首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Contraction of canine ventricular trabeculae were recorded stimulation at a frequency of 0.5 Hz and after rest periods of 2 and 8 min to analyze the effect of the Ca channel agonist BAY k 8644, on sarcoplasmic reticular function. Short periods of rest interposed between steady trains of stimuli caused a potentiation of the postrest beat. This is believed to be due to the mobilization of activator Ca from the sarcoplasmic reticulum (SR). Racemic BAY k 8644 and its Ca channel agonist enantiomer, (-) BAY k 8644, both produced an increase in contraction in response to a steady train of stimuli but converted rest potentiation into rest depression. This has been interpreted as increased loss of Ca from the SR during diastole. Addition of Ca channel antagonists, (+) BAY k 8644, nitrendipine, or nifedipine, to reverse the agonistic effect of (-) and racemic BAY k 8644 on the Ca channel did not convert the rest depression into rest potentiation. In the presence of stimuli but converted rest potentiation into rest depression. This has been interpreted as increased loss of Ca from the SR during diastole.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Enzymatically isolated ventricular cells from rats, dogs, and rabbits were electrically stimulated and their membrane potentials were recorded simultaneously with their contractions. Specific pharmacological interventions were used to assess the relative roles of transsarcolemmal Ca2+ entry and the Ca2+ release by the sarcoplasmic reticulum in activating contractions, in these myocytes. We used ryanodine and caffeine to influence Ca2+ release by the sarcoplasmic reticulum, BAY K 8644 and epinephrine to increase Ca2+ entry through Ca2+ channels, and veratridine, ouabain, and monensin to increase Ca2+ entry through Na+-Ca2+ exchange. Ryanodine (1 microM) completely inhibited the shortenings in rat and dog myocytes, but the contractions in rabbit myocytes were much less sensitive to this alkaloid. Similar inhibitory effects of ryanodine were observed in the presence of various inotropic agents with two exceptions: caffeine's effect on the dog myocytes was relatively insensitive to ryanodine and the long-lasting tonic contractions that veratridine triggered in the myocytes of all three species remained completely unaffected by ryanodine. The data indicate that contractile activation in rat and dog ventricular cells is strongly dependent on Ca2+ release from the sarcoplasmic reticulum, while contractility in rabbit myocytes seems to be more dependent on Ca2+ entry through the sarcolemma. The ryanodine-resistant tonic contractions triggered in the myocytes of all three species in the presence of veratridine may be activated by an increased Ca2+ entry via Na+-Ca2+ exchange.  相似文献   

3.
Biphasic contractions were obtained in guinea-pig papillary muscle by inducing partial depolarization in K+-rich solution (17 mM) in the presence of 0.3 microM isoproterenol. Mn2+ ions inhibited the two components of contraction in a similar way. Nifedipine and particularly Cd2+ ions specifically inhibited the second component of contraction. Isoproterenol and BAY K 8644 markedly increased the amplitude of the second component (P2) of contraction. Nevertheless, a moderate positive inotropic effect of isoproterenol was found on the first component (P1) of contraction when excitability was restored by 0.2 mM Ba instead of isoproterenol. Acetylcholine and hypoxia decreased the amplitude of the second component of contraction to a greater extent. In the presence of digoxin or Na+-free solution, P1 was strongly increased. When sarcoplasmic reticular function was hindered by 1mM caffeine or in the presence of Ca2+-free Sr2+ solution, digoxin always induced a negative inotropic effect on P2. Inversely in these conditions the transient positive inotropic effect of Na+-free solution was strongly reduced. These results are consistent with the hypothesis that the late component of contraction is triggered by the slow inward Ca2+ current and that the early component is due to Ca2+ release from the sarcoplasmic reticulum.  相似文献   

4.
The purpose of this investigation was to examine the effects of the Ca2+ agonist BAY K 8644 and the Ca2+ antagonist nifedipine on halothane- and caffeine-induced twitch potentiation of mammalian skeletal muscle. Muscle fiber bundles were taken from normal Landrace pigs and exposed to BAY K 8644 (10 microM), nifedipine (1 microM), and low Ca2+ media administered alone and in combination with halothane (3%) or with increasing concentrations of caffeine (0.5-8.0 mM). Both BAY K 8644 and halothane potentiated twitches by approximately 80%; when they were administered in combination, twitch potentiation was nearly double that caused by either drug alone. In the presence of nifedipine, halothane increased twitches by less than 30%. Low Ca2+ significantly depressed twitches by approximately 25% but also inhibited halothane's inotropic effect. BAY K 8644 augmented caffeine potentiation but only at low caffeine concentrations (0.5-2.0 mM). Nifedipine and low Ca2+ failed to inhibit caffeine's inotropic effects. These results suggest that halothane potentiates twitches via a mechanism that involves or is influenced by extracellular Ca2+.  相似文献   

5.
Laser light scattered by nonstimulated rat cardiac muscle bathed in physiological saline containing a [Ca++] of 0.4-2.5 mM displays scattered-light intensity fluctuations (SLIF); the frequencies of both SLIF and resting force are Ca++ dependent. Direct inspection of these muscles by phase-contrast microscopy under incoherent illumination revealed the presence of spontaneous asynchronous cellular motions that are also Ca++ dependent. The physical properties of the scattered light are compatible with the hypothesis that SLIF are due to the diastolic motion, except for the dependence on scattering angle, which may be perturbed because the muscles are optically thick. To determine whether diastolic SLIF and motion are an intrinsic property of activated myofilaments, photon-counting auto-correlation of the scattered light was performed both in rat right-ventricular papillary muscles skinned with the detergent Triton X-100 (1%) and in muscles with intact membranes under conditions that alter cellular Ca++ fluxes. In skinned muscles activated over a range of Ca++ from threshold to maximum force production, neither SLIF nor asynchronous motion was observed when Ca++ was buffered to constant values. In intact muscles the frequency of SLIF and the amplitude of diastolic motion were (a) markedly increased by substituting K+ or Li+ for Na+ in the bath; (b) not altered by verapamil (1 microM); and (c) reversibly abolished by caffeine (greater than or equal to 10 mM). These properties are exactly those of mechanical oscillations that have been observed in isolated cardiac cell fragments, which are the result Ca++ oscillations caused by Ca++ release from the sarcoplasmic reticulum (SR). We infer that mechanical oscillations caused by spontaneous Ca++-induced Ca++ release from the SR occur in intact nonstimulated cardiac muscle even in the absence of Ca++ overload and are the principle cause of SLIF, and that myoplasmic [Ca++] in "resting" muscle is not in a microscopic steady state.  相似文献   

6.
Depolarization of PC-12 pheochromocytoma cells with K+ produces an immediate increase in catecholamine release. The stimulation of release is blocked by Co2+, removal of extracellular Ca2+ or by dihydropyridine drugs such as nitrendipine. Release is enhanced by other dihydropyridines such as BAY K8644. Release is accompanied by a voltage dependent uptake of 45Ca2+ which is also blocked by Co2+ or nitrendipine and enhanced by BAY K8644. The phorbol ester phorbol 12-myristate-13-acetate (TPA) in the range 10(-9)-10(-6) M produced little effect by itself but augmented the K+ evoked release of catecholamine. An analog of TPA which does not activate protein kinase C was ineffective. In contrast, TPA in the same concentration range blocked influx of 45Ca2+ induced by 70 mM K+ or 70 mM K+/BAY K8644. 45Ca2+ influx produced by A23187 was not blocked by TPA. The results suggest a system by which protein kinase C may regulate the output of transmitters from secretory cells.  相似文献   

7.
Calcium and BAY K 8644 acutely stimulate calcitonin secretion by influx of extracellular calcium (Ca) through voltage-dependent calcium channels, leading to an increase in cytosolic free Ca. Repetitive exposure to BAY K 8644 (10(-6) M) resulted in an increase in calcitonin (CT) secretion in the rat C-cell line (rMTC 6-23) lasting 9 hours, in comparison to that of 3 mM Ca2+ which lasted 6 hours. Equimolar concentration of nifedipine did not inhibit the stimulatory effect of BAY K 8644 as compared to the nifedipine only group. The decrease in stimulated CT secretion during long-term exposure to BAY K 8644 is due to desensitization of cells which may be attributed to down-regulation of dihydropyridine receptors. After 12 h exposures to 3 mM Ca2+ alone, BAY K 8644 (10(-6) M) alone or in combination with nifedipine (10(-6) M), CT content decreased below the control level, indicating a decrease in synthesis. Overall cellular protein content was not affected by the test agents. Repetitive exposure of C-cells to BAY K 8644 revealed a desensitization of the stimulatory effect on CT secretion and a decrease in CT cell content.  相似文献   

8.
In skeletal and cardiac muscle cells, specific isoforms of the Ryanodine receptor channels mediate Ca2+ release from the sarcoplasmic reticulum. These channels are highly susceptible to redox modifications, which regulate channel activity. In this work, we studied the effects of Ca2+ (endogenous agonist) and Mg2+ (endogenous inhibitor) on the kinetics of Ca2+ release from sarcoplasmic reticulum vesicles isolated from skeletal or cardiac mammalian muscle. Native skeletal vesicles exhibited maximal stimulation of release kinetics by 10-20 microM [Ca2+], whereas in native cardiac vesicles, maximal stimulation of release required only 1 microM [Ca2+]. In 10 microM [Ca2+], free [Mg2+] < 0.1 mM produced marked inhibition of release from skeletal vesicles but free [Mg2+] < or = 0.8 mM did not affect release from cardiac vesicles. Incubation of skeletal or cardiac vesicles with the oxidant thimerosal increased their susceptibility to stimulation by Ca2+ and decreased the inhibitory effect of Mg2+ in skeletal vesicles. Sulfhydryl-reducing agents fully reversed the effects of thimerosal. The endogenous redox species, glutathione disulfide and S-nitrosoglutathione, also stimulated release from skeletal sarcoplasmic reticulum vesicles. In 10 microM [Ca2+], 35S-nitrosoglutathione labeled a protein fraction enriched in release channels through S-glutathiolation. Free [Mg2+] 1 mM or decreasing free [Ca2+] to the nM range prevented this reaction. Possible physiological and pathological consequences of redox modification of release channels on Ca2+ signaling in heart and muscle cells are discussed.  相似文献   

9.
Cadmium uptake and toxicity via voltage-sensitive calcium channels   总被引:14,自引:0,他引:14  
The mechanism of cellular uptake of cadmium, a highly toxic metal ion, is not known. We have studied cadmium uptake and toxicity in an established secretory cell line, GH4C1, which has well characterized calcium channels. Nimodipine, an antagonist of voltage-sensitive calcium channels, protected cells against cadmium toxicity by increasing the LD50 for CdCl2 from 15 to 45 microM, whereas the calcium channel agonist BAY K8644 decreased the LD50. Organic calcium channel blockers of three classes protected cells from cadmium toxicity at concentrations previously shown to block high K+-induced 45Ca2+ influx and secretion. Half-maximal protective effects were obtained at 20 nM nifedipine, 4 microM verapamil, and 7 microM diltiazem. Increasing the extracellular calcium concentration from 20 microM to 10 mM also protected cells from cadmium by causing a 5-fold increase in the LD50 for CdCl2. Neither the calcium channel antagonist nimodipine nor the agonist BAY K8644 altered intracellular metallothionein concentrations, while cadmium caused a 9-20-fold increase in metallothionein over 18 h. Cadmium was a potent blocker of depolarization-stimulated 45Ca2+ uptake (IC50 = 4 microM), and the net uptake of cadmium measured with 109Cd2+ was less than 0.3% that of calcium. Although the rate of cadmium uptake was low relative to that of calcium, entry via voltage-sensitive calcium channels appeared to account for a significant portion of cadmium uptake; 109Cd2+ uptake at 30 min was increased 57% by high K+/BAY K8644, which facilitates entry through channels. Furthermore, calcium channel blockade with 100 nM nimodipine decreased total cell 109Cd2+ accumulation after 24 h by 63%. These data indicate that flux of cadmium through dihydropyridine-sensitive, voltage-sensitive calcium channels is a major mechanism for cadmium uptake by GH4C1 cells, and that pharmacologic blockade of calcium channels can afford dramatic protection against cadmium toxicity.  相似文献   

10.
Reduction of the transsarcolemmal [Na] gradient in rabbit cardiac muscle leads to an increase in the force of contraction. This has frequently been attributed to alteration of Ca movements via the sarcolemmal Na/Ca exchange system. However, the specific mechanisms that mediate the increased force at individual contractions have not been clearly established. In the present study, the [Na] gradient was decreased by reduction of extracellular [Na] or inhibition of the Na pump by either the cardioactive steroid acetylstrophanthidin or by reduction of extracellular [K]. Contractile performance and changes in extracellular Ca (sensed by double-barreled Ca-selective microelectrodes) were studied in order to elucidate the underlying basis for the increase in force. In the presence of agents that inhibit sarcoplasmic reticulum (SR) function (10 mM caffeine, 100-500 nM ryanodine), reduction of the [Na] gradient produced increases in contractile force similar to that observed in the absence of caffeine or ryanodine. It is concluded that an intact, functioning SR is not required for the inotropic effect of [Na] gradient reduction (at least in rabbit ventricle). However, this does not exclude a possible contribution of enhanced SR Ca release in the inotropic response to [Na] gradient reduction in the absence of caffeine or ryanodine. Acetylstrophanthidin (3-5 microM) usually leads to an increase in the magnitude of extracellular Ca depletions associated with individual contractions. However, acetylstrophanthidin can also increase extracellular Ca accumulation during the contraction, especially at potentiated contractions. This extracellular Ca accumulation can be suppressed by ryanodine and it is suggested that this apparent enhancement of Ca efflux is secondary to an enhanced release of Ca from the SR. Under conditions where Ca efflux during contractions is minimized (after a rest interval in the presence of ryanodine), acetylstrophanthidin increased both the rate and the extent of extracellular Ca depletions. Thus, acetylstrophanthidin can increase both Ca influx and Ca efflux during the cardiac muscle contraction. These results can be explained by a simple model where the direction of net Ca flux via Na/Ca exchange during the action potential is determined by the changes in reversal potential of the Na/Ca exchange. Reduction of the [Na] gradient may well lead to net cellular Ca uptake (via Na/Ca exchange) and may also elevate the resting intracellular [Ca].(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Increases in contraction amplitude following rest or in elevated extracellular Ca(2+) concentration ([Ca(2+)]) have been attributed to increased sarcoplasmic reticulum (SR) Ca(2+) stores and/or increased trigger Ca(2+). However, either manipulation also may elevate diastolic [Ca(2+)]. The objective of this study was to determine whether elevation of diastolic [Ca(2+)] could contribute to positive inotropy in isolated ventricular myocytes. Voltage-clamp experiments were conducted with high-resistance microelectrodes in isolated myocytes at 37 degrees C. Intracellular free [Ca(2+)] was measured with fura-2, and cell shortening was measured with an edge detector. SR Ca(2+) stores were assessed with 10 mM caffeine (0 mM Na(+), 0 mM Ca(2+)). Following a period of rest, cells were activated with trains of pulses, which generated contractions of increasing amplitude, called positive staircases. Positive staircases were accompanied by increasing diastolic [Ca(2+)] but no change in Ca(2+) transient amplitudes. When extracellular [Ca(2+)] was elevated from 2.0 to 5.0 mM, resting intracellular [Ca(2+)] increased and resting cell length decreased. Amplitudes of contractions and L-type Ca(2+) current increased in elevated extracellular [Ca(2+)], although SR Ca(2+) stores, assessed by rapid application of caffeine, did not increase. Although Ca(2+) transient amplitude did not increase in 5.0 mM extracellular [Ca(2+)], diastolic [Ca(2+)] continued to increase with increasing extracellular [Ca(2+)]. These data suggest that increased diastolic [Ca(2+)] contributes to positive inotropy following rest or with increasing extracellular [Ca(2+)] in guinea pig ventricular myocytes.  相似文献   

12.
P Vigne  M Lazdunski  C Frelin 《FEBS letters》1989,249(2):143-146
Endothelin-1 induces a positive inotropic response in isolated left atria of the rat with an IC50 value of 20 nM. The contractile effect of endothelin is larger than that of other inotropic hormones such as phenylephrine and epinephrine and smaller than that of Bay K8644. In the spontaneously active right atria, endothelin induces a positive inotropic effect with no chronotropic effect. Endothelin does not modify intracellular levels of cAMP under basal conditions or after stimulation with isoproterenol but stimulates the formation of inositol phosphates. Mobilization of inositol phospholipids is observed in the same range of concentrations as for the contractile action of endothelin. The contractile action of endothelin is not mediated by protein kinase C. It is antagonized by blockers of L-type Ca2+ channels, low external Ca2+ concentrations and drugs such as caffeine and ryanodine that interfere with Ca2+ release by the sarcoplasmic reticulum.  相似文献   

13.
Bromo-eudistomin D induced a contraction of the chemically skinned fibers from skeletal muscle at concentrations of 10 microM or more. This contractile response to bromo-eudistomin D was completely blocked by 10 mM procaine. The extravascular Ca2+ concentrations of the heavy fractions of the fragmented sarcoplasmic reticulum (HSR) were measured directly by a Ca2+ electrode to examine the effect of bromo-eudistomin D on the sarcoplasmic reticulum. After the HSR was loaded with Ca2+ by the ATP-dependent Ca2+ pump, the addition of 10 microM bromo-eudistomin D caused Ca2+ release that was followed by spontaneous Ca2+ reuptake. In the presence of 2 microM ruthenium red or 4 mM MgCl2, no Ca2+ release was induced by 20 microM bromo-eudistomin D. The rate of 45Ca2+ efflux from HSR, which had been passively preloaded with 45Ca2+, was accelerated 7 times by 10 microM bromo-eudistomin D. The concentration of bromo-eudistomin D for half-maximum effect on the apparent efflux rate was 1.5 microM, while that of caffeine was 0.6 mM. The bromo-eudistomin D-evoked efflux of 45Ca2+ was abolished by 2 microM ruthenium red or 0.5 mM MgCl2. Bromo-eudistomin D was found to be 400 times more potent than caffeine in its Ca2+-releasing action but was similar in its action in other respects. These results indicate that bromo-eudistomin D may induce Ca2+ release from the sarcoplasmic reticulum through physiologically relevant Ca2+ channels.  相似文献   

14.
We hypothesized that the occurrence of spontaneous Ca2+ release from the sarcoplasmic reticulum (SR), in diastole, might be a mechanism for the saturation of twitch potentiation common to a variety of inotropic perturbations that increase the total cell Ca. We used a videomicroscopic technique in single cardiac myocytes to quantify the amplitude of electrically stimulated twitches and to monitor the occurrence of the mechanical manifestation of spontaneous SR Ca2+ release, i.e., the spontaneous contractile wave. In rat myocytes exposed to increasing bathing [Ca2+] (Cao) from 0.25 to 10 mM, the Cao at which the peak twitch amplitude occurred in a given cell was not unique but varied with the rate of stimulation or the presence of drugs: in cells stimulated at 0.2 Hz in the absence of drugs, the maximum twitch amplitude occurred in 2 mM Cao; a brief exposure to 50 nM ryanodine before stimulation at 0.2 Hz shifted the Cao of the maximum twitch amplitude to 7 mM. In cells stimulated at 1 Hz in the absence of drugs, the maximum twitch amplitude occurred in 4 mM Cao; 1 microM isoproterenol shifted the Cao of the maximum twitch amplitude to 3 mM. Regardless of the drug or the stimulation frequency, the Cao at which the twitch amplitude saturated varied linearly with the Cao at which spontaneous Ca2+ release first occurred, and this relationship conformed to a line of identity (r = 0.90, p = less than 0.001, n = 25). The average peak twitch amplitude did not differ among these groups of cells. In other experiments, (a) the extent of rest potentiation of the twitch amplitude in rat myocytes was also limited by the occurrence of spontaneous Ca2+ release, and (b) in both rat and rabbit myocytes continuously stimulated in a given Cao, the twitch amplitude after the addition of ouabain saturated when spontaneous contractile waves first appeared between stimulated twitches. A mathematical model that incorporates this interaction between action potential-mediated SR Ca2+ release and the occurrence of spontaneous Ca2+ release in individual cells predicted the shape of the Cao-twitch relationship observed in other studies in intact muscle. Thus, the occurrence of spontaneous SR Ca2+ release is a plausible mechanism for the saturation of the inotropic response to Ca2+ in the intact myocardium.  相似文献   

15.
The muscarinic agonist carbachol has previously been shown to reverse positive inotropic responses of rabbit left atrial strips to equiactive doses of the beta-adrenoceptor agonist isoproterenol and to the alpha-adrenoceptor agonist phenylephrine. Responses to phenylephrine were measured in the presence of the beta-blocker timolol. However, carbachol was not able to reverse the increase in tension produced by elevating the extracellular Ca2+ concentration. To gain more information about the nature of the functional interaction of carbachol with alpha- and beta-receptor stimulants in left atria, the interaction of carbachol with these agonists, as well as with elevated Ca2+ and the Ca2+ activator compound BAY K 8644, was compared with that of the Ca2+ antagonists D-600 and nifedipine. The results demonstrate that the Ca2+ antagonists exhibit a selectivity similar to that of carbachol, in that responses to both isoproterenol and phenylephrine plus timolol were blocked by low concentrations of D-600 and nifedipine, which had no effect on positive inotropic responses to elevated Ca2+. Higher concentrations of these antagonists shifted the Ca2+ dose-response curve to the right. In addition, although phenylephrine and BAY K 8644 increased tension to a similar extent, responses to phenylephrine were more sensitive than responses to BAY K 8644 to inhibition by both carbachol and D-600. These similarities between the effects of low concentrations of D-600 and nifedipine and those of carbachol are consistent with the hypothesis that carbachol antagonizes responses to alpha- and beta-receptor stimulation in left atria primarily by blocking increases in Ca2+ influx produced by these agonists.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We observed the effects of ryanodine on the aequorin luminescence, membrane potential, and contraction of canine cardiac Purkinje fibers and ferret ventricular muscle. In canine Purkinje fibers, ryanodine (10 nM to 1 microM) abolished the spontaneous spatiotemporal fluctuations in [Ca2+] that occur as a result of Ca2+-induced Ca2+ release from the sarcoplasmic reticulum (SR) during exposure to low-Na+ solutions. Ryanodine strongly reduced the twitch and both components of the intracellular aequorin luminescence signal (L1 and L2), which normally accompanies contraction. The small luminescence signals that remained in ryanodine could be abolished by a Ca2+ channel blocker (nitrendipine, 10 microM). The plateau phase of the action potential was reduced by nitrendipine in the presence of ryanodine, which suggests that Ca2+ current was not blocked by ryanodine. In ferret ventricular tissue, ryanodine (1 microM) prolonged the action potential and reduced the peak amplitudes of both the aequorin transient and the twitch, while greatly prolonging the time-to-peak of both signals. Increases in extracellular [Ca2+] restored the peak amplitudes of the twitch and the aequorin luminescence, but did not restore the normal time-to-peak. The results show that in both tissues, the negative inotropic effect of ryanodine is due to the reduction of the intracellular [Ca2+] transient. Inasmuch as neither Ca2+ entry via surface membrane Ca2+ channels nor Na+-Ca2+ exchange appears to be blocked by ryanodine, the most probable cause of reduction of the [Ca2+] transient is an inhibition of Ca2+ release by the SR.  相似文献   

17.
Under certain conditions of Ca2+ loading, cardiac myocytes, both isolated and in intact tissue, exhibit spontaneous, oscillatory Ca2+ transients due to Ca2+ release from the sarcoplasmic reticulum. These transients are not triggered by depolarization of the sarcolemma, though they themselves can generate depolarizing currents which can reach threshold to trigger an action potential. Spontaneous Ca2+ release occurs locally in a subcellular region and, once initiated, can propagate through the cell with a velocity of roughly 100 microns/s. Locally, the cytosolic Ca2+ concentration during spontaneous release is probably comparable to that during an electrically excited twitch. The mechanisms of initiation and propagation of spontaneous Ca2+ release are uncertain, but are probably closely related to the Ca2+-induced Ca2+ release which plays a role in normal excitation-contraction coupling. Spontaneous and triggered Ca2+ release appear to compete for a common pool of releasable sarcoplasmic reticulum Ca2+, with the result that spontaneous Ca2+ release imposes a beat-rate-dependent limit on the inotropic effect of interventions which increase intracellular Ca2+. Mathematical modeling of this effect shows that it can also explain increased diastolic tone, the development of aftercontractions and oscillatory restitution of contractility in states of 'Ca2+ overload'. Spontaneous Ca2+ release is a cause of arrhythmias, and may well play a role in some cases of systolic and diastolic myocardial dysfunction.  相似文献   

18.
Depolarization of differentiated neuroblastoma X glioma (NG108-15) cells with KCl (50 mM) or veratridine (50 microM) stimulated Ca2+ accumulation, was detected by quin 2 fluorescence. Intracellular Ca2+ concentrations ([Ca2+]i) were elevated about threefold from 159 +/- 7 to 595 +/- 52 nM (n = 12). Ca2+ entry evoked by high extracellular K+ concentration ([K+]o) was voltage-dependent and enhanced by the dihydropyridine agonists, BAY K 8644 and CGP 28 392, in a dose-dependent manner. CGP 28 392 was less potent and less efficacious than BAY K 8644. The (+) and (-) stereoisomers of 202-791 showed agonist and antagonist properties, respectively. (+)-202-791 was less potent, but as efficacious as BAY K 8644. In the absence of KCl, BAY K 8644 had no effect on Ca2+ entry. Voltage-sensitive calcium channel (VSCC) activity was blocked by organic Ca2+ channel antagonists (nanomolar range) both before and after KCl treatment and also by divalent metal cations (micromolar range). High [K+]o-induced Ca2+ accumulation was dependent on external Ca2+, but not on external Na+ ions ([Na]o), and was insensitive to both tetrodotoxin (3 microM) and tetraethylammonium (10 microM). In contrast, veratridine-induced Ca2+ accumulation required [Na+]o, and was blocked by tetrodotoxin, but not by nimodipine (1 microM). Veratridine-induced Ca2+ accumulation was slower (approximately 45 s), smaller in magnitude (approximately 30% of [K+]o-induced Ca2+ entry), and also enhanced by BAY K 8644 (approximately 50%). VSCC were identified in neuronal hybrid (NG108-15 and NCB-20) cells, but not in glial (C6BU-1), renal epithelial (MDCK), and human astrocytoma (1321N1) cells. NG108-15 cells differentiated with 1.0 mM dibutyryl cyclic AMP showed greater VSCC activity than undifferentiated cultures. These results suggest that cultured neural cells provide a useful system to study Ca2+ regulation via ion channels.  相似文献   

19.
Rabbit gall-bladder epithelial cells were isolated by a combination of Ca2+ omission, enzymatic treatment, and mechanical detachment and had a viability of 96-98% and well preserved morphology. Measurements of cytosolic free Ca2+ concentration ([Ca2+]i) in these cells with the Ca2+-fluorescent indicator fura-2 demonstrated a resting [Ca2+]i level of 115 +/- 12 nM. When used in concentrations which inhibit rabbit gall-bladder isosmotic NaCl absorption (1-100 microM), the Ca2+-channel activator BAY K 8644 caused a dose-dependent increase in the epithelial [Ca2+]i to a maximal value of 850 nM. The effect was dependent on extracellular Ca2+, and was not altered by 1 microM L-verapamil. Depolarization of the epithelial cells with KCl had no effect on [Ca2+]i. The results suggest that BAY K 8644 activates a Ca2+ influx which is not dependent on voltage-gated channels. Cytosolic Ca2+ may be involved in the regulation of isosmotic NaCl absorption in the mammalian gall-bladder.  相似文献   

20.
Even though there are a few studies dealing with the cardiac effects of amylin, the mechanisms of amylin-induced positive inotropy are not known well. Therefore, we investigated the possible signaling pathways underlying the amylin-induced positive inotropy and compared the cardiac effects of rat amylin (rAmylin) and human amylin (hAmylin).Isolated rat hearts were perfused under constant flow condition and rAmylin or hAmylin was infused to the hearts. Coronary perfusion pressure, heart rate, left ventricular developed pressure and the maximum rate of increase of left ventricular pressure (+dP/dtmax) and the maximum rate of pressure decrease of left ventricle (-dP/dtmin) were measured.rAmylin at concentrations of 1, 10 or 100 nM markedly decreased coronary perfusion pressure, but increased heart rate, left ventricular developed pressure, +dP/dtmax and -dP/dtmin. The infusion of H-89 (50 μM), a protein kinase A (PKA) inhibitor did not change the rAmylin (100 nM)-induced positive inotropic effect. Both diltiazem (1 μM), an L-type Ca2+ channel blocker and ryanodine (10 nM), a sarcoplasmic reticulum (SR) Ca2+ release channel opener completely suppressed the rAmylin-induced positive inotropic effect, but staurosporine (100 nM), a potent protein kinase C (PKC) inhibitor suppressed it partially. hAmylin (1, 10 and 100 nM) had no significant effect on coronary perfusion pressure, heart rate and developed pressure, +dP/dtmax and -dP/dtmin.We concluded that rAmylin might have been produced vasodilatory, positive chronotropic and positive inotropic effects on rat hearts. Ca2+ entry via L-type Ca2+ channels, activation of PKC and Ca2+ release from SR through ryanodine-sensitive Ca2+ channels may be involved in this positive inotropic effect. hAmylin may not produce any significant effect on perfusion pressure, heart rate and contractility in isolated, perfused rat hearts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号