首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Populus nigra L. var betulifolia and Salix alba L. var alba are early successional riparian tree species threatened throughout Continental Europe by significant changes to the natural physical processes governing their natural habitat – geomorphologically active floodplains. River management activities have dramatically altered natural patterns of river flow and rates of sediment delivery along rivers, with possible consequences for the balance between sexual and asexual regeneration strategies in these species. Conservation strategies will benefit from a greater understanding of the ways in which dynamic physical processes on the floodplain influence sexual and asexual recruitment. This paper describes a field survey investigating the relative abundance and spatial distributions of P. nigra and S. alba sexual and asexual recruits during the first years of establishment along a braided gravel bed river. Sexual and asexual recruits were identified by excavation along transects in a wet and a dry field season and distributional differences were described in terms of elevation on the floodplain, local sediment type and exposure to floodwaters. Regeneration was overwhelmingly from seed in the first 2–3 years following recruitment, but poor survival rates among sexual recruits saw a shift in the relative abundance of regeneration strategies over time. In relating hydrological data to recruitment, unseasonal flood disturbances had a negative effect on recruitment from seed and a positive effect on vegetative regeneration. Seedlings were associated with fine sediment deposits and were restricted primarily to low elevations on the flood plain, while asexual recruits had a wider spatial distribution. Certain microsite types were unique to either regeneration strategy.  相似文献   

2.
The life‐history traits of two species of pipefish (Syngnathidae) from seagrass meadows in New South Wales, Australia, were examined to understand whether they enhance resilience to habitat degradation. The spotted pipefish Stigmatopora argus and wide‐bodied pipefish Stigmatopora nigra exhibit some of the shortest life spans known for vertebrates (longevity up to 150 days) and rapid maturity (male S. argus 35 days after hatching (DAH) and male S. nigra at 16–19 DAH), key characteristics of opportunistic species. Growth rates of both species were extremely rapid (up to 2 mm day?1), with seasonal and sex differences in growth rate. It is argued that short life spans and high growth rates may be advantageous for these species, which inhabit one of the most threatened marine ecosystems on earth.  相似文献   

3.
Warren CR  Adams MA 《Oecologia》2005,144(3):373-381
The present study examines relative growth rate (RGR) and its determinants in seedlings of nine Eucalyptus species. Species were selected from mesic (1,800 mm a−1 rainfall) through to semi-arid habitats (300 mm a−1), and thus, notionally vary in “stress” tolerance. Seedlings were grown in a glasshouse during early summer and received between 33 mol and 41 mol PAR m−2 day−1 . The mean RGR varied among species—from a minimum of 66 mg g−1 day−1 in E. hypochlamydea to a maximum of 106 mg g−1 day−1 in E. delegatensis. RGR was positively related to rainfall at the sites of seed collection. Neither specific leaf area (SLA) nor net assimilation rate was related to rainfall or RGR. While the absence of relationships with SLA and net assimilation rate contrasts with other studies and species, we cannot rule out the effects of sample size (n=9 species) and modest ranges in SLA and RGR. The ratio of leaf mass to total mass (LMR) varied from 0.49±0.07 g g−1 in E. socialis to 0.74±0.04 g g−1 in E. delegatensis and was strongly positively related with rainfall (r 2=0.77). Interspecific differences in RGR were strongly related to LMR (positive relationship, r 2=0.50) and the rate of dry matter production per mol of leaf nitrogen (positive relationship, r 2=0.64). Hence, the slow RGR of low-rainfall species was functionally related to a lower growth rate per mol of leaf nitrogen than high-rainfall species. Furthermore, slow RGR of low-rainfall species was related to greater allocation to roots at the expense of leaves. Increasing allocation to roots versus leaves is likely an adaptation to soil and atmospheric water deficits, but one that comes at the expense of a slow RGR.  相似文献   

4.
Growth, photosynthesis, and Na+, K+, Ca2+, and Mg2+ distributions were examined in two-year-old hydroponically cultured Populus nigra and Populus alba cuttings exposed to salt stress (0, 50, or 100 mM NaCl) for four or six weeks and to nonaeration stress for one or three weeks, followed by a three-week aeration period in 2/5 Hoagland solution. Salt stress with 100 mM NaCl totally inhibited height increase in P. nigra cuttings. Combined salinity and nonaeration inhibited height increase to a greater degree than either stress alone in both species. Simple salt stress did not affect diameter increase in P. alba, whereas combined high salinity (100 mM NaCl) and nonaeration inhibited diameter increase. Growth and biomass accumulation were more sensitive to salt stress in P. nigra cuttings than in P. alba, although P. alba showed a more rapid decrease in photosynthesis in response to nonaeration stress. Ion distributions in the leaves and roots differed between species. P. alba was superior to P. nigra in terms of Na+ exclusion capacity, such that most of the absorbed Na+ was confined to the root system, with little reaching the leaves. The distributions of K+, Ca2+, and Mg2+ in the leaves and roots of each species under the two stressors were also analyzed. The lower Na+/K+ ratio in leaves indicated that P. alba was more tolerant to salt stress than P. nigra.  相似文献   

5.
Water-table depth variations alter root growth response and may affect whole-plant growth in arid and semi-arid regions. We examined how root biomass allocation and root morphological traits affect the leaf physiological and morphological traits and whole-plant growth of Populus alba growing under different water tables. We exposed 1-year-old P. alba cuttings to contrasting soil–water conditions via water table changes in a greenhouse for 90 days. We examined relationships among net assimilation rate (NAR) and other growth components obtained from our published data for trees harvested every 30 days. Strongly negative correlations were found between RMR and root morphological traits. Root mass ratio had a strong negative relationship with LMR, and proportion of fine-root biomass per total root biomass was positively correlated with SLA and NAR. Both NAR and leaf area ratio were important determinants of variation in relative growth rate (RGR). Leaf mass ratio (LMR) and specific leaf area (SLA) were positively correlated with RGR; the correlation was stronger in the case of LMR. Along a water-table gradient, negative relationships between root growth responses are likely to indirectly influence RGR through changes in NAR, LMR, and SLA.  相似文献   

6.
For species to persist on floodplains and in temporary wetlands in arid climates, where large and unpredictable water level fluctuations are common, at least one life history stage must be able to survive inundation. We investigated the survival and performance (RGR, total biomass and above-to-belowground biomass (A:B)) of three common and often coexisting arid zone floodplain species: Xanthium strumarium, Cyperus gymnocaulos and Ludwigia peploides. Observations suggested the species had different responses to inundation, which was tested in a controlled pond experiment. Plants were held at three elevations (+ 10 cm, ? 20 and ? 70 cm) and subjected to three hydrological regimes (static 90 cm, 1 and 5 cm day?1 inundation) for 16 weeks. Xanthium strumarium died when completely inundated for longer than 4 weeks but when partially flooded survived, showed lower growth rates, increased A:B and produced adventitious roots. C. gymnocaulos showed reduced growth rates when partially flooded and senesced to rhizomes when completely inundated for longer than 4 weeks, which re-sprouted after inundation pressure was removed. L. peploides responded positively to flooding with increased A:B and the production of adventitious roots. The species exhibited three contrasting responses to inundation, which do not necessarily fit neatly within existing water regime functional classification frameworks.  相似文献   

7.
《Aquatic Botany》2007,86(3):280-284
We evaluated one-sided competition from the floating-leaved plant Nymphoides peltata (non-indigenous in Sweden) on three submerged plant species, Ceratophyllum demersum, Elodea canadensis and Ranunculus circinatus, in a controlled experiment. The three submerged species were allowed to grow for 21 days in the absence of N. peltata and with the species present at densities of approximately 33, 66 and 100% cover. All species retained a positive relative growth rate (RGR) based on length at all N. peltata densities, but responded with negative growth based on weight for several treatments. C. demersum achieved RGR of 0.03 day−1 in the absence of N. peltata, RGR of 0.02 day−1 in the lowest N. peltata density but negative RGR in the two denser treatments. E. canadensis responded similarly with RGR of 0.04 day−1 in the absence of N. peltata, RGR of 0.01 day−1 in the lowest N. peltata density and negative RGR in the two denser treatments. R. circinatus, on the other hand, never achieved positive RGR based on weight. These results suggest that one-sided competition from floating-leaved plants has a profound effect on the submerged plant community.  相似文献   

8.
D. Adams  A. E. Douglas 《Oecologia》1997,110(4):528-532
To explore the effect of rearing-plant species on the contribution of the symbiotic bacterium, Buchnera, to aphid performance, larvae of Aphis fabae that contained the bacteria (symbiotic aphids) and larvae experimentally deprived of the bacteria (aposymbiotic aphids) were reared on 16 plant species. Mortality of aphids was low on most plant species. The relative growth rate (RGR) of the larvae varied with plant species, and was generally depressed by elimination of the bacteria; the mean values of RGR varied between 0 and 0.29 μg μg−1 day−1 for symbiotic aphids and 0 and 0.17 μg μg−1 day−1 for aposymbiotic aphids. The extent to which RGR was depressed by aposymbiosis varied significantly between plant species, suggesting that aphid host plant may influence the contribution of the bacteria to plant utilisation. It is proposed that the bacteria may be particularly important on plants with phloem sap of high amino acid content of low quality, i.e. low concentrations of essential amino acids. Received: 18 August 1996 / Accepted: 13 January 1997  相似文献   

9.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

10.
This study investigated the response of freshwater wetland vegetation to hydrological driving factors by assessing collective vegetation variables, traits of dominant plant populations and hydrological and hydrochemical variables, repeat-sampled within wetland sites across Scotland and northern England. Sampling was conducted at 55 permanent sample stations located along 11 independent transects. Eco-hydrological interactions were investigated using a regression-based modelling approach. Facets of the water-table dynamic (e.g., level of drawdown, level of fluctuation), along with vegetation abundance (e.g., biomass, stem density) and diversity (e.g., species richness) values, were used to build predictive models. Of the models predicting vegetation characteristics, the greatest predictive power was R 2 = 0.67 (p < 0.001) for a model predicting stem density (m−2). Conversely, vegetation variables proved useful for predicting characteristics of the water-table environment. In this instance, the greatest predictive power was R 2 = 0.79 (p < 0.001) for a model predicting minimum water table level (i.e. maximum level of drawdown). The models were tested using data collected during 2000 from repeat sites and independent sites. This approach might be successfully applied for the purposes of integrated eco-hydrological management and monitoring of freshwater wetland vegetation.  相似文献   

11.
An increasing number of recent studies indicate that multiple interacting factors can affect the invasion of plants. However, few studies have focused on asexual propagation and the interaction of propagation with environmental factors that regulate the invasive potential of introduced exotic species in aquatic habitats. This study was designed to investigate the differences in asexual propagation between introduced exotic and non-invasive native aquatic macrophytes in nutrient-poor and nutrient-rich sediments and to test the hypothesis that differences in asexual propagation (stem fragment production) and propagule establishment between introduced exotic and non-invasive native macrophytes are driven by sediment nutrient levels. Three exotic aquatic macrophytes (Elodea nuttallii, Myriophyllum aquaticum, and M. propinquum) recently introduced to China and their non-invasive native counterparts (Hydrilla verticillata, Moguraense, and M. ussuriense) were used for comparison in nutrient-poor (TN 0.59 and TP 0.03 mg g−1) and nutrient-rich (TN 2.35 and TP 0.10 mg g−1) sediments. After 8 weeks of growth, the exotic species tended to produce more total biomass, branch biomass and apical shoots and have higher relative growth rate (RGR) than their native counterparts in nutrient-rich sediment. Rooting efficiency and root growth of exotic fragments were higher than that of native counterparts in nutrient-rich sediment, although the survival rates of fragments did not differ between native and exotic species. In addition, superior traits (rooting efficiency and root growth) of exotic species were also observed in nutrient-poor sediment, but to a lesser degree than in nutrient-rich sediment. These results suggest that asexual propagation of these three introduced exotic macrophytes is more effective in nutrient-rich sediment than in nutrient-poor sediment in China.  相似文献   

12.
Recovery of Acropora palmata from its currently imperiled status depends on recruitment, a process which is poorly documented in existing Caribbean coral population studies. A. palmata is thought to be well adapted to proliferate through the recruitment of fragments resulting from physical disturbances, such as moderate intensity hurricanes. This study monitored fifteen 150 m2 fixed study plots on the upper Florida Keys fore-reef for asexual and sexual recruitment from 2004 to 2007. Between July and October 2005, 4 hurricanes passed by the Florida Keys, producing wind speeds on the reef tract of 23 to 33 m s−1. Surveys following the hurricanes documented an average loss of 52% estimated live tissue area within the study plots. The percentage of “branching” colonies in the population decreased from 67% to 42% while “remnant” colonies (isolated patches of tissue on standing skeleton) increased from 11% to 27%. Although some detached branches remained as loose fragments, more than 70% of the 380 fragments observed in the study plots were dead or rapidly losing tissue 3 weeks after Hurricane Dennis. Over the course of the study, only 27 fragments became attached to the substrate to form successful asexual recruits. Meanwhile, of the 18 new, small encrusting colonies that were observed in the study, only 2 were not attributable to asexual origin (i.e., remnant tissue from colonies or fragments previously observed) and are therefore possible sexual recruits. In summary, the 2005 hurricane season resulted in substantial loss of A. palmata from the upper Florida Keys fore-reef from a combination of physical removal and subsequent disease-like tissue mortality, and yielded few recruits of either sexual or asexual origin. Furthermore, the asexual and sexual fecundity of the remaining population is compromised for the near future due to the lack of branches (i.e., “asexual fecundity”) and overall loss of live tissue.  相似文献   

13.
High levels of hydrological connectivity during seasonal flooding provide significant opportunities for movements of fish between rivers and their floodplains, estuaries and the sea, possibly mediating food web subsidies among habitats. To determine the degree of utilisation of food sources from different habitats in a tropical river with a short floodplain inundation duration (~2 months), stable isotope ratios in fishes and their available food were measured from three habitats (inundated floodplain, dry season freshwater, coastal marine) in the lower reaches of the Mitchell River, Queensland (Australia). Floodplain food sources constituted the majority of the diet of large-bodied fishes (barramundi Lates calcarifer, catfish Neoarius graeffei) captured on the floodplain in the wet season and for gonadal tissues of a common herbivorous fish (gizzard shad Nematalosa come), the latter suggesting that critical reproductive phases are fuelled by floodplain production. Floodplain food sources also subsidised barramundi from the recreational fishery in adjacent coastal and estuarine areas, and the broader fish community from a freshwater lagoon. These findings highlight the importance of the floodplain in supporting the production of large fishes in spite of the episodic nature and relatively short duration of inundation compared to large river floodplains of humid tropical regions. They also illustrate the high degree of food web connectivity mediated by mobile fish in this system in the absence of human modification, and point to the potential consequences of water resource development that may reduce or eliminate hydrological connectivity between the river and its floodplain.  相似文献   

14.
Langhans SD  Tockner K 《Oecologia》2006,147(3):501-509
Despite growing recognition of the importance of a natural flow regime in river-floodplain systems, researchers struggle to quantify ecosystem responses to altered hydrological regimes. How do frequency, timing, and duration of inundation affect fundamental ecosystem processes such as leaf litter decomposition? Along the semi-natural Tagliamento River corridor, located in northeastern Italy, we employed in situ experiments to separate effects of different inundation components on breakdown rates of black poplar (Populus nigra). We used a litter-bag method with two different mesh sizes to investigate how fungi and macroinvertebrates influence leaf breakdown rates. Ten treatments, each representing a specific combination of duration and frequency of inundation, were deployed in two seasons (summer, winter) to mimic complex inundation patterns. After 30 days of exposure, mean percentage of remaining leaf litter (ash free dry mass) ranged between 51% (permanent wet) and 88% (permanent dry). Leaf breakdown was significantly faster in winter than in summer. Duration of inundation was the main inundation component that controlled leaf breakdown rates. Leaf-shredding macroinvertebrates played only a role in the permanent wet treatment. Fungal parameters explained the faster leaf breakdown in winter. Our study suggests that modifications of the inundation regime will directly modify established decomposition processes. Factors reducing duration of inundation will decelerate leaf breakdown rates, whereas a decrease in flow variation will reduce leaf breakdown heterogeneity.  相似文献   

15.
Populus alba L. is an autochthonous species dominating the overstory of the floodplain forests across the Mediterranean region. In contrast to some other Populus spp., very little is known about its regeneration strategies. Poplars yearly disperse huge amounts of wind- and water-dispersed, non-dormant, short-lived tiny seeds that need the bare, open and moist substrates created by fluvial-geomorphic events to germinate and establish. To survive, the growing roots must keep pace with the falling water table and associated soil moisture zone. Using a greenhouse experimental facility, 9-day-old P. alba seedlings were subjected to five hydrological treatments (permanent saturation, drawdown rates of 1, 2.5, 5 cm day−1 and immediate drainage) in two different substrates (coarse and sandy), and their survival and growth were evaluated. Also, P. alba seed dispersal was monitored in the field, and seed germinability and longevity were tested in the laboratory. No seedlings survived the water table declines in the coarse substrate although survival was high (85%) under saturated conditions. In the sandy soil, survival was significantly greater in the permanent saturation (87%) and 1 cm day−1 (88%) treatments than in the 2.5 cm day−1 (58%), 5 cm day−1 (25%) and immediate drainage (22%) treatments. The lowest root and shoot growth rates occurred under the saturated and immediate drainage conditions. Seed dispersal lasted 6–8 weeks and peaked in mid-April, initial seed germinability was high (92%) and seed longevity was relatively long (half viability period, 30 days). The creation of nursery sites and release of controlled floods in mid-April, followed by water table declines of less than 1 cm day−1 in coarse substrates and less than 5 cm day−1 in sandy substrates are recommended for enhancing the initial establishment of P. alba seedlings.  相似文献   

16.
Although Spartina anglica C.E. Hubbard continues to be invasive in many countries, this species has experienced a drastic decline in coastal China over the last decade. We hypothesize that changes in the duration of tidal immersion were responsible for this decline because the elevation of the S. anglica-dominated area in coastal China has increased greatly over the last decade. We examined the effects of the duration of simulated tidal immersion and plant material provenance on growth, asexual reproduction, biomass accumulation, and allocation (percent of above-ground biomass to total biomass) of S. anglica in a greenhouse experiment. The provenance of S. anglica did not significantly affect any traits measured except for height, stalk diameter, and leaf area. However, all traits were affected by the duration of immersion. Plants grown under 6 h of immersion were taller and had more leaves, more roots, and larger leaf area than those under 2, 4, 8, and 10 h of immersion. Asexual traits and biomass of the plants grown under 6 h of immersion were significantly larger than those under other immersion durations. The results suggested that S. anglica benefits from tidal immersion and decreasing duration of tidal immersion may have resulted in the decline of the S. anglica populations in coastal China. Thus, controlling the duration of tidal immersion may be an effective way of controlling invasiveness of this species elsewhere in the world.  相似文献   

17.
Halimeda is a potential carbon sink species and an important player in the global carbonate budget. The objectives of this study were to: (i) examine the CaCO3 and sediment productions of H. macroloba by measuring the density, growth rate, and recruitment; (ii) quantify the numbers of aragonite crystals; (iii) document reproductive events; and (iv) determine the life‐span. This study was carried out at Lidee Lek Island, Satun, Thailand during July 2015 to April 2016. The density was measured using quadrats (0.25 m2) and three 50 m line transects. Alizarin Red‐S marking technique was used for the growth rate and CaCO3 accumulation rate assessments. The recruitment, reproduction and life‐span were measured by tagging 500 individuals. Tagged individuals and new plants were counted. In this study, mean and the highest density of Halimeda were 44.42 ± 13.95 and 138.22 ± 11.68 thalli m?2, respectively, and Halimeda produced 1–2 new segments.thallus?1 day?1 or 0.021 ± 0.001 g dry weight.thallus?1.day?1. The annual biomass production was 1910–5950 g m?2 year.?1. There was a low rate of occurrence of sexual reproduction, observed in late July to September, ranging from 0.17% to 1.92%. For the mortality and recruitment rates, approximately 70–80% of individuals were lost during July to September 2015, probably from sexual reproduction and the recruitment rate varied from 5.36 ± 0.79% to 21.03 ± 2.33%. The highest density of new recruits was found in September 2015 right after the sexual reproductive event occurred. New recruits have been found up to April 2016 without any reproductive events, suggesting that both sexual and asexual reproduction helped maintain the population. The life span of Halimeda was 8–12 months. In addition, Halimeda accumulated CaCO3 at approximately 0.018 g CaCO3 thallus?1 day?1 and produced CaCO3 at approximately 291.94–908.11 g m?2 year?1, indicating that Halimeda contributes to CaCO3 and helps to sink carbon through calcification. The results in terms of the density, growth rate, and CaCO3 accumulation rate can be used to calculate the mass of carbonate sediment contributed by Halimeda.  相似文献   

18.
The reproductive phenology of Chondrus ocellatus and the effects of temperature and light on its growth were examined in Cheongsapo near Busan, Korea, from September 1994 to August 1995. The vegetative plants dominated over the year, with a peak occurrence in January. Gameto- and tetrasporophytes were most abundant in November and August. All vegetative and reproductive plants had a peak both in length and weight in October, when seawater temperature was highest (24°C). In laboratory culture, the maximum relative growth rate (RGR) of 2.94% day−1 was obtained at 20°C and 100 μmol photons m−2 s−1, whereas the lowest value was recorded at 25°C and 100 μmol photons m−2 s−1 in a 12: 12 h LD photoperiod regime. Among the three photoperiod regimes (8:16 h, 12:12 h, 16:8 h LD) tested, there was evidence of a higher RGR in the 12:12 h LD cycle. This result suggests that the growth and reproduction of C. ocellatus are correlated with the seawater temperature based on laboratory culture and field observations.  相似文献   

19.
Relative growth rates (RGRs), yields and agar characteristics of threegracilarioid isolates (Gracilariopsis sp. from St. Helena Bay, and Gracilaria gracilis isolates from Langebaan Lagoon and Saldanha Bay) weremeasured to assess the suitability of a site in St. Helena Bay for suspendedcultivation. The gracilarioids were grown on polypropylene ropes and`netlon' lines, and the RGRs were 4.0–11.0% d-1 and 5.0–7.0%d-1, respectively. The RGR of the Langebaan isolate of G. gracilis grown on ropes was significantly higher than the RGR of otherisolates. The mean net yield for the Langebaan isolate grown on `netlon'lines was 2.6 ± 0.9 kg wet wt m-2 30 day-1. Thecultured gracilarioids were extracted for native and alkali treated agars. Themean native agar yield over the entire period was 39.0% dry wt. Alkalipretreatment reduced the yield by 55%, but significantly increased gelstrength. High gel strengths (>750 g cm-2) were measured inagars from Gracilariopsis sp. and Saldanha Gracilaria gracilis inmid-summer and winter. The dynamic gelling and melting temperatures ofnative and alkali treated agars varied among the gracilarioids. The meangelling and melting temperatures of agars were about 39.0 °C and86.0 °C, respectively. The 3,6-AG content ranged from 29% to38% for native agars and 34–45% for alkali treated agars. While theseresults indicate that this site is suitable for gracilarioid cultivation, occasionallow-oxygen events in St. Helena Bay lead to production of hydrogensulphide in the sea water (`black tides'). Such events killed most inshorebiota (including seaweeds) in 1994 and 1998. This frequency (on average1–2 per decade) and duration (maximum 2 weeks) would have to beconsidered in planning commercial seaweed farming in St. Helena Bay.  相似文献   

20.
Summary This study examined the water relations and growth responses of Uniola paniculata (sea oats) to (1) three watering regimes and (2) four controlled water-table depths. Uniola paniculata is frequently the dominant foredune grass along much of the southeastern Atlantic and Gulf coasts of the United States, but its distribution is limited in Louisiana. Throughout most of its range, U. paniculata tends to dominate and be well adapted to the most exposed areas of the dune where soil moisture is low. Dune elevations in Louisiana, however, rarely exceed 2 m, and as a result the depth to the water table is generally shallow. We hypothesized that if U. paniculata grows very near the water-table, as it may in Louisiana, it will display signs of water-logging stress. This study demonstrated that excessive soil moisture resulting from inundation or shallow water-table depth has a greater negative effect on plant growth than do low soil moisture conditions. Uniola paniculata's initial response to either drought or inundation was a reduction of leaf (stomatal) conductance and a concomitant decrease in leaf elongation. However, plants could recover from drought-induced leaf xylem pressures of less than-3.3 MPa, but prolonged inundation killed the plants. Waterlogging stress (manifested in significantly reduced leaf stomatal conductances and reduced biomass production) was observed in plants grown at 0.3 m above the water table. This stress was relieved, however, at an elevation of 0.9 m above the water table. As the elevation was increased from 0.9 to 2.7 m, there were no signs of drought stress nor a stimulation in growth due to lower soil moisture. We concluded that although U. paniculata's moisture-conserving traits adapt it well to the dune environment, this species can grow very well at an elevation of only 0.9 m above the water table. Field measurements of water-table depth in three Louisiana populations averaged about 1.3 m. Therefore, the observed limited distribution of U. paniculata along the Louisiana coast apparently cannot be explained by water-logging stress induced by the low dune elevations and the corresponding shallow water-table depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号