首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
An enzyme which has been named biopterin synthase has been discovered in Drosophila melanogaster. This enzyme, which has been purified 200-fold from extracts of Drosophila, catalyzes the conversion of sepiapterin to dihydrobiopterin, or oxidized sepiapterin to biopterin. The K m values for the two substrates are 63 µm for sepiapterin and 10 µm for oxidized sepiapterin. NADPH is required in this enzymatic reaction. An analysis of enzyme activity during development in Drosophila indicates a correlation between enzyme activity and biopterin content at various development stages. Another enzyme, called dihydropterin oxidase, was also discovered and partially purified. This enzyme catalyzes the oxidation of dihydropterin compounds to the corresponding pterin compounds. For example, sepiapterin (a dihydropterin) is oxidized to oxidized sepiapterin in the presence of this enzyme. The only dihydropterin that has been tested that is not a substrate for this enzyme is dihydroneopterin triphosphate, the compound thought to be a precursor for all naturally occurring pterins and dihydropterins. Since the action of dihydropterin oxidase is reduced significantly when the concentration of oxygen is very low, it is likely that this enzyme uses molecular oxygen as the oxidizing agent during the oxidation of dihydropterins. Neither NAD+ or NADP+ is required. In the presence of the two enzymes dihydropterin oxidase and biopterin synthase, sepiapterin is converted to biopterin. However, in the presence of biopterin synthase alone, sepiapterin is converted to dihydrobiopterin.This work was supported by research grants from the National Institutes of Health (AMO3442) and the National Science Foundation (PCM75-19513 AO2).  相似文献   

2.
The first enzyme (named GTP cyclohydrolase) in the pathway for the biosynthesis of pteridines has been partially purified from extracts of late pupae and young adults of Drosophila melanogaster. This enzyme catalyzes the hydrolytic removal from GTP of carbon 8 as formate and the synthesis of 2-amino-4-hydroxy-6-(d-erythro-1,2,3-trihydroxypropyl)-7,8-dihydropteridine triphosphate (dihydroneopterin triphosphate). Some of the properties of the enzyme are as follows: it functions optimally at pH 7.8 and at 42 C; activity is unaffected by KCl and NaCl, but divalent cations (Mg2+, Mn2+, Zn2+, and Ca2+) are inhibitory; the K m for GTP is 22 m; and the molecular weight is estimated at 345,000 from gel filtration experiments. Of a number of nucleotides tested, only GDP and dGTP were used to any extent as substrate in place of GTP, and these respective compounds were used only 1.8% and 1.5% as well as GTP.This work was supported by research grants from the National Institutes of Health (AM03442) and the National Science Foundation (GB33929).  相似文献   

3.
The natural killer-like cell line YT constitutively expresses GTP-cyclohydrolase activity whereas 6-pyruvoyltetrahydropterin synthase and sepiapterin reductase are absent. The product, dihydroneopterin triphosphate, is dephosphorylated and oxidized causing neopterin to accumulate in the cells. The activities of the H4biopterin synthesizing enzymes are not controlled by IFN-gamma or the synergistic action of both IFN-gamma and IL-2 as has been shown for monocytes/macrophages (Huber C. et al. (1984) J. Exp. Med. 160, 310) and CD4+ T cells, respectively (Ziegler I. et al. (1990) J. Biol. Chem. 265, 17026). Sepiapterin reductase specifically is induced by incubation of the cells with sepiapterin, leaving GTP-cyclohydrolase, 6-pyruvoyltetrahydropterin synthase and other enzymes related to pteridine metabolism (dihydropteridine reductase, dihydrofolate reductase) unaffected. The data indicate that H4biopterin synthesis is individually regulated in the diverse cellular components of the immune system.  相似文献   

4.
A deficiency in the production of -alanine causes the black (b) phenotype of Drosophila melanogaster. This phenotype is normalized by a semi-dominant mutant gene Su(b) shown previously to be located adjacent to or within the rudimentary (r) locus. The r gene codes for three enzyme activities involved in de novo pyrimidine biosynthesis. Pyrimidines are known to give rise to -alanine. However, until recently it has been unclear whether de novo pyrimidine biosynthesis is directly coupled to -alanine synthesis during the tanning process. In this report we show that flies carrying Su(b) can exhibit an additional phenotype, resistance to toxic pyrimidine analogs (5-fluorouracil, 6-azathymine and 6-azauracil). Our interpretation of this observation is that the pyrimidine pool is elevated in the mutant flies. However, enzyme assays indicate that r enzyme activities are not increased in Su(b) flies. Genetic mapping of the Su(b) gene now places the mutation within the r gene, possibly in the carbamyl phosphate synthetase (CPSase) domain. The kinetics of CPSase activity in crude extracts has been studied in the presence of uridine triphosphate (UTP). While CPSase from wild-type flies was strongly inhibited by the end-product, UTP, CPSase from Su(b) was inhibited to a lesser extent. We propose that diminished end-product inhibition of de novo pyrimidine biosynthesis in Su(b) flies increases available pyrimidine and consequently the -alanine pool. Normalization of the black phenotype results.  相似文献   

5.
High performance liquid chromatography procedure for the analysis of pterins of biopterin synthesis from dihydroneopterin triphosphate via sepiapterin in rat tissues has been described. Sepiapterin-synthesizing enzyme 1, which catalyzes in the presence of Mg2+ the conversion of dihydroneopterin triphosphate to an intermediate designated compound X was assayed by determining pterin which is formed from compound X under acidic conditions. Sepiapterin- and biopterin-synthesizing activity were also assayed by determining sepiapterin and biopterin, respectively. Analytical results revealed the presence of these activities in most rat tissues examined and high levels were found in kidney, pineal gland and liver. Activities were also detectable in peripheral erythrocytes.  相似文献   

6.
The enzyme system for the synthesis of the pteridine pigment, sepiapterin, from 2-amino-4-hydroxy-6-(D-erythro-1',2',3'-trihydroxyprophyl) triphosphate (dihydroneopterin triphosphate) has been found in extracts of Drosophila melanogaster. NADP+ or NADPH and Mg2+ are required for this enzymatic transformation. No sepiapterin is produced when dihydroneopterin is supplied as substrate in place of dihydroneopterin triphosphate.  相似文献   

7.
Two constitutive acetoacetyl-CoA (AcAc-CoA) reductases were purified from Methylobacterium rhodesianum MB 126, an NADPH-linked d(-)--hydroxybutyryl-CoA forming reductase (enzyme A) and an NADH-and NADPH-linked l(+)--hydroxybutyryl-CoA forming reductase (enzyme B). Enzyme A and B give apparent K m values of 15 M and 30 M for AcAc-CoA, 18 M for NADPH and 30 M for NADH, respectively. They are inhibited by AcAc-CoA at concentrations higher than 25 M and 50 M, respectively. The contribution of the two reductases to poly--hydroxybutyrate synthesis is discussed.  相似文献   

8.
Summary The regulation of the expression of indoleamine 2,3-dioxygenase (IDO) was studied in cloned murine macrophages (MT2) and microglial (N11) cells. Both cell lines express IDO and inducible nitric oxide synthase activity after interferon- (IFN-) stimulation. The regulation of IDO expression appears to differ in the two cell lines. Nitric oxide (NO) production negatively modulates the expression of IDO activity in IFN--primed macrophages, thereby indicating a cross-talk between the kynurenine and nitridergic pathways in these cells. Conversely, this down-regulation of IDO activity by NO does not occour in microglial cells. A differential regulation of IDO expression in the two cell lines was also observed with LPS and picolinic acid. Together with previous findings, these results indicate the existence of marked differences in the regulation of the expression of the kynurenine pathway enzymes between macrophages and microglial cells.Abbreviation used IFN- interferon- - IDO indoleamine 2,3-dioxygenase - NO nitric oxide - iNOS inducible nitric oxide synthase - NAME N-())-nitro-L-arginine methyl ester - SMTC S-methyl-L-thiocitrulline - BNI 3-bromo-7-nitroindazole - PIC picolinic acid - IL interleukin  相似文献   

9.
Aspartate transaminase (AST) activity in the camel tick Hyalomma dromedarii was followed throughout embryogenesis. During purification of AST to homogeneity, ion exchange chromatography lead to four separate forms (termed I, II, III and IV). AST II with the highest specific activity was pure after chromatography on Sephacryl S-300. The molecular mass of AST II was 52KDa for the native enzyme, composed of one subunit of 50KDa. AST II had a Km value of 0.67mM for -ketoglutarate and 15.1mM for aspartate. AST II had a pH optimum of 7.5 with heat stability up to 50°C for 15min. The enzyme was activated by MnCl2, and inhibited by CaCl2, MgCl2, NiCl2, and ZnCl2.  相似文献   

10.
Mobilization of the endosperm cell-wall reserves of Lactuca sativa L. cv. Grand Rapids requires endo--mannanase and -galactosidase activity. A third enzyme, -mannoside mannohydrolase (EC 3.2.1.25) is also involved. We have determined the optimum extraction and assay conditions for this enzyme, which is soluble only in high-salt (1 M NaCl) buffer. It is located exclusively within the cotyledons, in association with a cellulosic cell-wall fraction. Its substrates are the products of endosperm cell-wall mobilization, mannobiose and mannotriose, which diffuse to the cotyledons and are hydrolyzed extracellularly by the -mannoside mannohydrolase.Abbreviation PNPM p-nitrophenyl--mannopyranoside We dedicate this paper to the memory of our friend and colleague Dr. Jacob D. Duerksen  相似文献   

11.
Bacillus circulans AB 16 was able to produce 50 IU/ml of xylanase, with negligible cellulase activity when grown on untreated wheat straw. The pH optimum of the crude enzyme was 6–7 with a temperature optimum of 80 C. The enzyme showed high pH and thermal stability retaining 100% activity at 60 C, pH 8 and 9 after 2.5 h of incubation. The residual activity at 70 C after 2.5 h was 62% and 45% at pH 8 and 9, respectively. At 75 C only 22.2% activity remained at pH 8 after 1 h incubation. Since Kraft pulp is alkaline this enzyme could be used for prebleaching of pulp at temperatures up to 70 C without pH adjustment.  相似文献   

12.
Summary Candida wickerhamii growing on cellobiose produced -glucosidase with high activity against -nitrophenyl glucoside (PNPG) but low activity against cellobiose. -glucosidase production was constitutive, and was repressed by -glucosides and glucose. -glucosides containing an aromatic moiety in the aglycon were the best substrates for -glucosidase indicating that the enzyme is an aryl--glucosidase. A -glucosidase from C. wickerhamii cells was purified by (NH4)2SO4 precipitation, dialysis, ion-exchange chromatography and gel filtration. The purified enzyme was homogeneous as shown by sodium-dodecyl-sulphate polyacrylamide gel electrophoresis and discontinuous gel electrophoresis. The purified enzyme hydrolysed PNPG but not cellobiose. The Km of the enzyme was 0.185 mM. Glucose inhibited the enzyme competitively and the Ki was 7.5 mM. The apparent molecular mass was 97,000. The optimum pH and temperature for enzyme activity were between pH 7 and 7.4 and 40°C respectively. At temperatures of 45°C and greater the enzyme was inactivated. The activation energy of the enzyme was 29.4 kJ · mol-1.  相似文献   

13.
Water-stressed maize (Zea mays L.) leaves showed a large decrease in leaf conductance during photosynthesis. Net CO2 uptake and evaporation declined fast at mild stress (=–0.6 to –1.0 MPa) and slower at more severe stress (=–1.0 to -1.2 MPa), whereas the CO2 concentration in the intercellular spaces (Ci) did not drop to the CO2 compensation point. The activities of the enzymes of photosynthetic carbon metabolism tested in this study dropped by approx. 30% at =-1.2 MPa. Glutamine synthetase activity was unaffected by water stress, whereas the activity of nitrate reductase was almost completely inhibited. The decline of enzyme activities in relation to was correlated with a concomitant decrease in the content of total soluble protein of the stressed leaves. The total leaf pools of malate, pyruvate and oxaloacetate decreased almost linearly in relation to , thus obviously contradicting the almost constant Ci. In comparison to the controls (=0.6 MPa) the content of citrate and isocitrate increaed markedly at =-0.9 MPa and decreased again at =-1.2 MPa.Abbreviations PCR photosynthetic carbon reduction cycle - PCO photosynthetic carbon oxidation cycle - PEP phosphoenolypyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

14.
By application of immunocytochemical techniques at the electron microscope level, glucoamylase was localized to the cell periphery in Clostridium thermosaccharolyticum during and following growth on starch, sucrose or glucose. Levels of immunolabelling were found to be relatively independent of growth substrate and of phase of growth, whereas previous studies had demonstrated strong dependence of glucoamylase activity on growth conditions; previously high levels of glucoamylase activity had been detected after growth on starch (i.e. during the stationary phase after growth) and only very low activities detected during exponential growth and following growth on glucose. The results presented demonstrate that levels of the glucoamylase protein are independent of measurable enzyme activity, and imply that the protein is constitutive. This indicates that the protein can exist in active and inactive states in the cell. By analogy with similar systems, we consider it likely that maturation or activation of newly synthesized glucoamylase occurs during (or following) transport through the cytoplasmic membrane. Electron microscopy of individual protein molecules which had been subjected to negative staining revealed that the enzyme consists of two domains of approximately equal size which are linked by a hinge region.  相似文献   

15.
The enzyme activity synthesizing poly--hydroxybutyrate (PHB) was mainly localized in the PHB-containing particulate fraction ofZoogloea ramigera I-16-M, when it grew flocculatedly in a medium supplemented with glucose. On the other hand, the enzyme activity remained in the soluble fraction, when the bacterium grew dispersedly in a glucose-starved medium.The soluble PHB synthase activity became associated with the particulate fraction as PHB synthesis was initiated on the addition of glucose to the dispersed culture. Conversely, the enzyme activity was released from the PHB-containing granules to the soluble fraction when the flocculated culture was kept incubated without supplementing the medium with glucose.PHB synthase was also incorporated into the newly formed PHB fraction when partially purified soluble PHB synthase was incubated withd(-)--hydroxybutyryl CoA in vitro.Although attempts to solubilize the particulate enzyme were unsuccessful, and the soluble enzyme became extremely unstable in advanced stages of purification, both PHB synthases had the same strict substrate specificity ford(-)--hydroxybutyryl CoA, and showed the same pH optimum at 7.0.Non-Standard Abbreviations PHB poly--hydroxybutyrate  相似文献   

16.
9 partially purified enzyme (Enzyme A) from Drosophila melanogaster Aatalyzes the conversion of 7,8- dihydroneopterin triphosphate to a compound that, from its ultraviolet absorption spectrum and other characteristics, appears to be 6- pyruvoyl -tetrahydropterin. This product can be converted to 6-lactoyl-tetrahydropterin in the presence of another partially purified enzyme (Enzyme B) and NADPH, and to 5,6,7,8-tetrahydrobiopterin in the presence of a third enzyme preparation (biopterin synthase) and NADPH. The enzymically-produced 6-lactoyl-tetrahydropterin, when exposed to air, is oxidized nonenzymically to sepiapterin (6-lactoyl-7,8- dihydropterin ). The results indicate that although 6-lactoyl-tetrahydropterin can be converted enzymically to tetrahydrobiopterin, neither it nor sepiapterin is an obligate intermediate in the conversion of 7,8- dihydroneopterin triphosphate to tetrahydrobiopterin.  相似文献   

17.
An intracellular glycogen was purified and characterized from the acetoclastic bacteria Methanothrix str. FE, its average chain length was about 13 glucose residues. Acetyl-CoA was shown to be synthesized by the action of acetate thiokinase; in addition pyruvate synthase, phosphoenolpyruvate synthetase and enzymes of gluconeogenesis were detected in cell extracts. For glycogen synthase activity, both adenosine diphosphate glucose and uridine diphosphate glucose were used as glycosyl donors, apparent K m were, respectively, 8 M for ADPGlc and 625 M for UDPGLe, at the opposite the V m were the same for both precursors. This was in accordance with competition experiments and strongly suggested that only one glucosyl transferase was involved and that ADPGlc was the physiological glycosyl donor in Methanothrix str. FE. In addition branching enzyme activity (1-4-glucan-6-glucosyl transferase) was detected in cell extracts.Abbreviations ADPGlc adenosine diphosphate glucose - UDPGlc uridine diphosphate glucose  相似文献   

18.
We have studied the inactivation of membrane-bound and solubilized UDP-glucose:ceramide glucosyltransferase from Golgi membranes by various types of sulfhydryl reagents. The strong inhibition of the membrane-bound form by the non-penetrant mercurial-type reagents clearly corroborated the fact that in sealed and right-side-out Golgi vesicles the ceramide glucosyltransferase is located on the cytoplasmic face. No significant differences in the susceptibility to the various sulfhydryl reagents were noted when solubilized enzyme was assayed, showing that solubilization does not reveal other critical SH groups. The different results obtained must be interpreted with regard to several thiol groups, essential for enzyme activity. No protection by the substrate UDP-glucose against mercurial-type reagents was obtained indicating that these thiol groups were not located in the nucleotide sugar binding domain. A more thorough investigation of the thiol inactivation mechanism was undertaken with NEM (N-ethylmaleimide), an irreversible reagent. The time dependent inactivation followed first order kinetics and provided evidence for the binding of 1 mol NEM per mol of enzyme. UDP-Glucose protected partially against NEM inactivation, indicating that the thiol groups may be situated in or near the substrate binding domain. Inactivation experiments with disulfide reagents showed that increased hydrophobicity led to more internal essential SH groups which are not obviously protected by the substrate UDP-glucose, thus not implicated in the substrate binding domain, but rather related to conformational changes of the enzyme during the catalytic process.Abbreviations Chaps 3-[(3-cholamidopropyl)dimethylammonio] 1-propanesulfonate - Mops 4-morpholinepropanesulfonic acid - PC phosphatidylcholine - NEM N-ethylmaleimide - CPDS carboxypyridine disulfide (dithio-6,6-dinicotinic acid) - DTNB 5,5-dithiobis-(2-nitrobenzoic acid) - DTP dithiodipyridine - p-HMB para-hydroxymercuribenzoate - DTT dithiothreitol - BAL British anti-Lewisite (dimercaptopropanol) - Zw 3–14 Zwittergent 3–14  相似文献   

19.
Malate synthase, one of the key enzymes in the glyoxylate cycle, was purified from peroxisomes of alkane-grown yeast, Candida tropicalis. The enzyme was mainly localized in the matrix of peroxisomes, judging from subcellular fractionation followed by exposure of the organelles to hypotonic conditions. The molecular mass of this peroxisomal malate synthase was determined to be 250,000 daltons by gel filtration on a Sepharose 6B column as well as by ultracentrifugation. On sodium dodecylsulfate/polyacrylamide slab-gel electrophoresis, the molecular mass of the subunit of the enzyme was demonstrated to be 61,000 daltons. These results revealed that the native form of this enzyme was homo-tetrameric. Peroxisomal malate synthase showed the optimal activity pH at 8.0 and absolutely required Mg2+ for enzymatic activity. The K m values for Mg2+, acetyl-CoA and glyoxylate were 4.7 mM, 80 M and 1.0 mM, respectively.  相似文献   

20.
Summary Membranes from etiolated maize seedlings were isolated using sucrose gradients for in vitro studies of polysaccharide synthesis. Following downward centrifugation, flotation centrifugation improved the purity of membrane fractions, in particular the Golgi apparatus. Based on naphthylphthalamic acid binding to plasma membrane and inosine-5-diphosphatase activity in Golgi apparatus, flotation centrifugation removed about 70% of the plasma membrane which cosedimented with the Golgi apparatus in downward centrifugation. The addition of chelators during flotation centrifugation allowed separation of the Golgi apparatus from endoplasmic reticulum, as indicated by NADH cytochromec reductase activity. Glucan and xylan synthase activities were measured as the radioactivity incorporated from either UDP-14C-glucose or UDP-14C-xylose into 80% ethanol insoluble materials. Glucan synthase activity at a substrate concentration of 1 mM UDP-glucose without CaCl2 was greatest in fractions enriched in Golgi apparatus, but in the presence of 3 mM CaCl2 the activity was greatest in fractions enriched in plasma membrane. Glucan synthase activity at a substrate concentration of 10M UDP-glucose in the presence of 3 mM MnCl2 was greatest in fractions enriched in plasma membrane, but was also high in fractions enriched in Golgi apparatus. Xylan synthase activity, at a substrate concentration of 1 M UDP-xylose in the presence of 3 mM MnCl2, was greatest in fractions enriched in Golgi apparatus. To further characterize these synthase reactions, the glycosyl linkages of the products formed were analyzed with a gas chromatograph coupled to a radiogas proportional counter. With the substrate, UDP-14C-glucose, and fractions enriched in Golgi apparatus, both (13)- and (14)-radioactive glucosyl linkages were formed, whereas the main linkage formed by fractions enriched in plasma membrane was (13)-glucosyl. With the substrate, UDP-14C-xylose, mostly (14)-xylosyl and some terminal-xylosyl linkages were formed by fractions enriched in Golgi apparatus. Only xylan synthase activity copurified with Golgi apparatus and, because plasma membrane lacked this activity, xylan synthase may be used as a reasonable indicator of Golgi apparatus.Abbreviations ATP adenosine-5-triphosphate - CR crude fraction from downward centrifugation - FL purified fraction from flotation centrifugation - GC gas chromatography - GC-RPC gas chromatography-radiogas proportional counting - IDP inosine-5-disphosphate - NPA naphthylphthalamic acid - UDP uridine-5-diphosphate - TEM transmission electron microscopy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号