首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary When sensitized with human cultured fibroblasts of the XY and XO, but not XX, sex chromosomal types C57BL/6 female mice reject syngeneic male grafts accelerated (second set graft reaction). These findings demonstrate that the antigenic determinants of H-Y antigen of man and mouse are homologous and that XO females (at least those tested) carry the H-Y transplantation antigen. The results are discussed in the light of the question of differences between the H-Y antigen as defined by grafting and serology and the chromosomal localization of the H-Y structural gene(s).  相似文献   

2.
Summary H-Y antigen was investigated in 18 specimens representing six different sex chromosome constitutions of the wood lemming (Myopus schisticolor). The control range of H-Y antigen was defined by the sex difference between normal XX females (H-Y negativeper definitionem) and normal XY males (H-Y positive, full titer). H-Y antigen titers of the X*Y and X*0 females were in the male control range, while in the X*X and X0 females the titers were intermediary. Data were obtained with two different H-Y antigen assays: the Raji cell cytotoxicity test and the peroxidase-antiperoxidase (PAP) method. Fibroblasts, gonadal cells, and spleen cells were checked. Presence of full titers of H-Y antigen in the absence of testis differentiation is readily explained by the assumption of a deficiency of the gonadspecific receptor of H-Y antigen. Since sex reversal is inherited as an X-linked trait, genes for this receptor are most likely X-linked. The implications of our findings are discussed in connection with earlier findings concerning H-Y antigen in XY gonadal dysgenesis in man and the X0 situation in man and mouse.  相似文献   

3.
During investigation of the frequency of recombination of the testis determining gene, Tdy, and the minor histocompatibility antigen gene Hya on the Sxr segment in an outbred mouse stock, we identified two fertile males, one XY and the other XYSxr, which typed H-2k positive using the H-2b anti-H-2k monoclonal antibody HB50, but whose cells failed either to stimulate H-Y specific H-2k restricted T-cell clones, or to be killed by anti-H-2k or anti-H-2k restricted H-Y specific cytotoxic T cells. We investigated these two mice and their existing relatives, using H-2 and H-Y typing methods. The progeny of their test matings with H-2b homozygous C57BL/6 females were also investigated. The results indicate that the transmission of the Hya gene on the Y chromosomes from both mice, and the additional Hya gene on the Sxr segment of the carrier male, allowed for the expression of the H-Y antigen and its detection in the presence of an H-2 haplotype for which we had H-2 restricted H-Y specific typing cells (H-2b and H-2k). Furthermore, we identified the haplotype of the two original males as expressed in the H-2 homozygous and heterozygous F2 progeny as H-2q and discovered an unexpected cross reactivity of the monoclonal anti KkDk antibody HB13 with half the cells of H-2q homozygotes, but not qb heterozygotes.  相似文献   

4.
The present study examines an antiserum prepared against antigen-reactive T cells that induces murine H-Y-specific delayed-type hypersensitivity (DTH) responses. This anti-H-Y receptor antibody (ARA) was raised in C57BL/6 male mice against splenic T lymphocytes from H-Y immune syngeneic females. Subcutaneous administration of ARA to cyclophosphamide-pretreated C57BL/6 females is able to induce H-Y-specific delayed-type footpad swelling responses. The DTH inducing capacity in ARA was selectively retained on rabbit anti-mouse immunoglobulin columns and was absorbed completely by H-Y immune lymphoid cells from C57BL/6 females. The induction of H-Y DTH reactivity was due at least in part to the activation of H-Y antigen-specific T lymphocytes that could adoptively transfer DTH-like responses to naive female mice. ARA induces DTH responses in strains with the same lgh regions, including selected strains of H-Y nonresponders. Therefore, MHC-linked lr genes do not appear to be as critical when responses are triggered by ARA instead of by antigen. Possible mechanisms for the induction of immune responses by ARA are discussed.  相似文献   

5.
Summary Presence of H-Y antigen has been correlated with testicular differentiation, and absence of H-Y with failure of testicular differentiation, in a variety of mammalian species. To determine more precisely the relationship between expression of H-Y antigen and development of the testis, we studied the cells of phenotypic females with the 46,XY male karyotype. Blood leukocytes were typed H-Y+ in five XY females with gonadal dysgenesis, although in other studies blood leukocytes from XY females with gonadal dysgenesis were typed H-Y-. Thus mere presence of H-Y antigen is not sufficient to guarantee normal differentiation of the testis. In the present paper we review evidence for an additional factor in gonadal organogenesis, the H-Y antigen receptor. We infer that testicular development requires engagement of H-Y and its receptor. It follows that XY gonadal dysgenesis is the consequence of functional absence of the H-Y testis inducer as in the following conditions: failure of synthesis of H-Y or failure of specific binding of H-Y.  相似文献   

6.
H-Y antigen(s) coded or controlled by the Y chromosome in a variety of wild mouse strains have been compared with those of the inbred laboratory strains C57BL/6 (B6) and C57BL/10 (B10). H-Y antigen(s) were detected by H-2-restricted cytotoxic T cells from B6 and B10 female mice primed in vivo and boosted in vitro with syngeneic male spleen cells: There was no difference in the degree of H-Y specific lysis of male cells from the C57BL strains and of F1 hybrids or B6 congenic mice carrying the Y chromosome from the wild mouse strains examined. This result indicated that at the level of target cell specificity the H-Y antigen(s) from wild and laboratory strains were indistinguishable. H-Y antigen(s) were also found to be indistinguishable at the level of the in vitro induction of the anti H-Y cytotoxic response: F1 female mice, primed in vivo and boosted in vitro with homologous F1 male cells, all made H-Y-specific responses and where it could be examined, the target cell specificity of the anti-H-Y cytotoxic cells showed that B10 male cells as well as the homologous F1 male cells (where the Y chromosome was derived from the wild strain) were good targets. Finally, possible differences in H-Y transplantation antigens between the wild strains and the B10 laboratory strain were examined by grafting F1 male mice, the progeny of B10 females, and wild strain males with B10 male skin. These grafts were not rejected during an observation period of more than 9 months. Taken together, neither the cytotoxic data nor the skin graft data provide any evidence for allelism of H-Y even though the mouse strains examined were collected from widely disparate geographical locations.  相似文献   

7.
Production of H-Y Antibody by Female Mice that Fail to Reject Male Skin   总被引:4,自引:0,他引:4  
WHEN inbred mice are grafted with skin from inbred donors that differ from the recipients only by a single minor histocompatibility antigen, it is commonly observed that some recipients will retain their skin grafts while others will reject them. This is true of incompatibility for H-Y antigen, which is responsible for the rejection of male grafts by otherwise histocompatible inbred females of the same inbred strain1. Thus in the DBA/2 (DBA) strain, male-to-female skin grafts are rejected by only some recipients; in the C57BL (B6) strain, females always reject male skin; and C3H/An (C3H) females usually accept male skin grafts indefinitely.  相似文献   

8.
Sex determination in the mammalian embryo begins with the activation of a gene on the Y chromosome which triggers a cascade of events that lead to male development. The mechanism by which this gene, designated SRY in humans and Sry in mice (sex determining region of the Y chromosome), is activated remains unknown. Likewise, the downstream target genes for Sry remain unidentified at present. C57BL mice carrying a Y chromosome from Mus musculus musculus or molossinus develop normally as males. In contrast, C57BL/6 mice with the Y chromosome from M. m. domesticus often show sex reversal, i.e., develop as XY females. It has been documented that C57BL mice with the Y chromosome from Poschiavinus (YPOS), a domesticus subtype, always develop as females or hermaphrodites. This suggests that a C57BL gene either up- or downstream of Sry is ineffective in interacting with Sry, which then compromises the processes that lead to normal male sex development. Nonetheless, by selective breeding, we have been able to generate a sex reversal-resistant C57BL/6-congenic strain of mice in which the XYPOS individuals consistently develop as normal males with bilateral testes. Because the resistance to sex reversal was transferred from strain 129S1/Sv (nonalbino) by simple selection over 13 backcross generations, it is inferred that a single autosomal gene or chromosomal region confers resistance to the sex reversal that would otherwise result. XYPOS normal males generated in these crosses were compared to XYPOS abnormal individuals and to C57BL/6 controls for sexual phenotype, gonadal weight, serum testosterone, and major urinary protein (MUP) level. A clear correlation was found among phenotypic sex, MUP level, and testis weight in the males and in the incompletely masculinized XYPOS mice. The fully masculinized males of the congenic strain resemble C57BL/6 males in the tested parameters. DNA analysis confirmed that these males, in fact, carry the YPOS Sry gene.  相似文献   

9.
A Onishi  H Mikami 《Jikken dobutsu》1985,34(4):433-437
The reproductive performance of male aggregation chimeric mice was examined. C57BL/6 in equilibrium BALB/c male chimeras and control animals, C57BL/6, BALB/c, and their reciprocal F1 crosses, were mated with ICR females. Of 45 overt chimeras, 13 produced mixed-genotype progenies and were revealed to be XY/XY chimeras. By karyotype analysis 16 of 32 single-genotype progeny chimeras were determined to be XX/XY chimeras, but the remaining single-genotype progeny chimeras showed only XY metaphase plates, so that their chromosomal sex could not be determined. The mean litter size of C57BL/6 was significantly higher than that of BALB/c. In contrast, the birth rate of C57BL/6 was lower than that of BALB/c. XY/XY chimeras showed almost the same performance as C57BL/6 for litter size and as BALB/c for birth rate. There were no significant differences for both traits between the reciprocal F1 crosses and XY/XY chimeras. The mean litter size of XX/XY chimeras was lower than that of XY/XY chimeras and the differences was statistically significant. Some XX/XY chimeras had very small testes, while XY/XY chimeras had normal testes. Such results indicate that the reproductive performance of XX/XY male chimeras is inferior to that of XY/XY males.  相似文献   

10.
Immunological means were used to determine the sex of mouse embryos prior to transfer to pseudopregnant recipients. Antisera to histocompatibility-Y (H-Y) antigen were prepared in adult C57BL/6 female mice by repeated intraperitoneal injections of spleen cells from males of the same strain. Eight-to 16-cell embryos were cultured in BMOC-3 alone or BMOC-3 without bovine serum albumin to which one of the following had been added: H-Y antiserum and normal guinea pig serum (NGPS), NGPS alone, normal mouse serum alone or normal mouse serum and NGPS. After 24 hr of culture, embryos were classified as either affected or unaffected. An embryo was classified as affected if degeneration of the embryo or breakdown of one or more cells was observed. A total of 1000 embryos were cultured in BMOC-3 with H-Y antiserum and NGPS (treated embryos). Two hundred and fifty embryos were cultured in each of the other four media (control embryos). Eighty-seven (9%) of the control embryos and 479 (48%) of the treated embryos were classified as affected after culture. Unaffected embryos, approximately 12 each, were transferred to pseudopregnant recipients. One-hundred forty control embryos (17%) survived to term with 67 females (48%) and 73 males (52%) born. Fifty-eight treated embryos (14%) survived to term, producing 50 females (86%) and 8 males (14%). Percentage of females from embryos cultured in antiserum was greater than for embryos cultured in any other media (P<0.001). These results demonstrate that detection of H-Y antigen on preimplantation embryos may be a useful and effective method of determining sex of an embryo prior to transfer.  相似文献   

11.
This study describes the induction of allograft tolerance to the "male-specific," minor histocompatibility antigen, H-Y, in adult C57BL/6 female mice, and the effects of this tolerance induction on two immune parameters associated with graft rejection: delayed-type hypersensitivity (DTH) and cytolytic T-lymphocytes (CTL). B6 females tolerized to H-Y, by a single iv injection of C57BL/6 male lymphocytes, exhibited prolonged or permanent survival of B6 male tail skin grafts. Graft-induced DTH against H-Y antigen was reduced or abrogated in tolerized females. Delayed onset of graft rejection in partially tolerant females correlated with delayed onset of DTH, and eventual rejection of grafts was accompanied by an increase in H-Y-specific DTH. In contrast, H-Y-specific CTL activity was not consistent with graft status. These data demonstrate a correlation between H-Y-specific DTH and rejection of male skin grafts by B6 female mice and are most consistent with a major effector role for DTH in chronic graft rejection.  相似文献   

12.
Structural changes in the regional popliteal lymph nodes have been studied in C57Bl/6 male mice at the peak of the reaction "graft-versus-host" to H-Y antigen. Morphological and morphometrical investigations have been carried out in three groups of males (10 animals in each group). The first group includes intact animals (the first control group). To the males of the second group (the second control group) lymphoid cells are inoculated from intact C57Bl/6 females. To the males of the third group (experimental group) lymphoid cells are inoculated from H-Y antigen immunized C57Bl/6 females (anti-H-Y effector lymphocytes). The popliteal lymph nodes of the male mice from the third group twice increase in their size comparing to those in the control (the first and the second groups). Miotic activity increases in them 4.5 times, amount of cellular blast forms in medullary cords--4 times and 10 times--in the light zone of the cortical substance. Ratio of macrophages and eosinophils in structural components of the lymph nodes studied changes; this is, evidently, connected with massive destructive progresses, that take place in the lymph nodes of the animals from the third group. The results of the morphological investigations are in agreement with the hypothesis suggested, explaining the mechanism of development of the regional reaction "graft-versus-host" to H-Y antigen, basing on idiotype-antiidiotype interaction (the idiotypic network in the immune system).  相似文献   

13.
Summary On the basis of widespread phylogenetic conservatism, it has been propose'd that serologically-defined H-Y antigen is the inducer of primary sex differentiation in mammals, causing the initially indifferent gonad to become a testis rather than an ovary. The proposal has withstood extensive testing in a variety of biological circumstances: XX males have testes and are H-Y+ and fertile XY females lack testicular tissue and are H-Y; soluble H-Y antigen induces testicular organogenesis in XX indifferent gonads of the fetal calf in culture; H-Y antibody blocks tubular reaggregation of dispersed XY testicular cells, causing them to organize follicular clusters.There is a gonadal receptor for H-Y antigen: fetal ovarian cells that have been exposed to soluble H-Y (released for example by testicular Sertoli cells) take up the molecule and acquire the H-Y+ phenotype; they absorb H-Y antibody in serological tests. Specific uptake of soluble H-Y does not occur in the extra-gonadal tissues.It may be inferred that H-Y antigen is disseminated during embryogenesis and bound by specific receptors in cells of the primordial gonad, and that reaction of H-Y and its receptor signals a program of testicular differentiation, regardless of karyotype. The several anomalies of primary sexual differentiation manifest in such conditions as the XX male, the XX true hermaphrodite, and the XY female can thus reasonably be viewed as specific errors of synthesis, dissemination, and binding of H-Y antigen.H-Y is secreted by Daudi cells, cultured from a human XY Burkitt lymphoma. The Daudi-secreted moiety is a single hydrophobic protein of 18,000 molecular weight. Early attempts to characterize H-Y secreted by testicular Sertoli cells have yielded two molecules, one of 16,500 MW (corresponding to the Daudi-secreted 18,000 MW protein), and one of 31,000 MW. It remains to be ascertained whether both are in fact H-Y antigens, and if so, whether one is a polymer of the other, or whether each represents the product of genes with discrete testis-determining functions.  相似文献   

14.
Summary The wood lemming, Myopus schisticolor, possesses a unique sex determining system comprising both XX and XY females. Normal female development in the presence of XY is guaranteed by a mutation on the X, apparently associated with a structural rearrangement in Xp. This mutation inactivates the testis-inducing and male-determining factor on the Y and distinguishes X* from X, and X*Y females from XY males. Normal fertility of X*Y females is ensured by a mitotic (double) nondisjunction mechanism which, at an early fetal stage, eliminates the Y from the germ line and replaces it by a copy of the X*.Numerical sex chromosome aberrations are not infrequent and the trisomics XXY and X*XY are relatively common. XXY individuals are sterile males with severe suppression of spermatogenesis. Among X*XY animals, both males and females, as well as a true lateral hermaphrodite have been observed. Primary deficiency of germ cells, impairment of spermatogenesis and sterility are characteristic traits of the X*XY males, whereas X*XY females have normal oogenesis and are fertile. Both these extremes (except female fertility) coexist in the true hermaphrodite described in the present study. These apparently contradictory observations are explainable under the assumption that X* and X in X*XY individuals are inactivated non-randomly or that the cells are distributed unequally. Inactivation of the X or X* determines whether or not the H-Y antigen will be expressed. When comparing conditions in Myopus and in man, an additional assumption has to be made in relation to the gene(s) involved in sex determination, located in Xp:In Myopus they do not escape inactivation, whereas in man they have been claimed to remain active.  相似文献   

15.
H-Y antigen has been used as a marker for the heterogametic sex and is assumed to be an organizing factor for the heterogametic gonad. In the turtle Emys orbicularis , H-Y antigen is restricted to the female cells, indicating a female heterogamety (ZZ/ZW) sex-determining mechanism. Moreover, the sexual differentiation of the gonads is temperature sensitive, and complete sex reversal can be obtained at will. In this framework the relationships between H-Y antigen, temperature, and gonadal phenotype were studied. Mouse H-Y antiserum was absorbed with blood and gonadal cells of control wild male and female adults, and with blood and gonadal cells from three lots of young turtles from eggs incubated at 25–26°C (100% phenotypic males), at 30–30.5°C (100% phenotypic females), or at 28.5–29°C (majority of females with some males and intersexes). The residual activity of H-Y antiserum was then estimated using an immunobacterial rosette technique. In adults, both blood cells and gonadal cells were typed as H-Y negative in males and as H-Y positive in females. In each of the three lots of young, blood cells were H-Y negative in some individuals and H-Y positive in others. The proposed interpretation is that the H-Y negative individuals were genotypic males (ZZ) and the H-Y positive were genotypic females (ZW). The gonads of these animals were then pooled in different sets according to their sexual phenotype and to the presumed genotypic sex (i.e., blood H-Y phenotype). Testicular cells were typed as H-Y negative in genotypic males as well as in the presumed sex-reversed genotypic females; likewise, ovarian cells were typed as H-Y positive in genotypic females as well as in the presumed sex-reversed genotypic males. These results provide additional evidence that H-Y antigen expression is closely associated with ovarian structure in vertebrates displaying a ZZ/ZW sex-determining mechanism.  相似文献   

16.
Summary Nine XX true hermaphrodites and two XX males were discovered in a family of American cocker spaniels. The true hermaphrodites were partially-masculinized females with ovotestes; the XX males had malformed male external genitalia and cryptorchid aspermatogenic testes. Wolffian and Mullerian duct derivatives were present in both true hermaphrodites and XX males. All four sires of sex-reversed dogs were normal XY males; five of the dams were anatomically normal females and one was an XX true hermaphrodite. A second true hermaphrodite reproduced as a female, producing anatomically normal offspring.All matings that produced sex-reversed offspring were consanguineous. Matings of the parents of sex-reversed cocker spaniels to normal beagles with no family history of intersexuality produced only normal offspring. Examination of G-banded karyotypes of the affected animals, their parents, and siblings, revealed no structural anomalies of the chromosomes that were consistently associated with sex-reversal.In assays for serologically-detectable H-Y antigen, the group of XX true hermaphrodites and the group of XX males had mean levels of the antigen not significantly different from that in normal male controls. Female parents of sex-reversed dogs and some of their female siblings were typed H-Y antigen positive, but the mean level of the antigen in this group was less than that of normal male controls.It is proposed that XX sex reversal in cocker spaniels is due to a mutant gene which when homozygous in females, results in a level of H-Y antigen similar to that found in normal males and the gonads develop as ovotestes or testes. When the gene is heterozygous in females, the level of serologically-detectable H-Y antigen is lowr than that found in normal males and the gonads develop as normal ovaries. The persistence of Mullerian structures in the presence of testicular tissue suggests that Mullerian inhibiting substance is deficient or ineffective in its action in this condition.Supported by NIH Postdoctoral Fellowship IF32 HL05515, University of Pennsylvania Genetics Center Grant, No. GM 20138, and NIH grants AI-19456, HD 17049, and HD 14357; and a grant from the Mrs. Cheever Porter Foundation.  相似文献   

17.
It has been proposed, on the basis of widespread phylogenetic conservation, that H-Y antigen is the inducer of primary sex, causing the undifferentiated XY gonad to become a testis in male heterogametic species such as the human and bovine. That proposition has withstood extensive testing in vivo and in vitro. Freemartin gonads are H-Y+, for example, and masculinization of the freemartin gonad has been attributed to soluble H-Y, borne and transmitted in the serum of the bull twin, and bound in ovarian receptors of the female. We have applied monoclonal H-Y antibodies to the identification of gender in embryos of the bovine. Our preliminary results imply presence of H-Y in bovine embryos of the morula and blastocyst stages recovered at about 6–12 days of gestation. Assignment of H-Y phenotype -- positive in males and negative in females -- allows selective implantation of male and female during embryo transfer. Thus in an early study, we correctly identified gender in 6 of 7 calves born healthy at term, after transfer of 8 blastocysts.  相似文献   

18.
Inheritance of T-associated sex reversal in mice   总被引:2,自引:0,他引:2  
We previously identified a primary sex-determining locus, Tas, on mouse Chr 17 that causes ovarian tissue development in C57BL/6J Thp/+ and TOrl/+ individuals if the AKR/JY chromosome is present. We hypothesized that Tas is located within the region of Chr 17 deleted by Thp and TOrl and that C57BL/6J carries a diagnostic Tas allele, based on the observation that ovarian tissue develops in XY mice when Thp is on a C57BL/6J inbred strain background, whereas normal testicular development occurs when Thp is on a C3H/HeSnJ inbred strain background. To test this hypothesis, we mated (C57BL/6J x C3H/HeSnJ)F1 females to C57BL/6J Thp/+ hermaphrodites. As expected, half of the XY Thp/+ offspring developed ovarian and testicular tissue while half developed exclusively testicular tissue. Unexpectedly, the inheritance of selected Chr 17 molecular loci was independent of gonadal development, as half of the male and hermaphroditic offspring inherited C3H/HeSnJ-derived Chr 17 loci and half inherited C57BL/6J-derived Chr 17 loci. We conclude that for ovarian tissue to develop in an XY Thp/+ or XY TOrl/+ individual (1) Tas must be present in a hemizygous state, which is accomplished by heterozygosity for the Thp or TOrl deletions; (2) the AKR/J-derived Y chromosome must be present; and (3) an additional locus involved in primary sex determination must be present in a homozygous C57BL/6J state. This newly identified gene may be one of the previously defined loci, tda-1 or tda-2.  相似文献   

19.
Assays of H-Y-specific, cell-mediated cytolysis (CMC) in vitro were carried out with B6 female effector cells and B6 male target cells. Monoclonal H-Y antibody was added to the lytic assay to test whether the antigenic determinant(s) involved in H-Y-specific CMC was distinct from the serologically detected H-Y antigen. Significant blocking was observed, suggesting that the H-Y antigen detectable serologically is similar to H-Y antigen recognized by cytotoxic T cells.Abbreviations used in this paper B6 C57BL/6 - BALB BALB/c - CMC cell-mediated cytolysis - E effector cells - T target cells  相似文献   

20.
It is well established that cytotoxic T lymphocytes (CTL) specific for the male minor histocompatibility antigen (H-Y) are generated by restimulation in vitro of in vivo primed spleen cells from C57BL/6 (H-2b) female mice with syngeneic male spleen cells. When tested on target cells from H-2 different strains, the male-specific C57BL/6 CTL populations exhibited significant lysis of DBA/2 (H-2d), A (H-2a), but not C3H (H-2k), male and female target cells. In an attempt to document this cross-reactivity further at the clonal level, a sensitive technique of limiting dilution analysis was used to determine the specificity of C57BL/6 individual CTL precursors (CTL-P) reactive against the male antigen. The mean frequency of anti-H-Y CTL-P in spleens of primed female mice was about 1/3500. Between one-third to one-tenth of these CTL-P produced a progeny that cross-reacted with H-2d (allogeneic) female target cells. These findings were confirmed by the analysis of the reactivity pattern exhibited by male-specific CTL clones derived by limiting dilution. Of 99 clones tested, 13 were found to cross-react with female DBA/2 target cells. These results thus indicate that a relatively large proportion (greater than 10%) of H-2b CTL-P directed against the H-Y antigen cross-react with target cells expressing H-2d alloantigens in the absence of H-Y antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号