首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six potato cultivars with different levels of resistance to the white potato cyst nematode (PCN) Globodera pallida Pa2 were grown for three seasons in field plots to which G. pallida Pa2 cysts had been introduced earlier. There were two planting times, corresponding to early and maincrop commercial planting times, and two initial PCN population densities, high and low. The effect of cultivar on PCN population density was far greater than the effect of planting time or initial nematode population. The final PCN populations for the cultivars Ilam Hardy, Wha, 4696A(2), Sovereign, D40/6 and V390 were 151, 74, 27, 1.4, 0.2 and 0.06 eggs per g of soil respectively. It is concluded that resistant potato cultivars can be very effective in controlling G. pallida Pa2 in the field.  相似文献   

2.
Fosthiazate (Nemathorin 10G Ishihara Sangyo Kaisha Ltd, Japan) is a new nematicide approved for use on potatoes Solanum tuberosum L. in die UK for die control of die potato cyst nematodes Globodera rostochiensis (Woll). Skarbilovich and G. pallida (Stone). Fosdiiazate delayed and suppressed hatch of die potato cyst nematode Globodera pallida in bom in vitro laboratory tests and a glasshouse pot experiment. In vitro hatch was temporarily inhibited by fosdiiazate concentrations above 0.09 μg ml-1 and increasing me fosdiiazate concentration further prolonged the duration of hatch inhibition. Analysis of fosthiazate soil concentrations, using high-pressure liquid chromatography, during me glasshouse experiment showed mat hatch was suppressed in the soil at concentrations above 0.5 mg kg-1. Other factors such as the paralysis of hatched nematodes in the soil solution are also involved.  相似文献   

3.
Globodera pallida is a parasitic root cyst nematode of potato, which causes reduction of crop yield and quality in infested fields. Field populations of G. pallida containing mixtures of pathotypes Pa2 and Pa3 (Pa2/3) are currently most relevant for potato cultivation in middle Europe. Genes for resistance to G. pallida have been introgressed into the cultivated potato gene pool from the wild, tuber bearing Solanum species S. spegazzinii and S. vernei. Selection of resistant genotypes in breeding programs is hampered by the fact that the phenotypic evaluation of resistance to G. pallida is time consuming, costly and often ambiguous. DNA-based markers diagnostic for resistance to G. pallida would facilitate the development of resistant varieties. A tetraploid F1 hybrid family SR-Gpa segregating for quantitative resistance to G.␣pallida was developed and evaluated for resistance to G. pallida population ‘Chavornay’. Two subpopulations of 30 highly resistant and 30 susceptible individuals were selected and genotyped for 96 single nucleotide polymorphism (SNP) markers tagging 12 genomic regions on 10 potato chromosomes. Seven SNPs were found significantly linked to the nematode resistance, which were all located within a resistance ‘hotspot’ on potato chromosome V. A haplotype model for these seven SNPs was deduced from the SNP patterns observed in the SR-Gpa family. A PCR assay ‘HC’ was developed, which specifically detected the SNP haplotype c that was linked with high levels of nematode resistance. The HC marker was only found in accessions of S.␣vernei. Screening with the HC marker 34 potato varieties resistant to G. pallida pathotypes Pa2 and/or Pa3 and 22 susceptible varieties demonstrated that the HC marker was highly diagnostic for presence of high levels of resistance to G. pallida pathotype Pa2/Pa3.Amirali Sattarzadeh and Ute Achenbach contributed equally to the work  相似文献   

4.
Laboratory, pot and field experiments investigated the effects of the fungus Zygorrhynchus moelleri on the growth of potato and on the reproduction of the potato cyst nematodes (PCN), Globodera pallida and G rostochiensis. Preliminary laboratory tests showed that Z. moelleri growth was favoured by temperatures and pH ranges commonly present in field soils. The fungus colonised potato roots in vitro and in compost or field soil. It also stimulated in vitro root growth of three potato cultivars. In pot experiments Z. moelleri stimulated potato growth, particularly in the presence of PCN attack. In field plots infested with a mixture of G pallida and G. rostochiensis, tuber yields were not increased after application of the fungus but, in G pallida‐infested plots, yields were significantly increased after drills were inoculated with Z. moelleri. The application of Z. moelleri had no apparent effects on nematode reproduction. Factors influencing the interactions between Z. moelleri, potato and potato cyst nematodes are discussed and the potential role of the fungus as a plant growth promoter in organic potato production considered.  相似文献   

5.
Soybean cyst nematode (SCN) is an obligate, sedentary parasite that is a major pathogen of soybean and accounts for an estimated 1 billion dollars in production losses annually in the United States of America. This paper describes the development of a real-time PCR method for rapid, sensitive, species-specific and accurate identification of SCN alone or on mixed populations with other nematodes in North Carolina. The 83-bp DNA fragment of PrimeTime-real-time PCR was designed based on a 477-bp-SCN-SCAR marker previously proved to be SCN-specific. A total of 44 populations including cyst forming nematodes (Heterodera glycines, H. fici, H. schachtii, H. trifolii, Cactodera weissi, Globodera tabacum, Meloidodera floridensis and other unidentified cyst nematodes) and non-cyst forming nematodes (Ditylenchus dipsaci, Meloidogyne incognita and Xiphinema chambersi) were tested in this study, all SCN populations are tested positive and non-SCN populations negative. This assay for the detection and identification has been successfully applied for testing a single SCN cyst, a 2nd-stage-SCN juvenile, a single SCN egg, up to ten SCN cysts, a 10-fold dilution of a single 2nd-stage-SCN juvenile and 20-fold dilution of one SCN cyst. The assay is not SCN-race specific. It gave an accurate positive result when SCN is mixed with other cyst species. Also, nematode universal primers/probes for real-time PCR amplification as a nematode endogenous control to detect the presence of 18S ribosomal RNA (rRNA) gene were employed in this assay, so that a SCN-negative sample can be tested to exclude false negative. This method will be very useful for a broad range of research programs as well as the regulatory response and management of SCN in North Carolina and other region of the southeastern U.S.A.  相似文献   

6.
The identity of a newly discovered population of pale potato cyst nematode Globodera pallida associated with potato in eastern Idaho was established by morphological and molecular methods. Morphometrics of cysts and second-stage juveniles were generally within the expected ranges for G. pallida with some variations noted. The Idaho population and paratype material from Epworth, Lincolnshire, England, both showed variations in tail shape, with bluntly rounded to finely pointed tail termini. Compared to literature values for the paratypes, second-stage juveniles of the Idaho population had a somewhat shorter mean body length, and cysts had a slightly higher mean distance from the anus to the nearest edge of the fenestra. PCR-RFLP of the rDNA ITS region, sequence-specific multiplex PCR and DNA sequence comparisons all confirmed the identity of the Idaho population as G. pallida. The ITS rDNA sequence of the Idaho isolate was identical to those from York, England, and the Netherlands. Species-specific primers that can positively identify the tobacco cyst nematode Globodera tabacum were also developed, providing a new assay for distinguishing this species from G. pallida and the golden potato cyst nematode Globodera rostochiensis.  相似文献   

7.
8.
Antioxidant Enzymes in Phytoparasitic Nematodes   总被引:1,自引:0,他引:1  
Presence of different antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and ascorbate, p-phenilendiamine-pyrocathecol (PPD-PC), o-dianisidine, and guaiacol isoperoxidases, was shown in the phytoparasific nematode species Meloidogyne incognita, M. hapla, Globodera rostochiensis, G. pallida, Heterodera schachtii, H. carotae, and Xiphinema index. The activity of the enzymes tested differed among the life stages examined. SOD was present in cysts but was not detected in Meloidogyne egg masses. Catalase activity of Meloidogyne females was higher than that of preparasitic stages and cyst-nematode females. For the first time, ascorbate peroxidase was found to occur commonly in phytoparasitic nematodes, with the highest activity in the invading life-stages. In all the life stages examined, the antioxidant enzyme activities of M. hapla were markedly higher than those of M. incognita. Glutathione peroxidase was not found in the species examined.  相似文献   

9.
Two monoclonal antibodies, which differentially recognise the two species of potato cyst nematodes (PCN), Globodera pallida and G. rostochiensis, are described. They have been shown to have potential for quantification of these two species, recognising proteins of the same molecular weight (34 kD) in both species. Further investigation showed these proteins to have isoelectric points at pH values of 5.7 in G. pallida and 5.9 in G. rostochiensis, in common with the proteins used by Fleming & Marks (1983) to differentiate the species of PCN. They are likely to be structurally very similar, with the same physiological function (and therefore similar concentrations) in the two species. In cross-reactivity tests with a wide range of soil nematode species, the antibodies reacted strongly only with species of the genus Globodera, and thereby confirmed their potential as the basis of a quantitative immunoassay likely to be useful in management of PCN populations.  相似文献   

10.
Three field experiments were made to determine the effectiveness of small-plot trials in detecting differences between potato cultivars/clones in their tolerance of damage by potato cyst-nematodes. A nematicide (aldicarb) was applied at three rates to decrease nematode damage. The largest rate of aldicarb increased tuber yields most but the relationship between yield response and nematicide rate was not linear. The yield increases of the cultivars and clones differed, indicating that they have different degrees of tolerance of potato cyst nematodes. The results were analysed in several ways and the untreated yield as a proportion of the treated provided the best means of expressing and comparing tolerance; but whichever method was used the tolerance rankings of the cultivars and clones were similar. At two sites infested with Globodera rostochiensis, the rankings of the 10 cultivars and clones were similar but at a third site, heavily infested with G. pallida, they were different. Aldicarb decreased the nematode population density after harvest at the G. pallida site but was less effective at the G. rostochiensis sites, which were less heavily infested. Growing resistant or partially resistant potatoes usually prevented nematode increase, and the more resistant cultivars and clones decreased population densities markedly.  相似文献   

11.
The damage caused by the parasitic root cyst nematode Globodera pallida is a major yield-limiting factor in potato cultivation . Breeding for resistance is facilitated by the PCR-based marker ‘HC’, which is diagnostic for an allele conferring high resistance against G. pallida pathotype Pa2/3 that has been introgressed from the wild potato species Solanum vernei into the Solanum tuberosum tetraploid breeding pool. The major quantitative trait locus (QTL) controlling this nematode resistance maps on potato chromosome V in a hot spot for resistance to various pathogens including nematodes and the oomycete Phytophthora infestans. An unstructured sample of 79 tetraploid, highly heterozygous varieties and breeding clones was selected based on presence (41 genotypes) or absence (38 genotypes) of the HC marker. Testing the clones for resistance to G. pallida confirmed the diagnostic power of the HC marker. The 79 individuals were genotyped for 100 single nucleotide polymorphisms (SNPs) at 10 loci distributed over 38 cM on chromosome V. Forty-five SNPs at six loci spanning 2 cM in the interval between markers GP21-GP179 were associated with resistance to G. pallida. Based on linkage disequilibrium (LD) between SNP markers, six LD groups comprising between 2 and 18 SNPs were identified. The LD groups indicated the existence of multiple alleles at a single resistance locus or at several, physically linked resistance loci. LD group C comprising 18 SNPs corresponded to the ‘HC’ marker. LD group E included 16 SNPs and showed an association peak, which positioned one nematode resistance locus physically close to the R1 gene family. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Deviations of genotypic frequencies from Hardy–Weinberg equilibrium (HWE) expectations could reveal important aspects of the biology of populations. Deviations from HWE due to heterozygote deficits have been recorded for three plant‐parasitic nematode species. However, it has never been determined whether the observed deficits were due (i) to the presence of null alleles, (ii) to a high level of consanguinity and/or (iii) to a Wahlund effect. The aim of the present work was, while taking into the possible confounding effect of null alleles, to disentangle consanguinity and Wahlund effect in natural populations of those three economically important cyst nematodes using microsatellite markers: Globodera pallida, G. tabacum and Heterodera schachtii, pests of potato, tobacco and sugar beet, respectively. The results show a consistent pattern of heterozygote deficiency in the three nematode species sampled at the spatial scale of the host plant. We demonstrate that the prevalence of null alleles is weak and that heterozygote deficits do not have a single origin. Our results suggested that it is restricted dispersal that leads to heterozygote deficits through both consanguinity and substructure, which effects can be linked to soil movement, cyst density, and the number of generations per year. We discuss potential implications for the durability of plant resistances that are used to protect crops against parasites in which mating between relatives occur. While consanguineous mating leads to homozygosity at all loci, including loci governing avirulence/virulence, which favours the expression of virulence when recessive, the Wahlund effect is expected to have no particular effect on the adaptation of nematodes to resistances.  相似文献   

13.
Changes in relative abundance of the two potato cyst nematode species Globodera rostochiensis and Globodera pallida were studied during the 1983/84 season at two different population levels in small pots in the glasshouse and at a single population density on plants grown outdoors in 2 litre terylene cloth bags. In both environments G. rostochiensis was the more successful species. Although the ratio of the two species changed and G. pallida was at a lower level at the end of the experiment it was never eliminated. However, when the number of G. pallida in the mixture was small it did better than expected and demonstrated a frequency dependent response.  相似文献   

14.
The Grp1 locus confers broad-spectrum resistance to the potato cyst nematode species Globodera pallida and Globodera rostochiensis and is located in the GP21-GP179 interval on the short arm of chromosome V of potato. A high-resolution map has been developed using the diploid mapping population RHAM026, comprising 1,536 genotypes. The flanking markers GP21 and GP179 have been used to screen the 1,536 genotypes for recombination events. Interval mapping of the resistances to G. pallida Pa2 and G. rostochiensis Ro5 resulted in two nearly identical LOD graphs with the highest LOD score just north of marker TG432. Detailed analysis of the 44 recombinant genotypes showed that G. pallida and G. rostochiensis resistance could not be separated and map to the same location between marker SPUD838 and TG432. It is suggested that the quantitative resistance to both nematode species at the Grp1 locus is mediated by one or more tightly linked R genes that might belong to the NBS-LRR class. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. A. Finkers-Tomczak and S. Danan contributed equally to this research.  相似文献   

15.
Recently, a multipartite mitochondrial genome was characterized in the potato cyst nematode, Globodera pallida. Six subgenomic circles were detectable by PCR, while full-length genomes were not. We investigate here whether this subgenomic organization occurs in a close relative of G. pallida. We amplified and sequenced one entire mitochondrial subgenome from the cyst-forming nematode, Globodera rostochiensis. Comparison of the noncoding region of this subgenome with those reported previously for G. pallida facilitated the design of amplification primers for a range of subgenomes from G. rostochiensis. We then randomly sequenced five subgenomic fragments, each representative of a unique subgenome. This study indicates that the multipartite structure reported for G. pallida is conserved in G. rostochiensis. A comparison of subgenomic organization between these two Globodera species indicates a considerable degree of overlap between them. Indeed, we identify two subgenomes with an organization identical with that reported for G. pallida. However, other subgenomes are unique to G. rostochiensis, although some of these have blocks of genes comparable to those in G. pallida. Dot-plot comparisons of pairs of subgenomes from G. rostochiensis indicate that the different subgenomes share fragments with high sequence identity. We interpret this as evidence that recombination is operating in the mitochondria of G. rostochiensis. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users. Reviewing Editor: Dr. Rafael Zardoya  相似文献   

16.
Cryopreservation protocols based on slow freezing or vitrification often result in cell injury due to ice formation, cell dehydration and/or toxic concentrations of cryoprotectant (CPA).In this study, we present a cryopreservation technique based on low, non-toxic concentrations of cryoprotectants (≈2–4 M) combined with a rapid cooling rate in the liquid nitrogen phase (−196 °C). Protocols for successfully cryopreserving the plant parasitic nematodes Globodera tabacum tabacum, Heterodera schachtii and Meloidogyne incognita were developed, as demonstrated by the high survival rates and reproducibility of cyst and root-knot nematode species post-cryostorage. This approach for effective cryopreservation of viable plant-parasitic nematodes was developed by inducing an “apparent vitrification” by rapid cooling of the microscopic samples in less than 2 M of cryoprotectant. The extremely thin structure (15–20 μm width, 350–400 μm length) of these nematodes, in combination with a direct and rapid exposure to LN2, likely prevents the formation of damaging ice crystals. Moreover, this procedure results in viability of both short- and long-cryostorage samples. These techniques could potentially be used for the near-indefinite preservation of thousands of different nematode species. A cryo-nematode collection produced in our lab is available and presented here.  相似文献   

17.
Globodera pallida and G. rostochiensis are two cyst‐forming nematodes known to infest potato crops, causing severe economic losses worldwide. In this study, a real‐time TaqMan PCR assay was developed and optimized for the simultaneous detection of G. pallida and G. rostochiensis. The assay's analytical and diagnostic sensitivity and specificity were evaluated using reference isolates. Four different DNA extraction methods and one rapid crude template‐preparation procedure were compared in terms of extraction purity, efficiency for PCR applications, utility and cost. Extraction methods A and B included two commercially available kits that utilize silica columns and magnetic beads, respectively. Method C was based on DNA isolation using Chelex resin, and method D was a standard chemistry in‐house protocol. Procedure E included the direct use of crude mixture composed of disrupted cysts in Tris–EDTA buffer. The multiplex TaqMan PCR assay successfully discriminated the two nematode species from all reference cyst samples and its recorded diagnostic sensitivity (Dse) and specificity (Dsp) was 100%. On the contrary, in conventional (Co) PCR tests, the overall Dsp and Dse were lower and estimated at 94 and 87% for G. pallida, and 97 and 88% for G. rostochiensis, respectively. Spectrophotometric results showed that DNA extraction methods A, B and C yielded the purest DNA and gave the lowest mean Ct values as well as the most consistent results in Co PCR. Alternative crude preparation method E resulted in statistically similar and Ct values consistent with those obtained with methods A to C when tested by TaqMan PCR. The developed assay, using crude template‐preparation E, allows the simple, accurate and cost‐effective testing of a large number of cyst samples and can be applied in surveys and certification schemes.  相似文献   

18.
Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize venom allergen-like proteins to suppress the activation of defenses by immunogenic breakdown products in damaged host tissue.  相似文献   

19.
Medicago sativa L., alfalfa, is the most known plant species within the Medicago genus. The plant has been extensively studied for its content of saponins, mainly consisting of triterpene glycosides of medicagenic acid, possessing several biological properties including a biocidal activity on different soil microorganisms. Phytoparasitic nematodes are responsible for heavy economic damages to numerous agricultural crops and, due to their large distribution, they are among the most difficult crop pests to control. Attention on environmental safety and human and animal health has led to the progressive dismission of many synthetic formulations for the control of those pests and to the search of alternative strategies, including the use of natural metabolites from plants. Saponins from M. sativa may be good candidates for natural nematicide formulations, as in our in vitro studies the saponin mixtures from M. sativa tissues have been found effective in vitro against the virus-vector nematode Xiphinema index, the root-knot nematode Meloidogyne incognita and the potato cyst parasite, Globodera rostochiensis. A structure–activity relationship among saponins and related prosapogenins and sapogenin, respectively, has also been analyzed. The nematicidal efficacy differed among the three assayed nematode species, G. rostochiensis being the most susceptible to the active compounds from alfalfa. The in vitro results were also confirmed by experiments in potting mixes infested by M. incognita or G. rostochiensis and amended with dry top and root material from M. sativa, and in field trials on M. incognita and carrot cyst nematode Heterodera carotae with M. sativa pelleted meal. All amendments reduced root and soil population densities of target nematode species compared to non-treated and chemical controls, with a general improvement of plant growth and yield performances.  相似文献   

20.
While pectate lyases are major parasitism factors in plant-parasitic nematodes, there is little information on the variability of these genes within species and their utility as pathotype or host range molecular markers. We have analysed polymorphisms of pectate lyase 2 (pel-2) gene, which degrades the unesterified polygalacturonate (pectate) of the host cell-wall, in the genus Globodera. Molecular variability of the pel-2 gene and the predicted protein was evaluated in populations of G. rostochiensis, G. pallida, G.mexicana” and G. tabacum. Seventy eight pel-2 sequences were obtained and aligned. Point mutations were observed at 373 positions, 57% of these affect the coding part of the gene and produce 129 aa replacements. The observed polymorphism does not correlate either to the pathotypes proposed in potato cyst nematodes (PCN) or the subspecies described in tobacco cyst nematodes. The trees reveal a topology different from the admitted species topology as G. rostochiensis and G. pallida sequences are more similar to each other than to G. tabacum. Species-specific sites, potentially applicable for identification, and sites distinguishing PCN from tobacco cyst nematodes, were identified. As both G. rostochiensis and G. pallida display the same host range, but distinct from G. tabacum, which cannot parasitize potato plants, it is tempting to speculate that pel-2 genes polymorphism may be implicated in this adaptation, a view supported by the fact that no active pectate lyase 2 was found in G.mexicana”, a close relative of G. pallida that is unable to develop on cultivated potato varieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号