首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An exposure system, consisting of four identical cylindrical waveguide chambers, was developed for studying the effects of radiofrequency (RF) energy on laboratory mice at a frequency of 1.9 GHz. The chamber was characterized for RF dose rate as a function of animal body mass and dose rate variations due to animal movement in the cage. Dose rates were quantified in terms of whole‐body average (WBA) specific absorption rate (SAR), brain average (BA) SAR and peak spatial‐average (PSA) SAR using measurement and computational methods. Measurements were conducted on mouse cadavers in a multitude of possible postures and positions to evaluate the variations of WBA‐SAR and its upper and lower bounds, while computations utilizing the finite‐difference time‐domain method together with a heterogeneous mouse model were performed to determine variations in BA‐SAR and the ratio of PSA‐SAR to WBA‐SAR. Measured WBA‐SAR variations were found to be within the ranges of 9–23.5 W/kg and 5.2–13.8 W/kg per 1 W incident power for 20 and 40 g mice, respectively. Computed BA‐SAR variations were within the ranges of 3.2–10.1 W/kg and 3.3–9.2 W/kg per 1 W incident power for 25 and 30 g mouse models, respectively. Ratios of PSA‐SAR to WBA‐SAR, averaged over 0.5 mg and 5 mg tissue volumes, were observed to be within the ranges of 6–15 and 4–10, respectively. Bioelectromagnetics 33:575–584, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Human exposure to electromagnetic fields produced by two wearable antennas operating in the 2.4 GHz frequency band was assessed by computational tools. Both antennas were designed to be attached to the skin, but they were intended for different applications. The first antenna was designed for off-body applications, i.e. to communicate with a device placed outside the body, while the second antenna model was optimized to communicate with a device located inside the body. The power absorption in human tissues was determined at several locations of adult male and female body models. The maximum specific absorption rate (SAR) value obtained with the off-body antenna was found on the torso of the woman model and was equal to 0.037 W/kg at 2.45 GHz. SAR levels increased significantly for the antenna transmitting inside the body. In this case, SAR values ranged between 0.23 and 0.45 W/kg at the same body location. The power absorbed in different body tissues and total power absorbed in the body were also calculated; the maximum total power absorbed was equal to 5.2 mW for an antenna input power equal to 10 mW. Bioelectromagnetics. 2020;41:73–79 © 2019 Wiley Periodicals, Inc.  相似文献   

3.
We have developed a carrousel irradiator for mice which delivers a head‐first and near‐field radiofrequency exposure that more closely simulates cellular telephone and radio use than conventional whole body exposure systems. Mouse cadavers were placed on the carrousel irradiator and exposed with their noses 5 mm from the feedpoint of a 1.6 GHz antenna. Local measured specific absorption rates (SAR) in brain regions corresponding to the frontal cortex, medial caudate putamen, and midhippocampal areas were 2.9, 2.4, and 2.2 W/kg per watt of irradiated power, respectively. In addition, average SAR was estimated to be 3.4 W/kg per watt along the sagittal plane of the brain, 2.0 W/kg per watt along the sagittal plane of the body, and between 6.8 and 8.1 W/kg per watt at peak locations along the sagittal plane at the body surface. This detailed SAR information in mice is critical to the interpretation of biological studies of IRIDIUM exposure, and similar analysis should be included for all studies of in vivo exposure of small animals to microwaves. Bioelectromagnetics 20:42–47, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
The aim of this project was to develop an animal exposure system for the biological effect studies of radio frequency fields from handheld wireless telephones, with energy deposition in animal brains comparable to those in humans. The finite‐difference time‐domain (FDTD) method was initially used to compute specific absorption rate (SAR) in an ellipsoidal rat model exposed with various size loop antennas at different distances from the model. A 3 × 1 cm rectangular loop produced acceptable SAR patterns. A numerical rat model based on CT images was developed by curve‐fitting Hounsfield Units of CT image pixels to tissue dielectric properties and densities. To design a loop for operating at high power levels, energy coupling and impedance matching were optimized using capacitively coupled feed lines embedded in a Teflon rod. Sprague Dawley rats were exposed with the 3 × 1 cm loop antennas, tuned to 837 or 1957 MHz for thermographically determined SAR distributions. Point SARs in brains of restrained rats were also determined thermometrically using fiberoptic probes. Calculated and measured SAR patterns and results from the various exposure configurations are in general agreement. The FDTD computed average brain SAR and ratio of head to whole body absorption were 23.8 W/kg/W and 62% at 837 MHz, and 22.6 W/kg/W and 89% at 1957 MHz. The average brain to whole body SAR ratio was 20 to 1 for both frequencies. At 837 MHz, the maximum measured SAR in the restrained rat brains was 51 W/kg/W in the cerebellum and 40 W/kg/W at the top of the cerebrum. An exposure system operating at 837 MHz is ready for in vivo biological effect studies of radio frequency fields from portable cellular telephones. Two‐tenths of a watt input power to the loop antenna will produce 10 W/kg maximum SAR, and an estimated 4.8 W/kg average brain SAR in a 300 g medium size rat. Bioelectromagnetics 20:75–92, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
The transverse electromagnetic (TEM) cell system developed by Litovitz et al. and utilized by Penafiel et al. for the exposure of cells in T25 flasks at 835 MHz has been reevaluated for the purpose of replicating the studies published by Penafiel. The original setup has been reconstructed as closely as possible, with improvements enabling blinded exposures, forced cooling and better repeatable positioning of the flasks, as well as tight exposure and environmental parameter control. The signal unit can simulate the original signal but also enables various other exposure schemes. The setup has been evaluated for four T25 flasks filled with 5 and 10 ml of cell medium by experimental and numerical means. Comparing E field, SAR and temperature measurements resulted in good agreement: <0.4 dB (4.5%) for E field and 0.48 dB (10.5%) for SAR. The overall average SAR within the medium is 6.0 W/kg at 1 W input power with a standard deviation of less than 52%. The temperature increase was determined to be 0.13 degrees C/(W/kg). This can be reduced to 0.045 degrees C/(W/kg) by applying active air flow cooling. The comparison of SAR values from temperature measurements with the corresponding simulated values resulted in excellent agreement. These results do not correspond to the previous study reporting an average SAR within the medium of 2.5 W/kg at an input power of 0.96 W.  相似文献   

6.
Rats were irradiated with circularly polarized, 2,450-MHz pulsed microwaves (2-microseconds pulses, 500 pulses per second [pps]) for 45 min in the cylindrical waveguide system of Guy et al:(Radio Sci 14:63-74, 1979). Immediately after exposure, sodium-dependent high-affinity choline uptake, an indicator of cholinergic activity in neural tissue, was measured in the striatum, frontal cortex, hippocampus, and hypothalamus. The power density was set to give average whole-body specific absorption rates (SAR) of 0.3, 0.45, 0.6, 0.75, 0.9, or 1.2 W/kg to study the dose-response relationship between the rate of microwave energy absorption and cholinergic activity in the different areas of the brain. Decrease in choline uptake was observed in the striatum at a SAR of 0.75 W/kg and above, whereas for the frontal cortex and hippocampus, decreases in choline uptake were observed at a SAR of 0.45 W/kg and above. No significant effect was observed in the hypothalamus at the irradiation power densities studied. The probit analysis was used to determine the SAR50 in each brain area, i.e., the SAR at which 50% of maximum response was elicited. SAR50 values for the striatum, frontal cortex, and hippocampus were 0.65, 0.38, and 0.44 W/kg, respectively.  相似文献   

7.
The development and analysis of three waveguides for the exposure of small biological in vitro samples to mobile communication signals at 900 MHz (GSM, Global System for Mobile Communications), 1.8 GHz (GSM), and 2 GHz (UMTS, Universal Mobile Telecommunications System) is presented. The waveguides were based on a fin‐line concept and the chamber containing the samples bathed in extracellular solution was placed onto two fins with a slot in between, where the exposure field concentrates. Measures were taken to allow for patch clamp recordings during radiofrequency (RF) exposure. The necessary power for the achievement of the maximum desired specific absorption rate (SAR) of 20 W/kg (average over the mass of the solution) was approximately Pin = 50 mW, Pin = 19 mW, and Pin = 18 mW for the 900 MHz, 1800 MHz, and 2 GHz devices, respectively. At 20 W/kg, a slight RF‐induced temperature elevation in the solution of no more than 0.3 °C was detected, while no thermal offsets due to the electromagnetic exposure could be detected at the lower SAR settings (2, 0.2, and 0.02 W/kg). A deviation of 10% from the intended solution volume yielded a calculated SAR deviation of 8% from the desired value. A maximum ±10% variation in the local SAR could occur when the position of the patch clamp electrode was altered within the area where the cells to be investigated were located. Bioelectromagnetics 32:102–112, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
To examine the biological effects of radio frequency (RF) electromagnetic fields in vitro, we have examined the fundamental cellular responses, such as cell growth, survival, and cell cycle distribution, following exposure to a wide range of specific absorption rates (SAR). Furthermore, we compared the effects of continuous and intermittent exposure at high SARs. An RF electromagnetic field exposure unit operating at a frequency of 2.45 GHz was used to expose cells to SARs from 0.05 to 1500 W/kg. When cells were exposed to a continuous RF field at SARs from 0.05 to 100 W/kg for 2 h, cellular growth rate, survival, and cell cycle distribution were not affected. At 200 W/kg, the cell growth rate was suppressed and cell survival decreased. When the cells were exposed to an intermittent RF field at 300 W/kg(pk), 900 W/kg(pk) and 1500 W/kg(pk) (100 W/kg(mean)), no significant differences were observed between these conditions and intermittent wave exposure at 100 W/kg. When cells were exposed to a SAR of 50 W/kg for 2 h, the temperature of the medium around cells rose to 39.1 degrees C, 100 W/kg exposure increased the temperature to 41.0 degrees C, and 200 W/kg exposure increased the temperature to 44.1 degrees C. Exposure to RF radiation results in heating of the medium, and the thermal effect depends on the mean SAR. Hence, these results suggest that the proliferation disorder is caused by the thermal effect.  相似文献   

9.
In this article, personal electromagnetic field measurements are converted into whole‐body specific absorption rates for exposure of the general public. Whole‐body SAR values calculated from personal exposure meter data are compared for different human spheroid phantoms: the highest SAR values (at 950 MHz) are obtained for the 1‐year‐old child (99th percentile of 17.9 µW/kg for electric field strength of 0.36 V/m), followed by the 5‐year‐old child, 10‐year‐old child, average woman, and average man. For the 1‐year‐old child, whole‐body SAR values due to 9 different radiofrequency sources (FM, DAB, TETRA, TV, GSM900 DL, GSM1800 DL, DECT, UMTS DL, WiFi) are determined for 15 different scenarios. An SAR matrix for 15 different exposure scenarios and 9 sources is provided with the personal field exposure matrix. Highest 95th percentiles of the whole‐body SAR are equal to 7.9 µW/kg (0.36 V/m, GSM900 DL), 5.8 µW/kg (0.26 V/m, DAB/TV), and 7.1 µW/kg (0.41 V/m, DECT) for the 1‐year‐old child, with a maximal total whole‐body SAR of 11.5 µW/kg (0.48 V/m) due to all 9 sources. All values are below the basic restriction of 0.08 W/kg for the general public. 95th percentiles of whole‐body SAR per V/m are equal to 60.1, 87.9, and 42.7 µW/kg for GSM900, DAB/TV, and DECT sources, respectively. Functions of the SAR versus measured electric fields are provided for the different phantoms and frequencies, enabling epidemiological and dosimetric studies to make an analysis in combination with both electric field and actual whole‐body SAR. Bioelectromagnetics 31:286–295, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Calcium efflux from electrically stimulated, 45Ca2+-preloaded atrial strips of the frog heart was measured from samples of the rinsing perfusate collected at 2-min intervals for 32 min in a continuous perfusion chamber. Contractile force was simultaneously monitored. The specimen chamber was located in a stripline apparatus in which the atrial strips were exposed for 32 min to constant (CW) or amplitude-modulated (AM), 1 GHz electromagnetic (EM) fields at specific absorption rates (SAR) ranging from 3.2 μW/kg to 1.6 W/kg. Amplitude modulation was either at 0.5 Hz, in synchrony with the electrical stimulus applied to the preparation, or at 16 Hz. Neither unmodulated nor 0.5 Hz or 16 Hz modulated 1 GHz waves affected the movement of calcium ions or the contractile force in isolated atrial strips of the frog heart. © 1993 Wiley-Liss, Inc.  相似文献   

11.
The aim of this study was a dosimetrical analysis of the setup used in the exposure of the heads of domestic pigs to GSM-modulated radio frequency electromagnetic fields (RF-EMF) at 900 MHz. The heads of pigs were irradiated with a half wave dipole using three different exposure routines; short bursts of 1-3 s at two different exposure levels and a continuous 10-min exposure. The electroencephalogram (EEG) was registered continuously during the exposures to search for RF-EMF originated changes. The dosimetry was based on simulations with the anatomical heterogeneous numerical model of the pig head. The simulation results were validated by experimental measurements with the exposure dipole and a homogeneous liquid phantom resembling the pig head. The specific absorption rate (SAR), defined as a maximum average over 10 g tissue mass (SAR(10g)), was 7.3 W/kg for the first set of short bursts and 31 W/kg for the second set of short bursts. The SAR(10g) in the continuous 10-min exposure was 31 W/kg. The estimated uncertainty for the dosimetry was +/-25% (K = 2).  相似文献   

12.
Electric fields (E-fields) induced within a phantom head from exposure to three different advanced mobile phone system (AMPS) hand-held telephones were measured using an implantable E-field probe. Measurements were taken in the eye nearest the phone and along a lateral scan through the brain from its centre to the side nearest the phone. During measurement, the phones were positioned alongside the phantom head as in typical use and were configured to transmit at maximum power (600 mW nominal). The specific absorption rate (SAR) was calculated from the in situ E-field measurements, which varied significantly between phone models and antenna configuration. The SARs induced in the eye ranged from 0.007 to 0.21 W/kg. Metal-framed spectacles enhanced SAR levels in the eye by 9–29%. In the brain, maximum levels were recorded at the measurement point closest to the phone and ranged from 0.12 to 0.83 W/kg. These SARs are below peak spatial limits recommended in the U.S. and Australian national standards [IEEE Standards Coordinating Committee 28 (1991): C95.1-1991 and Standards Australia (1990): AS2772.1-1990] and the IRPA guidelines for safe exposure to radio frequency (RF) electromagnetic fields [IRPA (1988): Health Phys 54:115–123]. Furthermore, a detailed thermal analysis of the eye indicated only a 0.022°C maximum steady-state temperature rise in the eye from a uniform SAR loading of 0.21 W/kg. A more approximate thermal analysis in the brain also indicated only a small maximum temperature rise of 0.034°C for a local SAR loading of 0.83 W/kg. © 1995 Wiley-Liss, Inc.  相似文献   

13.
Harmful effects of electromagnetic fields (EMF) on cognitive and behavioural features of humans and rodents have been controversially discussed and raised persistent concern about adverse effects of EMF on general brain functions. In the present study we applied radio-frequency (RF) signals of the Universal Mobile Telecommunications System (UMTS) to full brain exposed male Wistar rats in order to elaborate putative influences on stress hormone release (corticosteron; CORT and adrenocorticotropic hormone; ACTH) and on hippocampal derived synaptic long-term plasticity (LTP) and depression (LTD) as electrophysiological hallmarks for memory storage and memory consolidation. Exposure was computer controlled providing blind conditions. Nominal brain-averaged specific absorption rates (SAR) as a measure of applied mass-related dissipated RF power were 0, 2, and 10 W/kg over a period of 120 min. Comparison of cage exposed animals revealed, regardless of EMF exposure, significantly increased CORT and ACTH levels which corresponded with generally decreased field potential slopes and amplitudes in hippocampal LTP and LTD. Animals following SAR exposure of 2 W/kg (averaged over the whole brain of 2.3 g tissue mass) did not differ from the sham-exposed group in LTP and LTD experiments. In contrast, a significant reduction in LTP and LTD was observed at the high power rate of SAR (10 W/kg). The results demonstrate that a rate of 2 W/kg displays no adverse impact on LTP and LTD, while 10 W/kg leads to significant effects on the electrophysiological parameters, which can be clearly distinguished from the stress derived background. Our findings suggest that UMTS exposure with SAR in the range of 2 W/kg is not harmful to critical markers for memory storage and memory consolidation, however, an influence of UMTS at high energy absorption rates (10 W/kg) cannot be excluded.  相似文献   

14.
To investigate the effects of high frequency electromagnetic fields (HFEMFs), we assessed the frequency of micronucleus (MN) formation induced by chromosomal breakage or inhibition of spindles during cell division in Chinese hamster ovary (CHO)-K1 cells, using the cytokinesis block micronucleus method. The MN frequency in cells in the inner, middle and outer wells of an annular culture plate was determined for the following four conditions: (1) CHO-K1 cells were exposed to a HFEMF for 18 h at average specific absorption rates (SARs) of 13, 39 and 50 W/kg with input power 7.8 W, and were compared with a sham-exposed control; (2) the cells were also exposed to a HFEMF at SARs of 78 and 100 W/kg with input power 13 W, and were compared with a sham-exposed control; (3) the cells were treated with bleomycin alone or with bleomycin followed by exposure to a HFEMF for 18 h at SARs of 25, 78 and 100 W/kg, and were compared with a bleomycin-treated positive control. The cells treated with bleomycin alone were compared with sham-exposed controls; and (4) As a high temperature control, CHO-K1 cells were incubated at 39 degrees C for 18 h. In study (1), the MN frequency of cells exposed to a HFEMF at a SAR of up to 50 W/kg was not different to that in sham-exposed cells. In study (2), there were statistically significant increases in the MN frequencies of cells in the middle and outer wells of the annular culture plate caused by exposure to a HFEMF at 100 and 78 W/kg, respectively. In study (3), the MN frequencies of cells in the middle (100 W/kg) and outer wells (78 W/kg) of the annular culture plate were statistically higher than that caused by bleomycin-treatment alone. In study (4), there was a statistically significant increase of MN frequency in the cells treated by heat at 39 degrees C.These results indicate that cells exposed to a HFEMF at a SAR of 78 W/kg and higher form MN more frequently than sham-exposed cells, while exposure to a HFEMF at up to 50 W/kg does not induce MN formation. In addition, a HFEMF at a SAR of 78 W/kg and higher may potentiate MN formation induced by bleomycin-treatment.  相似文献   

15.
An applicator for in vitro cell culture exposure was developed based on a circularly polarized, cylindrical waveguide for the 1.9-GHz frequency band used by Personal Communications Services (PCS) in Canada. The applicator consists of two coaxial Petri dishes that sit on the open end of the cylindrical waveguide. The inner 60-mm Petri dish contains the cell culture while the outer 150-mm dish contains coolant water, which is circulated from a pump. A dosimetric evaluation was made using thermometric and E-field probe techniques. The latter allowed the entire inner dish to be scanned to determine the range of specific absorption rates (SARs) pertinent to the expected position of the cells. A representative SAR rate (SAR per unit of input power) of 8.6 +/- 2.1 W/kg/W (95th percentile) was determined 1 mm from the bottom, for a 10 ml sample volume of standard medium. Evaluation of the cooling system demonstrated that following an initial 0.3 degrees C temperature increase, a constant temperature was maintained for 24 h when the waveguide was energized to achieve an average sample SAR of 10 W/kg. These properties enable both acute and sub-acute in vitro bio-effect studies to be performed on a variety of cell culture samples.  相似文献   

16.
Salmonella typhimurium and Drosophila melanogaster were exposed to continuous wave (CW) 2.45-GHz electromagnetic radiation, pulsed 3.10-GHz electromagnetic radiation, CW 27.12-MHz magnetic fields, or CW 27.12-MHz electric fields (only Drosophila). The temperatures of the treated sample and the nonexposed control sample were kept constant. The temperature difference between exposed and control samples was less than +/- 0.3 degrees C. Ames' assays were made on bacteria that had been exposed to microwaves (SAR 60-130 W/kg) or RF fields (SAR up to 20 W/kg) when growing exponentially in nutrient broth. Survival and number of induced revertants to histidine prototrophy were determined by common plating techniques on rich and minimal agar plates. The Drosophila test consisted of a sensitive somatic system where the mutagenicity was measured by means of mutations in a gene-controlling eye pigmentation. In none of these test systems did microwave or radiofrequency fields induce an elevated mutation frequency. However, a significantly higher concentration of cells was found in the bacterial cultures exposed to the 27-MHz magnetic field or 2.45-GHz CW and 3.10-GHz pulsed microwave radiation.  相似文献   

17.
The proximity of a mobile phone to the human eye raises the question as to whether radiofrequency (RF) electromagnetic fields (EMF) affect the visual system. A basic characteristic of the human eye is its light sensitivity, making the visual discrimination threshold (VDThr) a suitable parameter for the investigation of potential effects of RF exposure on the eye. The VDThr was measured for 33 subjects under standardized conditions. Each subject took part in two experiments (RF-exposure and sham-exposure experiment) on different days. In each experiment, the VDThr was measured continuously in time intervals of about 10 s for two periods of 30 min, having a break of 5 min in between. The sequence of the two experiments was randomized, and the study was single blinded. During the RF exposure, a GSM signal of 902.4 MHz (pulsed with 217 Hz) was applied to the subjects. The power flux density of the electromagnetic field at the subject location (in the absence of the subject) was 1 W/m(2), and numerical dosimetry calculations determined corresponding maximum local averaged specific absorption rate (SAR) values in the retina of SAR(1 g) = 0.007 W/kg and SAR(10 g) = 0.003 W/kg. No statistically significant differences in the VDThr were found in comparing the data obtained for RF exposure with those for sham exposure.  相似文献   

18.
A previous study showed a substantial increase in the colonic temperature of rhesus monkeys (Macaca mulatta) exposed to radiofrequency (RF) fields at a frequency near whole-body resonance and specific absorption rates (SAR) of 2-3 W/kg. The present experiments were conducted to determine the metabolic and vasomotor responses during exposures to similar RF fields. We exposed five adult male rhesus monkeys to 225 MHz radiation (E orientation) in an anechoic chamber. Oxygen consumption and carbon dioxide production were measured before, during, and after RF exposure. Colonic, tail and leg skin temperatures were continuously monitored with RF-nonperturbing probes. The monkeys were irradiated at two carefully-controlled ambient temperatures, either cool (20 degrees C) or thermoneutral (26 degrees C). Power densities ranged from 0 (sham) to 10.0 mW/cm2 with an average whole-body SAR of 0.285 (W/kg)/(mW/cm2). We used two experimental protocols, each of which began with a 120-min pre-exposure equilibration period. One protocol involved repetitive 10-min RF exposures at successively higher power densities with a recovery period between exposures. In the second protocol, a 120-min RF exposure permitted the measurement of steady-state thermoregulatory responses. Metabolic and vasomotor adjustments in the rhesus monkey exposed to 225 MHz occurred during brief or sustained exposures at SARs at or above 1.4 W/kg. The SAR required to produce a given response varied with ambient temperature. Metabolic and vasomotor responses were coordinated effectively to produce a stable deep body temperature. The results show that the thermoregulatory response of the rhesus monkey to an RF exposure at a resonant frequency limits storage of heat in the body. However, substantial increases in colonic temperature were not prevented by such responses, even in a cool environment.  相似文献   

19.
In utero exposure to microwave radiation and rat brain development   总被引:1,自引:0,他引:1  
Timed-pregnancy rats were exposed in a circular waveguide system starting on day 2 of gestation. The system operated at 2,450 MHz (pulsed waves; 8 microseconds PW; 830 pps). Specific absorption rate (SAR) was maintained at 0.4 W/kg by increasing the input power as the animals grew in size. On day 18 of gestation the dams were removed from the waveguide cages and euthanized; the fetuses were removed and weighed. Fetal brains were excised and weighed, and brain RNA, DNA and protein were determined. Values for measured parameters of the radiated fetuses did not differ significantly from those of sham-exposed fetuses. A regression of brain weight on body weight showed no micrencephalous fetuses in the radiation group when using as a criterion a regression line based on two standard errors of the estimate of the sham-exposed group. In addition, metrics derived from brain DNA (ie, cell number and cell size) showed no significant differences when radiation was compared to sham exposure. We conclude that 2,450-MHz microwave radiation, at an SAR of 0.4 W/kg, did not produce significant alterations in brain organogenesis.  相似文献   

20.
A facility for the exposure of small animals to pulse-modulated microwave radiation ( PM MWR ) concurrent with their performance of operant behavioral tasks is described. The computer-managed facility comprises an array of 32 individual waveguide exposure cells, each enclosing instrumental conditioning apparatus within a plastic subhousing. The distribution of the microwave electric field intensity within the waveguide was measured by a nonperturbing probe and the modifications induced by the behavioral apparatus and animal within the waveguide determined. Input and interior voltage standing wave ratios are presented to characterize the design of the chambers and to demonstrate the suitability of the chambers for whole-body irradiation of rat. The specific absorption rate (SAR) is presented utilizing data derived from incremental thermometric examination of saline loads and of selected sites in rat carcasses. This is compared with the whole-body SAR derived from the input/ output energy balance equation for the waveguide. The results of continuous monitoring of the SAR by the latter method, while unrestrained rats were engaged in operant and exploratory behavior within the waveguide, are utilized to derive a relationship between chamber input power and the dose rate for adult rats behaviorally active within the waveguide. From these data, we conclude that the experimental array provides a practical method for exposing a large number of animals to PM MWR for long periods of time and coincident with the establishment and/or performance of complex operant behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号