首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Oxysterols are oxidised forms of cholesterol or its precursors. In this study we utilised the cholesterol 24-hydroxylase knockout mouse (Cyp46a1−/−) to study the sterol and oxysterol content of brain. Despite a great reduction in the abundance of 24S-hydroxycholesterol, the dominant metabolite of cholesterol in wild type brain, no other cholesterol metabolite was found to quantitatively replace this oxysterol in the Cyp46a1−/− mouse. Only minor amounts of other side-chain oxysterols including 22R-, 24R-, 25- and (25R),26-hydroxycholesterols were detected. In line with earlier studies, levels of cholesterol were similar in Cyp46a1−/− and wild type animals. However, the level of the cholesterol precursor, desomsterol, and its parallel metabolite formed via a shut of the mevalonate pathway, 24S,25-epoxycholesterol, were reduced in the Cyp46a1−/− mouse. The reduction in abundance of 24S,25-epoxycholesterol is interesting in light of a recent report indicating that this oxysterol promotes dopaminergic neurogenesis.  相似文献   

2.
Cytochrome P450 (P450 or CYP) 46A1 is expressed in brain and has been characterized by its ability to oxidize cholesterol to 24S-hydroxycholesterol. In addition, the same enzyme is known to further oxidize 24S-hydroxycholesterol to the 24,25- and 24,27-dihydroxy products, as well as to catalyze side-chain oxidations of 7α-hydroxycholesterol and cholestanol. As precursors in the biosynthesis of cholesterol, 7-dehydrocholesterol has not been found to be a substrate of P450 46A1 and desmosterol has not been previously tested. However, 24-hydroxy-7-dehydrocholesterol was recently identified in brain tissues, which prompted us to reexamine this enzyme and its potential substrates. Here we report that P450 46A1 oxidizes 7-dehydrocholesterol to 24-hydroxy-7-dehydrocholesterol and 25-hydroxy-7-dehydrocholesterol, as confirmed by LC-MS and GC-MS. Overall, the catalytic rates of formation increased in the order of 24-hydroxy-7-dehydrocholesterol < 24-hydroxycholesterol < 25-hydroxy-7-dehydrocholesterol from their respective precursors, with a ratio of 1:2.5:5. In the case of desmosterol, epoxidation to 24S,25-epoxycholesterol and 27-hydroxylation was observed, at roughly equal rates. The formation of these oxysterols in the brain may be of relevance in Smith-Lemli-Opitz syndrome, desmosterolosis, and other relevant diseases, as well as in signal transduction by lipids.  相似文献   

3.
Oxysterols are present in mammalian brain at ng/g–μg/g levels while cholesterol is present at the mg/g level. This makes oxysterol analysis of brain challenging. In an effort to meet this challenge we have developed, and validated, an isolation method based on solid phase extraction and an analytical protocol involving oxidation/derivatisation (i.e., charge-tagging) followed by nano-flow liquid chromatography (nano-LC) combined with tandem mass spectrometry utilising multi-stage fragmentation (MSn). The oxidation/derivatisation method employed improves detection limits by two orders of magnitude, while nano-LC–MSn provides separation of isomers and allows oxysterol quantification. Using this method 13 different oxysterols have been identified in rat brain including 24S-hydroxycholesterol, 24S,25-epoxycholesterol and 7α,26-dihydroxycholest-4-en-3-one. The level of 24S-hydroxycholesterol in rat brain was determined to be 20.3 ± 3.4 μg/g and quantitative estimates were made for the other oxysterols identified. The presence of a large excess of cholesterol over oxysterol in brain raises the problem of autoxidation during sterol isolation and sample preparation. Thus, in parallel to identification studies, the degree of cholesterol autoxidation occurring during sterol isolation and analysis has been evaluated with the aid of [2H7]-labelled cholesterol and cholesterol autoxidation products identified.  相似文献   

4.
The oxysterol 24(S),25-epoxycholesterol is made in a shunt in the cholesterol biosynthetic pathway in all cholesterogenic cells. Evidence is emerging that endogenous 24(S),25-epoxycholesterol can work at several levels to control acute cholesterol homeostasis. For instance, this oxysterol suppresses activation of the master regulators of cholesterol homeostasis, the sterol regulatory element binding proteins. Indeed, 24(S),25-epoxycholesterol appears to serve as a measure of cholesterol synthesis and to protect against surges in the production of this potentially cytotoxic molecule. In addition, endogenous 24(S),25-epoxycholesterol is a natural ligand for the liver X receptors which induce expression of cholesterol efflux-related genes. Levels of endogenous 24(S),25-epoxycholesterol can be artificially elevated by partially inhibiting the step after the start of the shunt, catalysed by oxidosqualene cyclase. The idea of manipulating a self-governing pathway for the production of a physiological regulator, that can enhance cholesterol removal and decrease uptake and synthesis, is attractive and warrants further evaluation.  相似文献   

5.
24S,25-Epoxycholesterol is formed in a shunt of the mevalonate pathway that produces cholesterol. It is one of the most potent known activators of the liver X receptors and can inhibit sterol regulatory element-binding protein processing. Until recently analysis of 24S,25-epoxycholesterol at high sensitivity has been precluded by its thermal lability and lack of a strong chromophore. Here we report on the analysis of 24S,25-epoxycholesterol in rodent brain where its level was determined to be of the order of 0.4–1.4 μg/g wet weight in both adult mouse and rat. For comparison the level of 24S-hydroxycholesterol in brain of both rodents was of the order of 20 μg/g, while that of cholesterol in mouse was 10–20 mg/g. By exploiting knockout mice for the enzyme oxysterol 7α-hydroxylase (Cyp7b1) we show that this enzymes is important for the subsequent metabolism of the 24S,25-epoxide.  相似文献   

6.
Using 3β-hydroxychol-5-en-24-oic acid (4) as starting material, the diastereoisomeric allylic alcohols (24E)-26-hydroxydesmosterol (2) and (24Z)-26-hydroxydesmosterol (3) have been synthesised in six steps with 67% and 12% overall yield, respectively. Both of these isomers are found in newborn mouse brain where sterol synthesis is high. Unlike desmosterol (1), neither of these isomers is a ligand to the liver x receptors and thus represents a novel biological deactivation mechanism avoiding cholesterol synthesis.  相似文献   

7.
The syntheses of (24S)-24,25-epoxycholesterol, (24S)-hydroxycholesterol, and 24-ketocholesterol are described. The compounds belong to oxysterols, which can be considered to be the modulators of cholesterol metabolism. The asymmetric hydroxylation of desmosterol acetate according to Sharpless was used as the key reaction in the stereoselective introduction of functionality in position 24.  相似文献   

8.
Previously we showed that 24(S),25-epoxycholesterol is formed from acetate, via squalene 2,3(S),22(S),23-dioxide and 24(S),25-oxidolanosterol, during the normal course of cholesterol biosynthesis in S10 rat liver homogenate (Nelson, J. A., Steckbeck, S. R., and Spencer, T. A. (1981) J. Biol. Chem. 256, 1067-1068; Nelson, J. A., Steckbeck, S. R., and Spencer, T. A. (1981) J. Am. Chem. Soc. 103, 6974-6975). Herein we demonstrate that the nonsaponifiable extract from human liver tissue contains 24(S),25-epoxycholesterol in an amount approximately 10(-3) relative to cholesterol. We show that 24(S),25-epoxycholesterol, like many other oxygenated sterols, represses hydroxymethylglutaryl-CoA reductase activity in cultured cells and binds to the cytosolic oxysterol-binding protein. Furthermore, we show that this epoxide is not rapidly metabolized in cultured cells. These results suggest that 24(S),25-epoxycholesterol may participate in the regulation of hepatic cholesterol metabolism in vivo.  相似文献   

9.
Stereochemical specificity for sterols in Saccharomyces cerevisiae   总被引:7,自引:0,他引:7  
When sterol biosynthesis in oxygen-deprived wild type Saccharomyces cerevisiae was prevented by the presence of 2,3-iminosqualene, an inhibitor of 2,3-oxidosqualene cyclase, an absolute requirement for a sterol with a 24 beta-methyl group was found. Neither the configuration nor the size of the alkyl group at C-24 could be altered. For instance, while 24 beta-methylcholesterol (22-dihydrobrassicasterol) permitted good growth, contrary to earlier work without the inhibitor no growth at all resulted from the presence of cholesterol or its 24 alpha-methyl-, 24 alpha-ethyl-, or 24 beta-ethyl derivatives (campesterol, sitosterol, and clionasterol, respectively). The only sterol lacking a 24 beta-methyl group which allowed growth was desmosterol (24-dehydro-cholesterol), but desmosterol was metabolized to 24 beta-methylcholesterol by C1-transfer and reduction. When cholesterol supported growth in the absence of the inhibitor, small amounts of endogenously synthesized 24 beta-methylsterols (ergosterol and 22-dihydroergosterol) were identified. This previously unrecognized absolute specificity for both chirality and bulk at C-24 suggests the involvement of protein binding in at least one of the roles which sterol plays in this single-celled eukaryote.  相似文献   

10.
The sterols of prepupal honey bees, Apis mellifera L., from brood reared by workers fed chemically-defined synthetic diets containing cholesterol, campesterol, sitosterol, stigmasterol, 24-methylenecholesterol, or no sterol over a 12-week period were isolated, identified, and quantified. The major sterol present in each prepupal sample was 24-methylenecholesterol, but significant levels of sitosterol and isofucosterol were also present in every case, as was a very small percentage of desmosterol (usually < 1%). This is the first report of isofucosterol being identified in the sterols of the honey bee. A considerably larger percentage of each dietary sterol was found in prepupae reared by workers fed that particular sterol in the diet. This was most dramatic in the case of the cholesterol diet in which case cholesterol content increased to as much as 17.2% of the prepupal sterols, whereas cholesterol had not exceeded 2.2% in samples from other diet regimens. However, stigmasterol comprised no more than 6.3% of the total sterols in any sample from prepupae fed the stigmasterol diet. The preponderance of 24-methylenecholesterol in all prepupae, regardless of the dietary sterol provided to the workers, as well as the lesser quantities of sitosterol and isofucosterol present in all samples, suggest a unique system of utilization and metabolism of these dietary sterols by the worker bees. Apparently they make available to the brood varying amounts of unchanged dietary sterol plus considerable and fairly constant portions of 24-methylenecholesterol, sitosterol, and isofucosterol drawn from their own sterol pools.  相似文献   

11.
Although the pool of cholesterol in the adult central nervous system (CNS) is large and of constant size, little is known of the process(es) involved in regulation of sterol turnover in this pool. In 7-week-old mice, net excretion of cholesterol from the brain equaled 1.4 mg/day/kg body weight, and from the whole animal was 179 mg/day/kg. Deletion of cholesterol 24-hydroxylase, an enzyme highly expressed in the CNS, did not alter brain growth or myelination, but reduced sterol excretion from the CNS 64% to 0.5 mg/day/kg. In mice with a mutation in the Niemann-Pick C gene that had ongoing neurodegeneration, sterol excretion from the CNS was increased to 2.3 mg/day/kg. Deletion of cholesterol 24-hydroxylase activity in these animals reduced net excretion only 22% to 1.8 mg/day/kg. Thus, at least two different pathways promote net sterol excretion from the CNS. One uses cholesterol 24-hydroxylase and may reflect sterol turnover in large neurons in the brain. The other probably involves the movement of cholesterol or one of its metabolites across the blood-brain barrier and may more closely mirror sterol turnover in pools such as glial cell membranes and myelin.  相似文献   

12.
The sterol composition of the warm-water brown alga Sargassum fluitans Børgesen of the Gulf of Mexico was determined by TLC, GLC and IR measurements. The presence of over ten sterols was suggested, of which four (fucosterol, cholesterol, 24-methylenecholesterol, and trans- 22-dehydrocholesterol) were identified and four (a 24-methylcholesterol, a 24-ethylcholesterol, a 24-methyl-trans-22-dehydrocholestero 1 and a 24-ethyl-trans-22-dehydrocholesterol) were recognized but not definitively identified. Saringosterol and 24-ketocholesterol were not found. The crude sterol mixture from S. fluitans was oxidized by osmium tetroxide to 24-ketocholesterol in poor yield.  相似文献   

13.
14.
15.
Cholesterol is an essential component of the CNS and its metabolism in the brain has been implicated in various neurodegenerative diseases. The oxysterol produced from cholesterol, 24( S )-hydroxycholesterol, is known to be an important regulator of brain cholesterol homeostasis. In this study, we focussed on another oxysterol, 24( S ),25-epoxycholesterol (24,25EC), which has not been studied before in a neurological context. 24,25EC is unique in that it is synthesized in a shunt in the mevalonate pathway, parallel to cholesterol and utilizing the same enzymes. Considering that all the cholesterol present in the brain is derived from de novo synthesis, we investigated whether or not primary human neurons and astrocytes can produce 24,25EC. We found that astrocytes produced more 24,25EC than neurons under basal conditions, but both cell types had the capacity to synthesize this oxysterol when the enzyme 2,3-oxidosqualene cyclase was partially inhibited. Furthermore, both added 24,25EC and stimulated cellular production of 24,25EC (by partial inhibition of 2,3-oxidosqualene cyclase) modulated expression of key cholesterol-homeostatic genes regulated by the liver X receptor and the sterol regulatory element-binding protein-2. Moreover, we found that 24,25EC synthesized in astrocytes can be taken up by neurons and exert downstream effects on gene regulation. In summary, we have identified 24,25EC as a novel neurosterol which plays a likely role in brain cholesterol homeostasis.  相似文献   

16.
Cholesterol is a prominent modulator of the integrity and functional activity of physiological membranes and the most abundant sterol in the mammalian brain. DHCR24-knock-out mice lack cholesterol and accumulate desmosterol with age. Here we demonstrate that brain cholesterol deficiency in 3-week-old DHCR24−/− mice was associated with altered membrane composition including disrupted detergent-resistant membrane domain (DRM) structure. Furthermore, membrane-related functions differed extensively in the brains of these mice, resulting in lower plasmin activity, decreased β-secretase activity and diminished Aβ generation. Age-dependent accumulation and integration of desmosterol in brain membranes of 16-week-old DHCR24−/− mice led to the formation of desmosterol-containing DRMs and rescued the observed membrane-related functional deficits. Our data provide evidence that an alternate sterol, desmosterol, can facilitate processes that are normally cholesterol-dependent including formation of DRMs from mouse brain extracts, membrane receptor ligand binding and activation, and regulation of membrane protein proteolytic activity. These data indicate that desmosterol can replace cholesterol in membrane-related functions in the DHCR24−/− mouse. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

17.
Polyphosphoinositides in normal and neoplastic rodent astrocytes   总被引:3,自引:0,他引:3  
Polyphosphoinositides were identified in dispersed cell cultures of normal newborn hamster astrocytes and of a chemically transformed adult rat astrocytoma (C6) and are therefore presumed to be constituents of immature astrocytes in brain. Small amounts were also detected in astrocytomas grown as subcutaneous tumors. These lipids were metabolically highly active, accounting for a substantial fraction of 32Pi incorporated into phospholipids. Astrocytes may thus contain a small pool of polyphosphoinositides metabolically distinct from that in myelin.  相似文献   

18.
Marked variations in the 3β-hydroxysterol content of hamster spermatozoa were observed as they progress through the epididymis. Cholesterol is the major sterol of caputal spermatozoa while the concentration of precursors of cholesterol was higher than that of cholesterol in caudal spermatozoa. One of these precursors has been identified as desmosterol. A second sterol has now been identified as 5α-cholesta-7, 24-dien-3β-ol by GLC-MS and by NMR. Its concentration is approximately 3-fold higher than that of cholesterol. This 3β-hydroxysterol is also found in epididymal tissue.  相似文献   

19.
In view of the potential importance of 24,25-epoxysterols as intracellular regulators of 3-hydroxy-3-methylglutaryl-CoA reductase, the C-24 epimers of 24,25-oxidolanosterol and 24,25-epoxycholesterol were tested for their biological activity and metabolism in cell cultures. All four compounds produced repression of the reductase in cultured mouse fibroblasts (L cells), and both 24(S)- and 24(R),25-epoxycholesterol exhibited high affinity binding to the cytosolic oxysterol-binding protein. However, binding of the epimeric 24,25-oxidolanosterols was not detected. 24(S),25-Epoxycholesterol was not rapidly metabolized in either L cells or Chinese hamster lung (Dede) cells. 24(S),25-Oxidolanosterol was rapidly converted to 24(S),25-epoxycholesterol in both cell lines. 24(R),25-Oxidolanosterol was converted to 24(R)-hydroxycholesterol in Dede cells, but was converted instead to 24(R),25-epoxycholesterol in L cells, which lack sterol delta 24-reductase activity. Although 24(S),25-oxidolanosterol does not appear to accumulate in these cell cultures, it was found in human liver in about one-fifth the amount of 24(S),25-epoxycholesterol. 24(R),25-Epoxycholesterol was also converted to 24(R)-hydroxycholesterol in Dede cells, but not in L cells. Triparanol inhibited the reduction of the 24(R),25-epoxides in Dede cells, consistent with the idea that this reaction is catalyzed by the delta 24-reductase. 24(R)-Hydroxycholesterol and its 24(S) epimer exhibited affinity for the binding protein and repressed 3-hydroxy-3-methylglutaryl-CoA reductase.  相似文献   

20.
Larvae of Manduca sexta were used to obtain a cell-free sterol 24,25-reductase. From the midgut of fifth instar larvae fed a mixture of sitosterol and campesterol a microsome-bound 24,25-sterol reductase was prepared that transformed desmosterol (Km, 3 μM), lanosterol (Km, 18 μM), and cycloartenol (Km, 33 μM), to cholesterol, 24,25-dihydrolanosterol, and cycloartanol, respectively. With desmosterol as substrate, the microsome-bound enzyme was found to incorporate tritium into cholesterol from 4S-tritium labelled NADPH. [24-2H]lanosterol was transformed by larvae to [24-2H]24,25-dihydrolanosterol (structure confirmed by mass spectroscopy (MS) and 1H-nuclear magnetic resonance spectroscopy. A rationally designed inhibitor of 24,25-reductase activity, 24(R,S),25-epimino-lanosterol (IL), was assayed and found to be inhibitory with an I50 of 2 μM. IL was supplemented in the diet of M. sexta with either sitosterol or stigmasterol and found to inhibit development (I50 60 ppm). The major sterol which accumulated in the IL-treated larvae was desmosterol, confirming the site of inhibition was reduction of the 24,25-bond. IL was converted to [2-3H]IL when fed to the larvae. [2-3H]lanosterol was recovered from fifth instar larvae and its structure confirmed by MS and radiochemical techniques. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号