首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diphtheria toxin belongs to a group of toxic proteins that enter the cytosol of animal cells. We have here investigated the effect of NH2-terminal extensions of diphtheria toxin on its ability to become translocated to the cytosol. DNA fragments encoding peptides of 12-30 amino acids were fused by recombinant DNA technology to the 5'-end of the gene for a mutant toxin. The resulting DNA constructs were transcribed and translated in vitro. The translation products were bound to cells and then exposed to low pH to induce translocation across the cell membrane. Under these conditions all of the oligopeptides tested, including three viral peptides and the leader peptide of diphtheria toxin, were translocated to the cytosol along with the enzymatic part (A-fragment) of the toxin. Neither hydrophobic nor highly charged sequences blocked translocation. The results are compatible with a model in which the COOH-terminus of the A-fragment first crosses the membrane, whereas the NH2-terminal region follows behind. The possibility of using nontoxic variants of diphtheria toxin as vectors to introduce peptides into the cytosol to elicit MHC class I-restricted immune response and clonal expansion of the relevant CD8+ cytotoxic T lymphocytes is discussed.  相似文献   

2.
Diphtheria toxin A-fragment enters the cytosol of target cells, where it inhibits protein synthesis by catalyzing ADP-ribosylation of elongation factor 2 (EF-2). We have here analyzed toxin-induced protein synthesis inhibition in single cells by autoradiography and compared it with inhibition of protein synthesis in the whole cell culture. The data show that half-maximal protein synthesis inhibition in the whole cell population after a short incubation time is achieved by partially inhibiting protein synthesis in basically all the cells, while half-maximal protein synthesis inhibition after a long incubation time is due to a complete protein synthesis block in about half the cells in the population. We have also compared stable and unstable A-fragment mutants with respect to the kinetics of cell intoxication. While the toxicity of the stable mutants increased with time, the unstable mutants showed a similar toxicity at early and late time points. When studying the kinetics of cell intoxication by toxins with short cytosolic half-life, we could not detect any recovery of protein synthesis at late time points when all the mutant A-fragments should be degraded. This indicates that the ADP-ribosylation of EF-2 cannot be reversed by an endogenous activity in the cells. The data indicate that entry of toxin into a cell is not associated with an immediate block in protein synthesis, and that prolonged action of single A-fragment molecules in the cytosol is sufficient to obtain complete protein synthesis inhibition at low toxin concentrations.  相似文献   

3.
When Vero cells with surface-bound 125I-labeled, nicked diphtheria toxin were exposed to pH 4.5, two polypeptides of Mr 20,000 and 25,000 became protected against externally applied Pronase E. The 20-kDa polypeptide appears to be the toxin A-fragment, whereas the 25-kDa polypeptide must be derived from the B-fragment. Permeabilization of the cells with saponin allowed efflux of the 20-kDa fragment to occur, whereas most of the 25-kDa polypeptide remained associated with the cells. A number of compounds and conditions which protect cells against diphtheria toxin prevented the protection against Pronase E. Protection of the 25-kDa polypeptide occurred even when the transmembrane proton gradient (delta pH) was dissipated by acidification of the cytosol, whereas protection and release of the A-fragment were prevented under these conditions. Electrical depolarization and ATP depletion of the cells did not inhibit protection and release of the A-fragment. The data indicate that delta pH is required for the transfer of the A-fragment to the cytosol, whereas the insertion of part of the B-fragment into the membrane occurs at low pH, even in the absence of a delta pH.  相似文献   

4.
When the enzymatically active A-fragment of diphtheria toxin is translocated to the cytosol, the B-fragment inserts into the membrane in such a way that a 25-kDa polypeptide becomes shielded from proteases added to the external medium. We have attempted to determine the boundaries of this polypeptide within the toxin B-fragment as well as the topology of the B-fragment in the membrane. Chemical cleavage of the 25-kDa polypeptide with hydroxylamine and o-iodosobenzoic acid yielded fragments of sizes indicating that the 25-kDa polypeptide starts at residue approximately 300 and extends to the COOH-terminal end. Experiments where the toxin was labeled with [35S]cysteine at distinct positions of the B-fragment supported this conclusion. Treatment of cells with inserted B-fragment with L-1-tosyl-amido-2-phenylethyl chloromethyl ketone-treated trypsin and with V8 protease from Staphylococcus aureus yielded protected 27- and 30-kDa fragments in addition to 25 kDa, indicating that the region 240-264 is also at the outside. The topology of the inserted B-fragment is discussed.  相似文献   

5.
A fusion protein of acidic fibroblast growth factor and diphtheria toxin A-fragment was disulfide-linked to the toxin B-fragment. The complex bound specifically to diphtheria toxin receptors, and subsequent exposure to low pH induced the fusion protein to translocate to the cytosol. Heparin, inositol hexaphosphate and inorganic sulfate strongly increased the trypsin resistance of the growth factor part of the fusion protein, indicating tight folding, and they prevented translocation of the fusion protein to the cytosol. The data indicate that only a more disordered form of the growth factor is translocation competent.  相似文献   

6.
H Stenmark  S McGill  S Olsnes    K Sandvig 《The EMBO journal》1989,8(10):2849-2853
Diphtheria toxin B-fragment binds to cell-surface receptors and facilitates translocation of the enzymatically active A-fragment to the cytosol. In this process the B-fragment inserts into the plasma membrane and induces formation of cation-selective channels. We examined the ability of a number of diphtheria toxin-derived molecules translated in vitro to permeabilize cells. Two proteins consisting of the whole B-fragment and small parts of the A-fragment, and one protein comprising most of the B-fragment alone, were more efficient than full-length toxin in permeabilizing the plasma membrane to monovalent cations. Two shorter B-fragment-derived proteins, with 3 and 10 kd N-terminal deletions, permeabilized the cells to sulfate and sucrose in addition to monovalent cations. The relationship between channel formation and toxin translocation is discussed.  相似文献   

7.
We determined the distances separating five functionally important residues (Gln(10), Lys(27), Trp(29), Arg(33), and Lys(47)) of a three-fingered snake neurotoxin from the reduced disulfide bond alpha(Cys(192)-Cys(193)) located at the alphagamma interface of the Torpedo nicotinic acetylcholine receptor. Each toxin position was substituted individually for a cysteine, which was then linked to a maleimido moiety through three different spacers, varying in length from 10 to 22 A. We estimated the coupling efficiency between the 15 toxin derivatives and the reduced cystine alpha(192-193) by gel densitometry of Coomassie Blue-stained gels. A nearly quantitative coupling was observed between alphaCys(192) and/or alphaCys(193) and all probes introduced at the tip of the first (position 10) and second (position 33) loops of Naja nigricollis alpha-neurotoxin. These data sufficed to locate the reactive thiolate in a "croissant-shaped" volume comprised between the first two loops of the toxin. The volume was further restrained by taking into account the absence or partial coupling of the other derivatives. Altogether, the data suggest that alphaCys(192) and/or alphaCys(193), at the alphagamma interface of a muscular-type acetylcholine receptor, is (are) located in a volume located between 11.5 and 15.5 A from the alpha-carbons at positions 10 and 33 of the toxin, under the tip of the toxin first loop and close to the second one.  相似文献   

8.
Role of anions in low pH-induced translocation of diphtheria toxin   总被引:1,自引:0,他引:1  
Previous work has shown that when Vero cells with surface-bound diphtheria toxin are exposed to low pH, toxin entry across the plasma membrane is induced and that this entry involves two steps, insertion of the B-fragment of the toxin into the membrane and translocation of the enzymatically active A-fragment to the cytosol. Here we have studied the role of permeant anions in this process. It was found that when the B-fragment was inserted into the membrane, part of it, a 25-kDa polypeptide, was shielded from externally added Pronase. This insertion did not require permeant anions. The translocation of the A-fragment was monitored by measuring either its ability to inhibit protein synthesis in the cells or the appearance of radioactively labeled 21-kDa fragment after treatment of the cells with externally applied Pronase. The translocation of the A-fragment was dependent on the presence of permeant anions in the medium. However, when the cells were depleted of Cl- by incubation in Cl- free buffer at high pH, translocation of the A-fragment did not require permeant anions in the medium. The possibility that translocation of the A-fragment is inhibited by an outward directed chloride gradient rather than by the absence of chloride is discussed.  相似文献   

9.
Fragment A (21,145 daltons in its longest known form) may be derived from diphtheria toxin (60,000 daltons) by mild tryptic digestion and reduction. Purified Fragment A consists of a mixture of 3 molecules of 190, 192, and 193 residues; the first 190 residues are in common and correspond to the NH2-terminal region the toxin. All three species of Fragment A are active in catalyzing ADP ribosylation of elongation factor 2, an essential component of protein synthesis. This reaction inactivates the factor and is responsible for the toxin's action in inhibiting protein synthesis in animal cells. It is believed that Fragment A or similar enzymically active fragments released into the cytosol of toxin-treated cells mediate this inhibition. The complete amino acid sequence of Fragment A has been determined from 32 chymotryptic peptides, three peptides derived by chemical cleavage of Fragment A at its 2 tryptophan residues, five cyanogen bromide peptides, and six tryptic peptides from the maleylated protein.  相似文献   

10.
The crystal structure of a highly acidic neurotoxin from the scorpion Buthus tamulus has been determined at 2.2A resolution. The amino acid sequence determination shows that the polypeptide chain has 64 amino acid residues. The pI measurement gave a value of 4.3 which is one of the lowest pI values reported so far for a scorpion toxin. As observed in other alpha-toxins, it contains four disulphide bridges, Cys12-Cys63, Cys16-Cys36, Cys22-Cys46, and Cys26-Cys48. The crystal structure reveals the presence of two crystallographically independent molecules in the asymmetric unit. The conformations of two molecules are identical with an r.m.s. value of 0.3A for their C(alpha) tracings. The overall fold of the toxin is very similar to other scorpion alpha-toxins. It is a betaalphabetabeta protein. The beta-sheet involves residues Glu2-Ile6 (strand beta1), Asp32-Trp39 (strand beta3) and Val45-Val55 (strand beta4). The single alpha-helix formed is by residues Asn19-Asp28 (alpha2). The structure shows a trans peptide bond between residues 9 and 10 in the five-membered reverse turn Asp8-Cys12. This suggests that this toxin belongs to classical alpha-toxin subfamily. The surface features of the present toxin are highly characteristic, the first (A-site) has residues, Phe18, Trp38 and Trp39 that protrude outwardly presumably to interact with its receptor. There is another novel face (N-site) of this neurotoxin that contains several negatively charged residues such as, Glu2, Asp3, Asp32, Glu49 and Asp50 which are clustered in a small region of the toxin structure. On yet another face (P-site) in a triangular arrangement, with respect to the above two faces there are several positively charged residues, Arg58, Lys62 and Arg64 that also protrude outwardly for a potentially potent interaction with other molecules. This toxin with three strong features appears to be one of the most toxic molecules reported so far. In this sense, it may be a new subclass of neurotoxins with the largest number of hot spots.  相似文献   

11.
Acidic fibroblast growth factor (aFGF) is a potent mitogen for many cells. Exogenous aFGF is able to enter the cytosol and nucleus of sensitive cells. There are indications that both activation of the receptor tyrosine kinase and translocation of aFGF to the nucleus are of importance for mitogenesis. However, the mechanism of transport of aFGF from the cell surface to the nucleus is poorly understood. In this work we demonstrate that inhibition of phosphatidylinositol (PI) 3-kinase by chemical inhibitors and by expression of a dominant negative mutant of PI 3-kinase blocks translocation of aFGF to the cytosol and nucleus. Translocation to the cytosol and nucleus was monitored by cell fractionation, by farnesylation of aFGF modified to contain a farnesylation signal, and by phosphorylation by protein kinase C of aFGF added externally to cells. If aFGF is fused to diphtheria toxin A-fragment, it can be artificially translocated from the cell surface to the cytoplasm by the diphtheria toxin pathway. Upon further incubation, the fusion protein enters the nucleus due to a nuclear localization sequence in aFGF. We demonstrate here that upon inhibition of PI 3-kinase the fusion protein remains in the cytosol. We also provide evidence that the phosphorylation status of the fusion protein does not regulate its nucleocytoplasmic distribution.  相似文献   

12.
The enzymatically active A-fragment of diphtheria toxin enters the cytosol of sensitive cells where it inhibits protein synthesis by inactivating elongation factor 2 (EF-2). We have constructed a number of diphtheria toxin mutants that are degraded by the N-end rule pathway in Vero cells, and that display a wide range of intracellular stabilities. The degradation could be inhibited by the proteasome inhibitor lactacystin, indicating that the proteasome is responsible for N-end rule-mediated degradation in mammalian cells. Previously, the N-end rule has been investigated by studying the co-translational degradation of intracellularly expressed beta-galactosidase. Our work shows that a mature protein entering the cytosol from the exterior can also be degraded by the N-end rule pathway with a similar, but not identical specificity to that previously found. We found a correlation between the intracellular stability of the mutants and their toxic effect on cells, thus demonstrating a novel manner of modulating the toxicity of a protein toxin. The data also indicate that the inactivation of EF-2 is the rate-limiting step in the intoxication process.  相似文献   

13.
Chymotrypsin-like serine proteases are found in high abundance in mast cell granules. By site-directed mutatgenesis, we have previously shown that basic amino acids in positions 143 and 192 (Arg and Lys respectively) of the human mast cell chymase are responsible for an acidic amino acid residue preference in the P2'' position of substrates. In order to study the influence of these two residues in determining the specificity of chymase inhibitors, we have synthesized five different potent inhibitors of the human chymase. The inhibitory effects of these compounds were tested against the wild-type enzyme, against two single mutants Arg143Gln and Lys192Met and against a double mutant, Arg143Gln+Lys192Met. We observed a markedly reduced activity of all five inhibitors with the double mutant, indicating that these two basic residues are involved in conferring the specificity of these inhibitors. The single mutants showed an intermediate phenotype, with the strongest effect on the inhibitor by the mutation in Lys192. The Lys192 and the double mutations also affected the rate of cleavage of angiotensin I but did not seem to affect the specificity in the cleavage of the Tyr4-Ile5 bond. A more detailed knowledge about which amino acids that confer the specificity of an enzyme can prove to be of major importance for development of highly specific inhibitors for the human chymase and other medically important enzymes.  相似文献   

14.
We have used site-directed mutagenesis to examine the role played by Arg191, Arg193, and Arg194 of the fusion toxin DAB486-IL-2 in the intoxication of high affinity interleukin-2 receptor-bearing T-lymphocytes. These arginine residues are positioned in the proteolytically sensitive 14-amino acid loop subtended by the disulfide bond between Cys187 and Cys202 in this fusion toxin. DAB486-IL-2 was formed by the genetic substitution of the native diphtheria toxin receptor binding domain with human interleukin-2 (Williams, D.P., Parker, K., Bacha, P., Bishai, W., Borowski, M., Genbauffe, F., Strom, T.B., and Murphy, J.R. (1987) Protein Eng. 1, 493-498). We demonstrate that substitution of Arg194 with Gly results in a 1000-fold loss of DAB486-IL-2 potency. Since trypsin "nicking" of the Gly194 mutant restores biologic activity, we conclude that Arg194 is required for the cellular processing of the fusion toxin which results in the release of fragment A into the cytosol.  相似文献   

15.
Liver cell-free extracts of fish (Mugil sp.) from polluted environments show new Cu, Zn-SOD isoenzymes when analyzed by polyacrylamide gel electrophoresis or isoelectrofocusing followed by in situ staining for SOD activity. The most active isoenzymes, with pI 6.1 and 5.1, were present both in control and problem samples while the isoenzymes of intermediate pI value showed significant differences. Fish from control areas showed three intermediate isoenzymes with pI 5.7, 5.5 and 5.4 (the last one quite faint) while polluted animals showed three bands of pI 5.9, 5.45 and 5.35, this last very intense. To further characterize their utility as biomarkers, Cu, Zn-SOD isoenzymes from polluted fish livers were purified to homogeneity. Five superoxide dismutase peaks were purified, named thereafter I (pI 6.1) to V (pI 5.1) respectively. Isoenzymes I and V displayed the highest specific activity. Upon incubation with moderate H2O2 concentrations, pure isoenzyme I yielded more acidic bands with pI 5.5, 5.45 and 5.35, this last being predominant. The pure isoenzyme V generated only a new band of pI 5.0. Concomitant with oxidation, the activity of peaks I and V was lost in a H2O2 concentration-dependent manner. The pattern of the new acidic bands generated upon the oxidixing treatment of isoenzyme I closely resembles that observed in crude extracts from polluted animals.  相似文献   

16.
The anticoagulant human plasma serine protease, activated protein C (APC), inhibits blood coagulation by specific inactivation of the coagulation cofactors factor Va (FVa) and factor VIIIa. Site-directed mutagenesis of residues in three surface loops of a positive exosite located on APC was used to identify residues that play a significant role in binding to FVa. Eighteen different residues were mutated to alanine singly, in pairs, or in triple mutation combinations. Mutant APC proteins were purified and characterized for their inactivation of FVa. Three APC residues were identified that provide major contributions to FVa interactions: Lys(193), Arg(229), and Arg(230). In addition, four residues made significant minor contributions to FVa interactions: Lys(191), Lys(192), Asp(214), and Glu(215). All of these residues primarily contribute to APC cleavage at Arg(506) in FVa and play a small role in the interaction of APC with the Arg(306) cleavage site. In conjunction with previously published work, these results define an extensive FVa binding site in the positive exosite of APC that is primarily involved in binding and cleaving at Arg(506) on FVa.  相似文献   

17.
Adenylate cyclase (AC) toxin from Bordetella pertussis penetrates eukaryotic cells and upon activation by calmodulin generates unregulated levels of intracellular cAMP. The process of toxin penetration into sheep erythrocytes was resolved into three consecutive steps including insertion, translocation, and intracellular cleavage. Insertion of the toxin into the cell membrane occurred over a wide temperature range (4-36 degrees C). In contrast, translocation of the toxin, i.e. transfer of the NH2-terminal catalytically active fragment across the membrane, occurred only above 20 degrees C and was highly temperature-dependent. While a single exposure of the toxin to Ca2+ was sufficient for its insertion into the plasma membrane, toxin translocation required exogenous Ca2+ at mM concentrations. Translocation was not affected by pretreatment of cells with trypsin, N-ethylmaleimide, and sodium carbonate at alkaline pH. The NH2-terminal fragment of the toxin was cleaved in the cell releasing the 45-kDa active AC into the cytosol. The cleavage was blocked by treatment of cells with N-ethylmaleimide. It is hypothesized that the COOH-terminal portion of the toxin creates in the membrane a channel through which the NH2-terminal fragment is translocated.  相似文献   

18.
When 125I-labeled nicked diphtheria toxin bound to Vero cells was exposed to pH less than 5.0, a small fraction was reduced to yield A- and B-fragments. The pH required for reduction correlates well with that required to induce intoxication, and the amount of A-fragment released was of the same order as that required to intoxicate the cells. Conditions that protect cells against intoxication, such as acidification of the cytosol, treatment with anion transport inhibitors, or treatment with anti-diphtheria toxin antibodies, prevented the reduction of the interfragment disulfide in cell-bound toxin. In vitro, thioredoxin reduced nicked diphtheria toxin only at pH 5.0 and lower, and the reduction was inhibited by anti-toxin antibodies. This indicates that a conformational change in the toxin, necessary for reduction by the thioredoxin system, is prevented by the antibodies. Reduction by glutathione and cysteine was most efficient at neutral pH and was not inhibited by anti-toxin. The results are consistent with the possibility that cell-mediated reduction of the interfragment disulfide is a measure of the entry of fragment A into the cytosol.  相似文献   

19.
Acidic glutathione S-transferases of rat testis.   总被引:1,自引:1,他引:0       下载免费PDF全文
In most organs of the rat the predominant forms of glutathione S-transferase have alkaline (greater than 7.0) pI values. In contrast, in the cytosol from rat testes almost 50% of the transferase activity is due to isoenzymes with acidic (less than 7.0) pI values. We have purified three acidic forms of glutathione S-transferase from rat testis cytosol. One form accounted for more than 90% of the enzymic activity in the acidic fraction. This major form was a homodimer of a new subunit, termed Yt. This subunit had an electrophoretic mobility that was different from the subunits that form the alkaline transferases. In addition, functional and immunological studies were consistent with the unique nature of the Yt subunit. The two minor acidic enzymes of rat testis appeared to be heterodimers of the Yt subunit and a subunit with an electrophoretic mobility identical with that of the Yb subunit present in some alkaline enzymes.  相似文献   

20.
Heterogeneity of purified staphylococcal enterotoxin A, obtained from a culture supernatant of Staphylococcus aureus, strain 13N-2909, was demonstrated by isoelectric focusing. The toxin was composed of three immunologically identical fractions with isoelectric points of 6.5, 7.0 and approximately 8.0. Heterogeneity of the toxin was also shown by disc electrophoresis. At pH 8.0 and 9.4 two major bands and a faint minor band were observed, while at pH 4.3 only one band was observed. The faster-moving band for the anode in disc electrophoresis at pH 9.4 was found to correspond with the pI 6.5 component from isoelectric focusing, while the slower-moving band corresponded with the pI 7.0 component. From the results of the electrophoretic migration tests of the toxin, the components corresponding to the two major bands found in disc electrophoresis at pH 9.4 were considered to be charge isomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号