed that it belonged to genotype III. This swine isolate was closely related to JEV associated with the 2005 outbreak in India and JaoArS982 from Japan. Phylogenetic analysis of JEV strains collected between 1956 and 2014 in India categorized the GIII viruses into different clades blurring their spatial distribution, which has been discernible in the previous century.

Conclusions/Significance

Isolation of JEV from stillborn piglets and its close genetic relationship with viruses detected at least three decades ago in humans and mosquitoes in Japan suggests that the virus may have been circulating among Indian pigs for several decades. The close similarity between the present swine isolate and those detected in humans affected in the 2005 outbreak in Uttar Pradesh, India, suggests the need for more intensive surveillance of pigs and implementation of suitable strategies to control JE in India.  相似文献   

8.

Background

Japanese Encephalitis virus (JEV) is a common cause of acute and epidemic viral encephalitis. JEV infection is associated with microglial activation resulting in the production of pro-inflammatory cytokines including Interleukin-1 β (IL-1β) and Interleukin-18 (IL-18). The Pattern Recognition Receptors (PRRs) and the underlying mechanism by which microglia identify the viral particle leading to the production of these cytokines is unknown.

Methodology/Principal Findings

For our studies, we have used murine model of JEV infection as well as BV-2 mouse microglia cell line. In this study, we have identified a signalling pathway which leads to the activation of caspase-1 as the key enzyme responsible for the maturation of both IL-1β and IL-18 in NACHT, LRR and PYD domains-containing protein-3 (NLRP3) dependent manner. Depletion of NLRP3 results in the reduction of caspase-1 activity and subsequent production of these cytokines.

Conclusion/Significance

Our results identify a mechanism mediated by Reactive Oxygen Species (ROS) production and potassium efflux as the two danger signals that link JEV infection to caspase-1 activation resulting in subsequent IL-1β and IL-18 maturation.  相似文献   

9.

Background

Peroxisome Proliferator Activated Receptor gamma (PPARγ) agonists, such as the thiazolinediones (TZDs), have been studied for their potential use as cancer therapeutic agents. We investigated the effect of four TZDs—Rosiglitazone (Rosi), Ciglitazone (CGZ), Troglitazone (TGZ), and Pioglitazone (Pio)—on ovarian cancer cell proliferation, PPARγ expression and PPAR luciferase reporter activity. We explored whether TZDs act in a PPARγ dependent or independent manner by utilizing molecular approaches to inhibit or overexpress PPARγ activity.

Principal Findings

Treatment with CGZ or TGZ for 24 hours decreased proliferation in three ovarian cancer cell lines, Ovcar3, CaOv3, and Skov3, whereas Rosi and Pio had no effect. This decrease in Ovcar3 cell proliferation was due to a higher fraction of cells in the G0/G1 stage of the cell cycle. CGZ and TGZ treatment increased apoptosis after 4 hours of treatment but not after 8 or 12 hours. Treatment with TGZ or CGZ increased PPARγ mRNA expression in Ovcar3 cells; however, protein levels were unchanged. Surprisingly, luciferase promoter assays revealed that none of the TZDs increased PPARγ activity. Overexpression of wild type PPARγ increased reporter activity. This was further augmented by TGZ, Rosi, and Pio indicating that these cells have the endogenous capacity to mediate PPARγ transactivation. To determine whether PPARγ mediates the TZD-induced decrease in proliferation, cells were treated with CGZ or TGZ in the absence or presence of a dominant negative (DN) or wild type overexpression PPARγ construct. Neither vector changed the TZD-mediated cell proliferation suggesting this effect of TZDs on ovarian cancer cells may be PPARγ independent.

Conclusions

CGZ and TGZ cause a decrease in ovarian cancer cell proliferation that is PPARγ independent. This concept is supported by the finding that a DN or overexpression of the wild type PPARγ did not affect the changes in cell proliferation and cell cycle.  相似文献   

10.

Aim

15-Deoxy-Δ12,14 Prostaglandin J2 (15d-PGJ2) is a ligand of peroxisome proliferator-activated receptor γ (PPARγ) having diverse effects such as the differentiation of adipocytes and atherosclerotic lesion formation. 15d-PGJ2 can also regulate the expression of inflammatory mediators on immune cells independent of PPARγ. We investigated the antiatherogenic effect of 15d-PGJ2.

Methods

We fed apolipoprotein (apo) E-deficient female mice a Western-type diet from 8 to 16 wk of age and administered 1 mg/kg/day 15d-PGJ2 intraperitoneally. We measured atherosclerotic lesions at the aortic root, and examined the expression of macrophage and inflammatory atherosclerotic molecules by immunohistochemical and real-time PCR in the lesion.

Results

Atherosclerotic lesion formation was reduced in apo E-null mice treated with 15d-PGJ2, as compared to in the controls. Immunohistochemical and real-time PCR analyses showed that the expression of MCP-1, TNF-α, and MMP-9 in atherosclerotic lesions was significantly decreased in 15d-PGJ2 treated mice. The 15d-PGJ2 also reduced the expression of macrophages and RelA mRNA in atherosclerotic lesions.

Conclusion

This is the first report 15d-PGJ2, a natural PPARγ agonist, can improve atherosclerotic lesions in vivo. 15d-PGJ2 may be a beneficial therapeutic agent for atherosclerosis.  相似文献   

11.
Zhang T  Wu Z  Du J  Hu Y  Liu L  Yang F  Jin Q 《PloS one》2012,7(1):e30259

Background

New therapeutic tools and molecular targets are needed for treatment of Japanese encephalitis virus (JEV) infections. JEV requires an α-1 translational frameshift to synthesize the NS1'' protein required for viral neuroinvasiveness. Several flavonoids have been shown to possess antiviral activity in vitro against a wide spectrum of viruses. To date, the antiviral activities of flavonol kaempferol (Kae) and isoflavonoid daidzin (Dai) against JEV have not been described.

Methodology/Principal Findings

The 50% cytotoxic concentration (CC50) and 50% effective concentration (EC50) against JEV were investigated in BHK21 cells by MTS reduction. Activity against viral genomic RNA and proteins was measured by real-time RT-PCR and western blotting. The frameshift site RNA-binding characterization was also determined by electrospray ionization mass spectrometry, isothermal titration calorimetry and autodocking analysis. EC50 values of Kae and Dai were 12.6 and 25.9 µM against JEV in cells pretreated before infection, whereas in cells infected before treatment, EC50 was 21.5 and 40.4 µM, respectively. Kae exhibited more potent activity against JEV and RNA binding in cells following internalization through direct inhibition of viral replication and protein expression, indicating that its antiviral activity was principally due to direct virucidal effects. The JEV frameshift site RNA (fsRNA) was selected as a target for assaying Kae and Dai. ITC of fsRNA revealed an apparent Kb value for Kae that was nine fold stronger than that for Dai. This binding was confirmed and localized to the RNA using ESI-MS and autodock analysis. Kae could form non-covalent complexes with fsRNA more easily than Dai could.

Conclusions/Significance

Kae demonstrates more potent antiviral activity against JEV than does Dai. The mode of action of Kae as an anti-JEV agent seems to be related to its ability to inactivate virus by binding with JEV fsRNA.  相似文献   

12.

Background

Japanese encephalitis (JE) is the leading cause of viral encephalitis across Asia with approximately 70,000 cases a year and 10,000 to 15,000 deaths. Because JE incidence varies widely over time, partly due to inter-annual climate variability effects on mosquito vector abundance, it becomes more complex to assess the effects of a vaccination programme since more or less climatically favourable years could also contribute to a change in incidence post-vaccination. Therefore, the objective of this study was to quantify vaccination effect on confirmed Japanese encephalitis (JE) cases in Sarawak, Malaysia after controlling for climate variability to better understand temporal dynamics of JE virus transmission and control.

Methodology/principal findings

Monthly data on serologically confirmed JE cases were acquired from Sibu Hospital in Sarawak from 1997 to 2006. JE vaccine coverage (non-vaccine years vs. vaccine years) and meteorological predictor variables, including temperature, rainfall and the Southern Oscillation index (SOI) were tested for their association with JE cases using Poisson time series analysis and controlling for seasonality and long-term trend. Over the 10-years surveillance period, 133 confirmed JE cases were identified. There was an estimated 61% reduction in JE risk after the introduction of vaccination, when no account is taken of the effects of climate. This reduction is only approximately 45% when the effects of inter-annual variability in climate are controlled for in the model. The Poisson model indicated that rainfall (lag 1-month), minimum temperature (lag 6-months) and SOI (lag 6-months) were positively associated with JE cases.

Conclusions/significance

This study provides the first improved estimate of JE reduction through vaccination by taking account of climate inter-annual variability. Our analysis confirms that vaccination has substantially reduced JE risk in Sarawak but this benefit may be overestimated if climate effects are ignored.  相似文献   

13.

Background

An imbalance in the generation of pro-inflammatory leukotrienes, and counter-regulatory lipoxins is present in severe asthma. We measured leukotriene B4 (LTB4), and lipoxin A4 (LXA4) production by alveolar macrophages (AMs) and studied the impact of corticosteroids.

Methods

AMs obtained by fiberoptic bronchoscopy from 14 non-asthmatics, 12 non-severe and 11 severe asthmatics were stimulated with lipopolysaccharide (LPS,10 μg/ml) with or without dexamethasone (10-6M). LTB4 and LXA4 were measured by enzyme immunoassay.

Results

LXA4 biosynthesis was decreased from severe asthma AMs compared to non-severe (p < 0.05) and normal subjects (p < 0.001). LXA4 induced by LPS was highest in normal subjects and lowest in severe asthmatics (p < 0.01). Basal levels of LTB4 were decreased in severe asthmatics compared to normal subjects (p < 0.05), but not to non-severe asthma. LPS-induced LTB4 was increased in severe asthma compared to non-severe asthma (p < 0.05). Dexamethasone inhibited LPS-induced LTB4 and LXA4, with lesser suppression of LTB4 in severe asthma patients (p < 0.05). There was a significant correlation between LPS-induced LXA4 and FEV1 (% predicted) (rs = 0.60; p < 0.01).

Conclusions

Decreased LXA4 and increased LTB4 generation plus impaired corticosteroid sensitivity of LPS-induced LTB4 but not of LXA4 support a role for AMs in establishing a pro-inflammatory balance in severe asthma.  相似文献   

14.

Background

Japanese encephalitis (JE) is a flaviviral disease of public health concern in many parts of Asia. JE often occurs in large epidemics, has a high case-fatality ratio and, among survivors, frequently causes persistent neurological sequelae and mental disabilities. In 1997, the Vietnamese government initiated immunization campaigns targeting all children aged 1–5 years. Three doses of a locally-produced, mouse brain-derived, inactivated JE vaccine (MBV) were given. This study aims at evaluating the effectiveness of Viet Nam''s MBV.

Methodology

A matched case-control study was conducted in Northern Viet Nam. Cases were identified through an ongoing hospital-based surveillance. Each case was matched to four healthy controls for age, gender, and neighborhood. The vaccination history was ascertained through JE immunization logbooks maintained at local health centers.

Principal Findings

Thirty cases and 120 controls were enrolled. The effectiveness of the JE vaccine was 92.9% [95% CI: 66.6–98.5]. Confounding effects of other risk variables were not observed.

Conclusions

Our results strongly suggest that the locally-produced JE-MBV given to 1–5 years old Vietnamese children was efficacious.  相似文献   

15.

Background

Japanese encephalitis (JE), caused by a mosquito-borne flavivirus, is endemic to the entire south-east Asian and adjoining regions. Currently no therapeutic interventions are available for JE, thereby making it one of the most dreaded encephalitides in the world. An effective way to counter the virus would be to inhibit viral replication by using anti-sense molecules directed against the viral genome. Octaguanidinium dendrimer-conjugated Morpholino (or Vivo-Morpholino) are uncharged anti-sense oligomers that can enter cells of living organisms by endocytosis and subsequently escape from endosomes into the cytosol/nuclear compartment of cells. We hypothesize that Vivo-Morpholinos generated against specific regions of 3′ or 5′ untranslated regions of JEV genome, when administered in an experimental model of JE, will have significant antiviral and neuroprotective effect.

Methodology/Principal Findings

Mice were infected with JEV (GP78 strain) followed by intraperitoneal administration of Morpholinos (5 mg/kg body weight) daily for up to five treatments. Survivability of the animals was monitored for 15 days (or until death) following which they were sacrificed and their brains were processed either for immunohistochemical staining or protein extraction. Plaque assay and immunoblot analysis performed from brain homogenates showed reduced viral load and viral protein expression, resulting in greater survival of infected animals. Neuroprotective effect was observed by thionin staining of brain sections. Cytokine bead array showed reduction in the levels of proinflammatory cytokines in brain following Morpholino treatment, which were elevated after infection. This corresponded to reduced microglial activation in brain. Oxidative stress was reduced and certain stress-related signaling molecules were found to be positively modulated following Morpholino treatment. In vitro studies also showed that there was decrease in infective viral particle production following Morpholino treatment.

Conclusions/Significance

Administration of Vivo-Morpholino effectively resulted in increased survival of animals and neuroprotection in a murine model of JE. Hence, these oligomers represent a potential antiviral agent that merits further evaluation.  相似文献   

16.

Background

Japanese encephalitis virus (JEV) is the major cause of viral encephalitis in Southeast Asia. Vaccination of domestic pigs has been suggested as a “one health” strategy to reduce viral disease transmission to humans. The efficiency of two lentiviral TRIP/JEV vectors expressing the JEV envelope prM and E glycoproteins at eliciting protective humoral response was assessed in a mouse model and piglets.

Methodology/Principal Findings

A gene encoding the envelope proteins prM and E from a genotype 3 JEV strain was inserted into a lentiviral TRIP vector. Two lentiviral vectors TRIP/JEV were generated, each expressing the prM signal peptide followed by the prM protein and the E glycoprotein, the latter being expressed either in its native form or lacking its two C-terminal transmembrane domains. In vitro transduction of cells with the TRIP/JEV vector expressing the native prM and E resulted in the efficient secretion of virus-like particles of Japanese encephalitis virus. Immunization of BALB/c mice with TRIP/JEV vectors resulted in the production of IgGs against Japanese encephalitis virus, and the injection of a second dose one month after the prime injection greatly boosted antibody titers. The TRIP/JEV vectors elicited neutralizing antibodies against JEV strains belonging to genotypes 1, 3, and 5. Immunization of piglets with two doses of the lentiviral vector expressing JEV virus-like particles led to high titers of anti-JEV antibodies, that had efficient neutralizing activity regardless of the JEV genotype tested.

Conclusions/Significance

Immunization of pigs with the lentiviral vector expressing JEV virus-like particles is particularly efficient to prime antigen-specific humoral immunity and trigger neutralizing antibody responses against JEV genotypes 1, 3, and 5. The titers of neutralizing antibodies elicited by the TRIP/JEV vector are sufficient to confer protection in domestic pigs against different genotypes of JEV and this could be of a great utility in endemic regions where more than one genotype is circulating.  相似文献   

17.

Background

We previously showed that blood serum induced cytochrome P450 1A1 (CYP1A1) monooxygenase expression in vitro.

Objective

Our purpose was (i) to identify the molecular mechanism involved and (ii) to characterize the inducer compound(s) in serum involved at least in part.

Methods

Serum was fractionated on hydrophobic columns. PPARα involvement was demonstrated by gene reporter assays, DNA mutagenesis and EMSA. Gene expression was evaluated by qRT-PCR. Serum samples were analyzed using HS-SPME-GC-MS.

Results

The inductive effect of serum did not depend on the AhR pathway and was enhanced by cotransfection of PPARα cDNA. Mutations in the PPAR response elements of the CYP1A1 gene promoter suppressed this effect. One of the PPRE sites appeared highly specific for human PPARα, an unreported PPRE property. A link was found between CYP1A1 inducibility and serum hydrophobic compounds. Characterization of sera showed that hexanal, a metabolite produced by peroxidation of linoleic acid, was involved in CYP1A1 induction by serum, possibly along with other serum entities.

Conclusion

We demonstrate that serum induces CYP1A1 via the PPARα pathway and that hexanal is one of the serum inducers. The two PPRE sites within the CYP1A1 promoter are functional and one of them is specific for PPARα.  相似文献   

18.

Background

To construct safer recombinant flavivirus vaccine, we exploited Japanese encephalitis virus (JEV) replicon-based platform to generate single-round infectious particles (SRIPs) that expressed heterologous neutralizing epitope SP70 derived from enterovirus-71 (EV71). Such pseudo-infectious virus particles, named SRIP-SP70, although are not genuine viable viruses, closely mimic live virus infection to elicit immune responses within one round of viral life cycle.

Results

We found that, besides gaining of full protection to thwart JEV lethal challenge, female outbred ICR mice, when were immunized with SRIP-SP70 by prime-boost protocol, could not only induce SP70-specific and IgG2a predominant antibodies but also provide their newborns certain degree of protection against EV71 lethal challenge.

Conclusions

Our results therefore exemplify that this vaccination strategy could indeed confer an immunized host a dual protective immunity against subsequent lethal challenge from JEV or EV71.  相似文献   

19.
Nguyen MT  Chen A  Lu WJ  Fan W  Li PP  Oh da Y  Patsouris D 《PloS one》2012,7(4):e34976

Background

PPARγ plays a key role in adipocyte biology, and Rosiglitazone (Rosi), a thiazolidinedione (TZD)/PPARγ agonist, is a potent insulin-sensitizing agent. Recent evidences demonstrate that adipose tissue inflammation links obesity with insulin resistance and that the insulin-sensitizing effects of TZDs result, in part, from their anti-inflammatory properties. However the underlying mechanisms are unclear.

Methodology and Principal Findings

In this study, we establish a link between free fatty acids (FFAs) and PPARγ in the context of obesity-associated inflammation. We show that treatment of adipocytes with FFAs, in particular Arachidonic Acid (ARA), downregulates PPARγ protein and mRNA levels. Furthermore, we demonstrate that the downregulation of PPARγ by ARA requires the activation the of Endoplamsic Reticulum (ER) stress by the TLR4 pathway. Knockdown of adipocyte PPARγ resulted in upregulation of MCP1 gene expression and secretion, leading to enhanced macrophage chemotaxis. Rosi inhibited these effects. In a high fat feeding mouse model, we show that Rosi treatment decreases recruitment of proinflammatory macrophages to epididymal fat. This correlates with decreased chemokine and decreased chemokine receptor expression in adipocytes and macrophages, respectively.

Conclusions and Significance

In summary, we describe a novel link between FAs, the TLR4/ER stress pathway and PPARγ, and adipocyte-driven recruitment of macrophages. We thus both describe an additional potential mechanism for the anti-inflammatory and insulin-sensitizing actions of TZDs and an additional detrimental property associated with the activation of the TLR4 pathway by FA.  相似文献   

20.

Background

Although a previous study predicted that Japanese encephalitis virus (JEV) originated in the Malaysia/Indonesia region, the virus is known to circulate mainly on the Asian continent. However, there are no reported systematic studies that adequately define how JEV then dispersed throughout Asia.

Methodology/Principal Findings

In order to understand the mode of JEV dispersal throughout the entire Asian continent and the factors that determine the dispersal characteristics of JEV, a phylogenetic analysis using Bayesian Markov chain Monte Carlo simulations was conducted on all available JEV E gene sequences in GenBank, plus strains recently isolated in China. Here we demonstrate for the first time that JEV lineages can be divided into four endemic cycles, comprising southern Asia, eastern coastal Asia, western Asia, and central Asia. The isolation places of the viruses in each endemic cycle were geographically independent regardless of years, vectors, and hosts of isolation. Following further analysis, we propose that the southernmost region (Thailand, Vietnam, and Yunnan Province, China) was the source of JEV transmission to the Asian continent following its emergence. Three independent transmission routes from the south to north appear to define subsequent dispersal of JEV. Analysis of JEV population dynamics further supports these concepts.

Conclusions/Significance

These results and their interpretation provide new insights into our understanding of JEV evolution and dispersal and highlight its potential for introduction into non-endemic areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号