首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human CG contains an alpha-subunit, common to the pituitary glycoprotein hormones, and a hormone-specific beta-subunit, but unlike the pituitary beta-subunits, hCG beta is characterized by an O-glycosylated carboxy-terminal extension. A mutant beta-subunit, des-(122-145)hCG beta, was prepared using site-directed mutagenesis, and the pRSV expression plasmids were transfected into Chinese hamster ovary cells that produce the bovine alpha-subunit (b alpha). The mutant beta-subunit binds to b alpha, and the heterologous gonadotropin, b alpha-des-(122-145)hCG beta, was capable of stimulating steroidogenesis in cultured Leydig tumor cells (MA-10) to the same extent as standard hCG. When compared with the heterologous gonadotropin, b alpha-hCG beta wild type, the hybrid hormone with the truncated hCG beta exhibited equal potency, within the accuracy of the RIAs used to determine hormone concentrations, and gave a similar time course of steroidogenesis. Interestingly, these transformed Leydig cells do not distinguish between the steroidogenic potencies (as measured by progesterone production) of hCG and human LH (hLH) as do some preparations of normal rodent Leydig cells (as measured by testosterone production). However, the MA-10 cells were able to distinguish hCG from hLH based on their cAMP response; the latter produced a greater response at both maximal and submaximal gonadotropin concentrations. The two expressed heterologous gonadotropins were equipotent in their abilities to stimulate cAMP and gave similar time courses of cAMP accumulation in MA-10 cells. Thus, the carboxy-terminal extension of hCG beta is not required for association with the alpha-subunit nor for functional receptor binding, as judged by cAMP accumulation and progesterone production in MA-10 cells.  相似文献   

2.
Several previous studies have demonstrated that uterine Cox2 (also known as Ptgs2) is required for implantation. Luteinizing hormone (LH) released from anterior pituitary gland and human chorionic gonadotropin released from placenta (hCG) can upregulate the uterine Cox2 gene expression. The Lhcgr knockout (herein designated LHRKO) animals have implantation failure even after estradiol and progesterone therapy. These findings led us to investigate the dependence of uterine Cox2 gene expression on LH signaling in LHRKO animals. The results revealed that, while Cox1 (also known as Ptgs1) mRNA levels were similar, Cox2 mRNA levels were lower in uterus of null animals than in wild-type siblings. Treatment with hCG did not increase Cox2 mRNA levels in null endometrial stromal or myometrial smooth-muscle cells unless gene therapy was performed to introduce native LHCGR. The Cox1 mRNA levels, on the other hand, did not change regardless of the introduction of native or activated Lhcgr or hCG treatment. The Cox2 mRNA increase paralleled the cAMP raise, suggesting that LH uses the cAMP second messenger system. Treating the wild-type uterine cells with hCG resulted in a Cox2 but not Cox1 mRNA increase. This increase became exaggerated when additional native LHCGR were introduced by gene therapy. In conclusion, deletion and reinsertion of Lhcgr further support that uterine Cox2 gene expression is dependent on LH signaling.  相似文献   

3.
Gonadotropin-stimulated steroidogenesis in the differentiating ovarian granulosa cell is mediated through the activation of cAMP-dependent protein kinase, and is also modulated by calcium-dependent mechanisms. Granulosa cells contain calcium-activated, phospholipid-dependent protein kinase (C kinase), and show an increase in phosphatidylinositol turnover in response to GnRH agonist analogs. To evaluate the role of C kinase in ovarian steroidogenesis, the potent phorbol ester, TPA, and the permeant diacylglycerol, OAG, were used to activate C kinase in granulosa cells from PMSG-treated immature rats. Both TPA and OAG caused dose-dependent stimulation of progesterone production without affecting intra- or extracellular cAMP levels. However, the maximum steroid responses to these compounds were less than those stimulated by cAMP. The ED50 for TPA-stimulated progesterone production was 3 nM, which is close to the known Km for activation of C kinase. Stimulation of steroidogenesis was only observed with biologically-active phorbol esters and permeant diacylglycerols such as OAG and DOG. Exposure of granulosa cells to phospholipase C also increased progesterone production in a dose-dependent manner without changing the cAMP content. Although TPA and OAG did not increase basal cAMP production, both agents enhanced the cAMP responses stimulated by hCG and forskolin; likewise, phospholipase C alone did not change cAMP production but caused a dose-dependent increase in the cAMP responses to hCG and forskolin. These results demonstrate that activation of C kinase promotes steroidogenesis in ovarian granulosa cells, and potentiates the activation of adenylate cyclase by hCG and forskolin. Such findings support the possibility that the calcium, phospholipid-dependent enzyme could be involved in the regulation of progesterone production by hormonal ligands such as gonadotropins and GnRH.  相似文献   

4.
Overexposure of the fetus to glucocorticoids in gestation is detrimental to fetal development. The passage of maternal glucocorticoids into the fetal circulation is governed by 11beta-Hydroxysteroid Dehydrogenase Type 2 (HSD11B2) in the placental syncytiotrophoblasts. Human chorionic gonadotropin (hCG) plays an important role in maintaining placental HSD11B2 expression via activation of the cAMP pathway. In this study, we investigated the relationship between the activation of the cAMP pathway by hCG and subsequent phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) or p38 mitogen-activated protein kinase (MAPK) pathways in the regulation of placental HSD11B2 expression in human placental syncytiotrophoblasts. We found that treatment of the placental syncytiotrophoblasts with either hCG or dibutyl cAMP (dbcAMP) could promote the phosphorylation of p38 and ERK1/2. Inhibition of p38 MAPK with SB203580 not only reduced the basal HSD11B2 mRNA and protein levels but also attenuated HSD11B2 levels induced by either hCG or dbcAMP. By contrast, inhibition of ERK1/2 with PD98059 increased the basal mRNA and protein levels of HSD11B2 and had no effect on HSD11B2 mRNA and protein levels induced by either hCG or dbcAMP. These data suggest that p38 MAPK is involved in both basal and hCG/cAMP-induced expression of HSD11B2, and ERK1/2 may play a role opposite to p38 MAPK at least in the basal expression of HSD11B2 in human placental syncytiotrophoblasts and that there is complicated cross-talk between hCG/cAMP and MAPK cascades in the regulation of placental HSD11B2 expression.  相似文献   

5.
Pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in the placenta, where it works as an autocrine hormone. In this work, we demonstrated that human chorionic gonadotropin (hCG) added to JEG-3 cell line or to placental explants induces endogenous leptin expression. We also found that hCG increased cAMP intracellular levels in BeWo cells in a dose-dependent manner, stimulated cAMP response element (CRE) activity and the cotransfection with an expression plasmid of a dominant negative mutant of CREB caused a significant inhibition of hCG stimulation of leptin promoter activity. These results demonstrate that hCG indeed activates cAMP/PKA pathway, and that this pathway is involved in leptin expression. Nevertheless, we found leptin induction by hCG is dependent on cAMP levels. Treatment with (Bu)2cAMP in combination with low and non stimulatory hCG concentrations led to an increase in leptin expression, whereas stimulatory concentrations showed the opposite effect. We found that specific PKA inhibition by H89 caused a significant increase of hCG leptin induction, suggesting that probably high cAMP levels might inhibit hCG effect. It was found that hCG enhancement of leptin mRNA expression involved the MAPK pathway. In this work, we demonstrated that hCG leptin induction through the MAPK signaling pathway is inhibited by PKA. We observed that ERK1/2 phosphorylation increased when hCG treatment was combined with H89. In view of these results, the involvement of the alternative cAMP/Epac signaling pathway was studied. We observed that a cAMP analogue that specifically activates Epac (CPT-OMe) stimulated leptin expression by hCG. In addition, the overexpression of Epac and Rap1 proteins increased leptin promoter activity and enhanced hCG. In conclusion, we provide evidence suggesting that hCG induction of leptin gene expression in placenta is mediated not only by activation of the MAPK signaling pathway but also by the alternative cAMP/Epac signaling pathway.  相似文献   

6.
Interleukin (IL)-23 and IL-12 are closely related in structure, and these cytokines regulate both innate and adaptive immunity. However, the precise signaling networks that regulate the production of each in Toxoplasma gondii-infected THP-1 monocytic cells, particularly the PI3K/AKT and MAPK signaling pathways, remain unknown. In the present study, T. gondii infection upregulated the expression of IL-23 and IL-12 in THP-1 cells, and both cytokines increased with parasite dose. IL-23 secretion was strongly inhibited by TLR2 monoclonal antibody (mAb) treatment in a dose-dependent manner and by TLR2 siRNA transfection, whereas IL-12 secretion was strongly inhibited by TLR4 mAb treatment dose-dependently and by TLR4 siRNA transfection. IL-23 production was dose-dependently inhibited by the PI3K inhibitors LY294002 and wortmannin, whereas IL-12 production increased dose-dependently. THP-1 cells exposed to live T. gondii tachyzoites underwent rapid p38 MAPK, ERK1/2 and JNK activation. IL-23 production was significantly upregulated by the p38 MAPK inhibitor SB203580 dose-dependently, whereas pretreatment with 10 μM SB203580 significantly downregulated IL-12 production. ERK1/2 inhibition by PD98059 was significantly downregulated IL-23 production but upregulated IL-12 production. JNK inhibition by SP600125 upregulated IL-23 production, but IL-12 production was significantly downregulated dose-dependently. T. gondii infection resulted in AKT activation, and AKT phosphorylation was inhibited dose-dependently after pretreatment with PI3K inhibitors. In T. gondii-infected THP-1 cells, ERK1/2 activation was regulated by PI3K; however, the phosphorylation of p38 MAPK and JNK was negatively modulated by the PI3K signaling pathway. Collectively, these results indicate that IL-23 production in T. gondii-infected THP-1 cells was regulated mainly by TLR2 and then by PI3K and ERK1/2; however, IL-12 production was mainly regulated by TLR4 and then by p38 MAPK and JNK. Our findings provide new insight concerning the intracellular networks of the PI3K/AKT and MAPK signaling cascades for regulating T. gondii-induced IL-23 and IL-12 secretion in human monocytic cells.  相似文献   

7.
8.
Mesenchymal stem cells (MSCs) mobilize membrane type-1 matrix metalloproteinase (MT1-MMP) to traffic through both 3-dimensional (3D) collagen as well as basement membrane barriers, but factors capable of regulating the expression and activity of the protease remain unidentified. Herein, we report that the MT1-MMP-dependent invasive activities of rat MSCs are controlled by PDGF-BB. Furthermore, PDGF-BB also stimulates MSC proliferation in 3D type I collagen via an MT1-MMP-dependent process that is linked to pericellular collagen degradation. PDGF-BB stimulates MT1-MMP expression at both the mRNA and protein levels in concert with ERK1/2 and PI3K/AKT activation. Inhibition of ERK1/2 or PI3K/AKT activity potently suppresses both MT1-MMP-dependent invasive and proliferative activities. Basement membrane invasion is likewise stimulated by PDGF-BB in an MT1-MMP-dependent manner via ERK1/2 and PI3K/AKT signaling. Taken together, these data serve to identify PDGF-BB as an important MSC agonist that controls invasive and proliferative activities via MT1-MMP-dependent processes that are regulated by the ERK1/2 and PI3K/AKT signaling pathways.  相似文献   

9.
Phospholipase D (PLD), a major source of lipid second messengers (phosphatidic acid, diglycerides) in many cell types, is tightly regulated by protein kinases, but only a few of them have been identified. We show here that protein kinase B (AKT) is a novel major signaling effector of PLD activity induced by the formylpeptide f-Met-Leu-Phe (fMLP) in human neutrophil-like HL-60 cells (dHL-60 cells). AKT inhibition with the selective antagonist AKTib1/2 almost completely prevented fMLP-mediated activity of PLD, its upstream effector ERK1/2, but not p38 MAPK. Immunoprecipitation studies show that phosphorylated AKT, ERK, and PLD2 form a complex induced by fMLP, which can be prevented by AKTib1/2. In cell-free systems, AKT1 stimulated PLD activity via activation of ERK. AKT1 actually phosphorylated ERK2 as a substrate (Km 1 μm). Blocking AKT activation with AKTib1/2 also prevented fMLP- but not phorbol 12-myristate 13-acetate-mediated NADPH oxidase activation (respiratory burst, RB) of dHL-60 cells. Impaired RB was associated with defective membrane translocation of NADPH oxidase components p67phox and p47phox, ERK, AKT1, AKT2, but not AKT3. Depletion of AKT1 or AKT2 with antisense oligonucleotides further indicates a partial contribution of both isoforms in fMLP-induced activation of ERK, PLD, and RB, with a predominant role of AKT1. Thus, formylpeptides induce sequential activation of AKT, ERK1/2, and PLD, which represents a novel signaling pathway. A major primarily role of this AKT signaling pathway also emerges in membrane recruitment of NOX2 components p47phox, p67phox, and ERK, which may contribute to assembly and activation of the RB motor system, NADPH oxidase.  相似文献   

10.
PACAP has opposing roles ranging from activation to inhibition of tumor growth and PACAP agonists/antagonists could be used in tumor therapy. In this study, the effect of PACAP stimulation on signaling pathways was investigated in MCF-7 human adenocarcinoma breast cancer cells. Results showed that MCF-7 cells express VPAC1 and VPAC2, but not PAC1, receptors. In addition, PACAP increased the phosphorylation levels of STAT1, Src and Raf within seconds, confirming their involvement in early stages of PACAP signaling whereas maximal phosphorylation of AKT, ERK and p38 was reached 10 to 20 min later. Moreover, selective inhibition of Src or PI3K resulted in a significant decrease in the phosphorylation of ERK and AKT, but not p38, demonstrating that PACAP signaling follows Src/Raf/ERK and PI3K/AKT pathways. On the other hand, selective inhibition of PLC or PKA resulted in a significant decrease in the phosphorylation of p38, but not AKT or ERK, indicating that PACAP signaling also follows the PLC and PKA/cAMP pathways. Furthermore, PACAP induced ROS through H₂O₂ production whereas pretreatment with NAC inhibitor decreased AKT and ERK phosphorylation, but not p38. Selective NOX2 inhibition affected Src/Raf/Erk and PI3K/Akt pathways, without affecting the p38/PLC/PKA pathway whereas other inhibitors (ML171, VAS2870) had no effect on PACAP induced ROS generation. On the other hand, PACAP induced calcium release, which was decreased by pretreatment with PLC inhibitor. Finally, PACAP stimulation promoted apoptosis by increasing Bax and decreasing Bcl2 expression. In conclusion, we demonstrated that PACAP signaling in MCF-7 cells follows the Src/Raf/ERK and PI3K/AKT pathways and is VPAC1 dependent in a ROS dependent manner, whereas it follows PLC and PKA/cAMP pathways and is VPAC2 dependent through p38 MAP kinase activation involving calcium.  相似文献   

11.
We have previously shown that type IV collagen (alpha1 (IV) and alpha2 (IV) collagen chains) (Col-IV) inhibits testosterone (T) production by Leydig cells (LC). The aim of this study was to analyze mechanism/s by which Col-IV exerts this effect. No significant differences in the specific binding of hCG to LH/hCG receptors in LC cultured on uncoated or Col-IV coated plates were observed. An inhibition of cAMP production in hCG-stimulated LC cultured on Col-IV was detected. The inhibition exerted by Col-IV on T production in response to hCG was also observed when cells were stimulated with 8Bromo-cAMP. In addition, conversion of steroid precursors to T in LC cultured on uncoated and Col-IV coated plates was similar. On the other hand, we detected an increase of ERK1/2 phosphorylation in hCG-stimulated LC cultured on Col-IV. Genistein added to LC cultures reduced the ability of Col-IV to increase ERK1/2 phosphorylation and reverted the inhibitory effect of Col-IV on T production. An inhibitor of MEK, PD98059 added to LC cultures also reverted the inhibitory effect of Col-IV on T production. A decrease of steroidogenic acute regulatory protein (StAR) expression in hCG-stimulated LC cultured on Col-IV coated plates that could be reverted by addition of PD98059 to the cultures was also demonstrated. All together these results suggest that Col-IV inhibits T production in LC by binding to integrins, activating ERK1/2, decreasing cAMP production and decreasing StAR expression.  相似文献   

12.
13.
We have recently succeeded in immortalizing rat granulosa cells by co- transfection with SV-40 DNA and the Ha-ras oncogene. These cells lost their response to gonadotropins, but expressed the cytochrome P450scc mitochondrial system enzymes and produced progesterone and 20 alpha- hydroxy-4-pregnan-3-one (20 alpha-OH-P) upon cAMP stimulation (Suh, B. S., and A. Amsterdam. 1990. Endocrinology. 127:2489-2500; Hanukoglu, I., B. S. Suh, S. Himmelhoch, and A. Amsterdam. 1990. J. Cell Biol. 111:1973-1981). In an attempt to restore the steroidogenic response to gonadotropins in immortalized cells, lutropin/choriogonadotropin (LH/CG- R) receptor expression plasmid was prepared by introducing the complete coding region of LH receptor cDNA (McFarland, K. C., R. Sprengel, H. S. Phillips, M. Kohler, N. Rosemblit, K. Nikolics, D. L. Segaloff, and P. H. Seeburg. 1989. Science (Wash. DC). 245:494-499) into a SV-40 early promoter based eucaryotic expression vector. Granulosa cells from preovulatory follicles were transfected with this LH receptor expression plasmid, together with SV-40 DNA and the Ha-ras oncogene. Cell lines obtained after this triple transfection accumulated cAMP in a dose-dependent manner in response to hCG. Moreover, they produced progesterone and 20 alpha-OH-P upon hCG stimulation with an ED50 of 125 pM and 75 pM, respectively, which is within the physiological range. Concomitantly with hCG induced differentiation, inhibition of cell proliferation was evident following stimulation with hormone concentrations as low as 40 pM. The number of hCG receptor sites per cell after numerous passages and several freezing and thawing cycles was 1.9 x 10(4), they showed a Kd of 180 pM. Stimulation with hCG induced pronounced morphological and biochemical changes in these cells including formation of mitochondrial located adrenodoxin, a marker enzyme for enhanced steroidogenesis. These findings make possible the expression in immortalized granulosa cells, of selectively mutated receptor molecules which preserve their steroidogenic potential, thereby opening the way to analysis of structure-function relationships of the receptor molecule.  相似文献   

14.
In our previous study, microvesicles (MVs) released from human Wharton''s jelly mesenchymal stem cells (hWJ-MSCs) retard the growth of bladder cancer cells. We would like to know if MVs have a similar effect on human renal cell carcinoma (RCC). By use of cell culture and the BALB/c nu/nu mice xeno-graft model, the influence of MVs upon the growth and aggressiveness of RCC (786-0) was assessed. Cell counting kit-8 (CCK-8) assay, incidence of tumor, tumor size, Ki-67 or TUNEL staining was used to evaluate tumor cell growth in vitro or in vivo. Flow cytometry assay (in vitro) or examination of cyclin D1 expression (in vivo) was carried out to determine the alteration of cell cycle. The aggressiveness was analyzed by Wound Healing Assay (in vitro) or MMP-2 and MMP-9 expression (in vivo). AKT/p-AKT, ERK1/2/p-ERK1/2 or HGF/c-MET expression was detected by real-time PCR or western blot. Our data demonstrated that MVs promote the growth and aggressiveness of RCC both in vitro and in vivo. In addition, MVs facilitated the progression of cell cycle from G0/1 to S. HGF expression in RCC was greatly induced by MVs, associated with activation of AKT and ERK1/2 signaling pathways. RNase pre-treatment abrogated all effects of MVs. In summary, induction of HGF synthesis via RNA transferred by MVs activating AKT and ERK1/2 signaling is one of crucial contributors to the pro-tumor effect.  相似文献   

15.
Forskolin, a potent activator of adenylyl cyclases, has been implicated in modulating angiogenesis, but the underlying mechanism has not been clearly elucidated. We investigated the signal mechanism by which forskolin regulates angiogenesis. Forskolin stimulated angiogenesis of human endothelial cells and in vivo neovascularization, which was accompanied by phosphorylation of CREB, ERK, Akt, and endothelial nitric oxide synthase (eNOS) as well as NO production and VEGF expression. Forskolin-induced CREB phosphorylation, VEGF promoter activity, and VEGF expression were blocked by the PKA inhibitor PKI. Moreover, phosphorylation of ERK by forskolin was inhibited by the MEK inhibitor PD98059, but not PKI. The forskolin-induced Akt/eNOS/NO pathway was completely inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, but not significantly suppressed by PKI. These inhibitors and a NOS inhibitor partially inhibited forskolin-induced angiogenesis. The exchange protein directly activated by cAMP (Epac) activator, 8CPT-2Me-cAMP, promoted the Akt/eNOS/NO pathway and ERK phosphorylation, but did not induce CREB phosphorylation and VEGF expression. The angiogenic effect of the Epac activator was diminished by the inhibition of PI3K and MEK, but not by the PKA inhibitor. Small interfering RNA-mediated knockdown of Epac1 suppressed forskolin-induced angiogenesis and phosphorylation of ERK, Akt, and eNOS, but not CREB phosphorylation and VEGF expression. These results suggest that forskolin stimulates angiogenesis through coordinated cross-talk between two distinct pathways, PKA-dependent VEGF expression and Epac-dependent ERK activation and PI3K/Akt/eNOS/NO signaling.  相似文献   

16.
17.
《Reproductive biology》2022,22(4):100705
Type I collagen is the most abundant extracellular matrix (ECM) protein in the mammalian ovary, and comprises two COL1A1 subunits and one COL1A2 subunit. Matrix metalloproteinase 1 (MMP1) is a typical collagenase of type I collagen, that can be detected in ovarian follicles and early corpus luteum. Previous studies demonstrated that MMP1-mediated degradation of type I collagen plays a functional role in regulating corpus luteum formation, and transforming growth factor β1 (TGF-β1) inhibits luteinization and progesterone production in granulosa cells (GCs). Whether TGF-β1 regulates the expression of MMP1, COL1A1, or the deposition of type I collagen during corpus luteum formation remains to be elucidated. This study aimed to investigate the molecular mechanisms through which TGF-β1 regulates MMP1 expression and type I collagen deposition in GCs. Our results show that TGF-β1 upregulates COL1A1 expressions and downregulates MMP1 expression. Inhibition approaches, including pharmacological inhibitors such as p38 inhibitor (SB203580), ERK1/2 inhibitor (U0126), AKT inhibitor (LY294002), and GSK-3β inhibitor (LiCl), as well as knockdown using siRNA specific to these genes, were used. Our results suggest that TGF-β1 decreases MMP1 production via an ALK5-mediated AKT/GSK-3β-dependent signaling pathway, and a decrease in MMP1 levels and an increase in COL1A1 levels synergistically promote type I collagen deposition in GCs. Collectively, these findings provide novel insights into the underlying molecular mechanisms by which TGF-β1 upregulates type I collagen deposition in GCs.  相似文献   

18.
Incubation of Candida albicans yeast cells with human luteinizing hormone (hLH), human chorionic gonadotrophin (hCG) or glucagon produced a significant rise in cAMP total levels. The effect of these hormones in permeabilized cells of the fungus produced a 2-3 fold increase in the Mg2+, GTP-dependent adenylyl cyclase activity as well as full activation of the cAMP-dependent protein kinase (PKA) activity. These results indicate that the interaction of the mammalian hormones with the fungus triggered the cAMP activation cascade in a similar way to that found in higher eukaryotic organisms.  相似文献   

19.
The role of calcium (Ca2+) and its dependent protease calpain in Aeromonas hydrophila-induced head kidney macrophage (HKM) apoptosis has been reported. Here, we report the pro-apoptotic involvement of calmodulin (CaM) and calmodulin kinase II gamma (CaMKIIg) in the process. We observed significant increase in CaM levels in A. hydrophila-infected HKM and the inhibitory role of BAPTA/AM, EGTA, nifedipine and verapamil suggested CaM elevation to be Ca2+-dependent. Our studies with CaM-specific siRNA and the CaM inhibitor calmidazolium chloride demonstrated CaM to be pro-apoptotic that initiated the downstream expression of CaMKIIg. Using the CaMKIIg-targeted siRNA, specific inhibitor KN-93 and its inactive structural analogue KN-92 we report CaM-CaMKIIg signalling to be critical for apoptosis of A. hydrophila-infected HKM. Inhibitor studies further suggested the role of calpain-2 in CaMKIIg expression. CaMK Kinase (CaMKK), the other CaM dependent kinase exhibited no role in A. hydrophila-induced HKM apoptosis. We report increased production of intracellular cAMP in infected HKM and our results with KN-93 or KN-92 implicate the role of CaMKIIg in cAMP production. Using siRNA to PKACA, the catalytic subunit of PKA, anti-PKACA antibody and H-89, the specific inhibitor for PKA we prove the pro-apoptotic involvement of cAMP/PKA pathway in the pathogenicity of A. hydrophila. Our inhibitor studies coupled with siRNA approach further implicated the role of cAMP/PKA in activation of extracellular signal-regulated kinase 1 and 2 (ERK 1/2). We conclude that the alteration in intracellular Ca2+ levels initiated by A. hydrophila activates CaM and calpain-2; both pathways converge on CaMKIIg which in turn induces cAMP/PKA mediated ERK 1/2 phosphorylation leading to caspase-3 mediated apoptosis of infected HKM.  相似文献   

20.
Membrane-type 1 matrix metalloproteinase (MT1-MMP), a transmembrane proteinase with an extracellular catalytic domain and a short cytoplasmic tail, degrades a variety of extracellular matrix (ECM) components. In addition, MT1-MMP activates intracellular signaling through proteolysis-dependent and independent mechanisms. We have previously shown that binding of tissue inhibitor of metalloproteinases-2 (TIMP-2) to MT1-MMP controls cell proliferation and migration, as well as tumor growth in vivo by activating the Ras—extracellular signal regulated kinase-1 and -2 (ERK1/2) pathway through a mechanism that requires the cytoplasmic but not the proteolytic domain of MT1-MMP. Here we show that in MT1-MMP expressing cells TIMP-2 also induces rapid and sustained activation of AKT in a dose- and time-dependent manner and by a mechanism independent of the proteolytic activity of MT1-MMP. Fibroblast growth factor receptor-1 mediates TIMP-2 induction of ERK1/2 but not of AKT activation; however, Ras activation is necessary to transduce the TIMP-2-activated signal to both the ERK1/2 and AKT pathways. ERK1/2 and AKT activation by TIMP-2 binding to MT1-MMP protects tumor cells from apoptosis induced by serum starvation. Conversely, TIMP-2 upregulates apoptosis induced by three-dimensional type I collagen in epithelial cancer cells. Thus, TIMP-2 interaction with MT1-MMP provides tumor cells with either pro- or anti-apoptotic signaling depending on the extracellular environment and apoptotic stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号