首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The recessive meiotic mutant spo44 of Sordaria macrospora, with 90% ascospore abortion, exhibits striking effects on recombination (67% decrease), irregular segregation of the almost unpaired homologues, and a decrease in chiasma frequency in the few cases where bivalents are formed. Three-dimensional reconstructions of ten prophase nuclei indicate that pairing, as judged by the absence of fully formed synaptonemal complexes (SC), is not achieved although lateral elements (LE) assemble. The pairing failure is attributable to defects in the alignment of homologous chromosomes. The leptotene alignment seen in the wild type before SC formation was not observed in the spo44 nuclei. Dense material, considered to be precursor of SC central elements, was found scattered among the LE in two nuclei. The behaviour of spo44 substantiates the hypothesis that chromosome matching and SC formation are separable events. — The total length of the LE in the mutant is the same as in the wild type, but due to variable numbers and length of the individual LE, homologues cannot be lined up. Light microscopic observations indicate that the irregular length and number of LE is due to extensive chromosome breakage. The wild-type function corresponding to spo44 is required for both LE integrity and chromosome matching. Reconstructions of heterozygous nuclei reveal the presence of a supernumerary nucleolar organizer in one arm of chromosome 7. It is suggested that rDNA has been inserted into a gene whose function is involved in pairing or into a controlling sequence that interacts with the pairing process.  相似文献   

2.
A homothallic haploid strain of the fission yeast Schizosaccharomyces pombe initiates sexual reproduction (mating, meiosis and sporulation) in nitrogen-free sporulation medium. Cellular fine structures of eleven sporulation-deficient mutants (spo2, spo3, spo4, spo5, spo6, spo13, spo14, spo15, spo18, spo19 and spo20) of S. pombe in sporulation medium were examined by serial section-electron microscopy. The striking features of these spo mutants were: 1) the disappearance of the spindle pole bodies (SPBs) after the second meiotic division, and 2) the accumulation of unorganized structures. Based on histochemical staining, these structures were presumably unorganized spore wall precursors. In some mutants (spo3, spo5, spo6, spo19 and spo20), diploid zygotes contained four spore-like bodies which had walls similar to complete spore walls but failed to enclose any nuclei. After completion of the second meiotic division the nuclei were abnormally distributed in zygotic diploid cells. In the spo5, spo13, spo14, spo15 and spo19 mutants, the nuclei remained attached to each other. In spo5 and spo19, the inner membrane of the nuclear envelope was separated, but its outer membrane was shared by two sister nuclei. These observations suggest that the spo+ gene products play important roles in spatial and temporal organization of cellular structures during ascospore development.Abbreviations SPB spindle pole body - PTA-Cr phosphotungstic acid and chromic acid - PATAg periodic acid, thiocarbohydrazide and silver proteinate  相似文献   

3.
The lateral elements (LEs) of synaptonemal complexes (SCs) of the rat contain major components with relative electrophoretic mobilities (M r , s) of 30000–33000, which are the products of a single gene. After one-dimensional separation of SC proteins on polyacrylamide-SDS gels, these components show up as two major bands, whereas upon two-dimensional electrophoresis they are resolved in at least 24 spots, which focus at pH 6.5 to 9.5. In this paper we show that these spots represent phosphorylation variants. For the analysis of the phosphorylation of the 30000-to 33000-M r SC components during progression through meiotic prophase, we developed a procedure for isolation of fractions of testicular cells of the rat that are enriched in separate stages of meiotic prophase. Analysis of the 30000-to 33000-M r SC components in these fractions by two-dimensional electrophoresis and immunoblotting showed that phosphorylated variants of the 30000-to 33000-M r SC proteins occur throughout meiotic prophase. However, the extent of phosphorylation changes between early and mid-pachytene, when one phosphate group is probably added to each of the variants.  相似文献   

4.
Multiple roles of Spo11 in meiotic chromosome behavior   总被引:19,自引:0,他引:19  
Spo11, a type II topoisomerase, is likely to be required universally for initiation of meiotic recombination. However, a dichotomy exists between budding yeast and the animals Caenorhabditis elegans and Drosophila melanogaster with respect to additional roles of Spo11 in meiosis. In Saccharomyces cerevisiae, Spo11 is required for homolog pairing, as well as axial element (AE) and synaptonemal complex (SC) formation. All of these functions are Spo11 independent in C.elegans and D.melanogaster. We examined Spo11 function in a multicellular fungus, Coprinus cinereus. The C.cinereus spo11-1 mutant shows high levels of homolog pairing and occasionally forms full-length AEs, but no SC. In C.cinereus, Spo11 is also required for maintenance of meiotic chromosome condensation and proper spindle formation. Meiotic progression in spo11-1 is aberrant; late in meiosis basidia undergo programmed cell death (PCD). To our knowledge, this is the first example of meiotic PCD outside the animal kingdom. Ionizing radiation can partially rescue spo11-1 for both AE and SC formation and viable spore production, suggesting that the double-strand break function of Spo11 is conserved and is required for these functions.  相似文献   

5.
The Yeast Red1 Protein Localizes to the Cores of Meiotic Chromosomes   总被引:26,自引:2,他引:24       下载免费PDF全文
Mutants in the meiosis-specific RED1 gene of S. cerevisiae fail to make any synaptonemal complex (SC) or any obvious precursors to the SC. Using antibodies that specifically recognize the Red1 protein, Red1 has been localized along meiotic pachytene chromosomes. Red1 also localizes to the unsynapsed axial elements present in a zip1 mutant, suggesting that Red1 is a component of the lateral elements of mature SCs. Anti-Red1 staining is confined to the cores of meiotic chromosomes and is not associated with the loops of chromatin that lie outside the SC. Analysis of the spo11 mutant demonstrates that Red1 localization does not depend upon meiotic recombination. The localization of Red1 has been compared with two other meiosisspecific components of chromosomes, Hop1 and Zip1; Zip1 serves as a marker for synapsed chromosomes. Double labeling of wild-type meiotic chromosomes with anti-Zip1 and anti-Red1 antibodies demonstrates that Red1 localizes to chromosomes both before and during pachytene. Double labeling with anti-Hop1and anti-Red1 antibodies reveals that Hop1 protein localizes only in areas that also contain Red1, and studies of Hop1 localization in a red1 null mutant demonstrate that Hop1 localization depends on Red1 function. These observations are consistent with previous genetic studies suggesting that Red1 and Hop1 directly interact. There is little or no Hop1 protein on pachytene chromosomes or in synapsed chromosomal regions.  相似文献   

6.
Summary SPR3 is one of at least nine genes which are expressed in sporulating Saccharomyces cerevisiae cells at the time of meiosis I. We show below that strains homozygous for null alleles of SPR3 are capable of normal meiosis and the production of viable ascospores. We have also monitored SPR3 expression in a series of strains that are defective in meiotic development, using an SPR3: lacZ fusion carried on a single copy plasmid. -Galactosidase activity occurred at wild-type levels in diploid strains homozygous for mutations in spo13, rad50, rad57 and cdc9, but was greatly reduced in strains carrying cdc8 or spo7 defects. We conclude that SPR3 expression is a valid monitor of early meiotic development, even though the gene is inessential for the sporulation process.  相似文献   

7.
DNA double-strand breaks (DSBs) are the initiators of most meiotic recombination events. In Saccharomyces cerevisiae, at least ten genes are necessary for meiotic DSB formation. However, the molecular roles of these proteins are not clearly understood. The meiosis-specific Spo11 protein, which shows sequence similarity with a subunit of an archaeal topoisomerase, is believed to catalyze the meiotic DSB formation. Spo11 is also required for induction of meiotic DSBs at long inverted repeats and at large trinucleotide repeat tracts. Here we report the isolation and characterization of temperature-sensitive spo11-mutant alleles to better understand how Spo11 functions, and how meiotic DSBs are generated at various recombination hotspots. Analysis of mutation sites of isolated spo11-mutant alleles indicated that both N-terminal and C-terminal non-conserved residues of Spo11 are essential for the protein’s function, possibly for interaction with other meiotic DSB enzymes. Several of the mutation sites within the conserved region are predicted to lie on the surface of the protein, suggesting that this region is required for activation of the meiotic initiation complex via protein-protein interaction. In addition to the conditional mutants, we isolated partially recombination-defective mutants; analysis of one of these mutants indicated that Ski8, as observed previously, interacts with Spo11 via the latter’s C-terminal residues.  相似文献   

8.
During first meiotic prophase, homologous chromosomes are normally kept together by both crossovers and synaptonemal complexes (SC). In most eukaryotes, the SC disassembles at diplotene, leaving chromosomes joined by chiasmata. The correct co-orientation of bivalents at metaphase I and the reductional segregation at anaphase I are facilitated by chiasmata and sister-chromatid cohesion. In the absence of meiotic reciprocal recombination, homologs are expected to segregate randomly at anaphase I. Here, we have analyzed the segregation of homologous chromosomes at anaphase I in four meiotic mutants of Arabidopsis thaliana, spo11-1-3, dsy1, mpa1, and asy1, which show a high frequency of univalents at diplotene. The segregation pattern of chromosomes 2, 4, and 5 was different in each mutant. Homologous univalents segregated randomly in spo11-1-3, whereas they did not in dsy1 and mpa1. An intermediate situation was observed in asy1. Also, we have found a parallelism between this behavior and the synaptic pattern displayed by each mutant. Thus, whereas spo11-1-3 and asy1 showed low amounts of SC stretches, dsy1 and mpa1 showed full synapsis. These findings suggest that in Arabidopsis there is a system, depending on the SC formation, that would facilitate regular disjunction of homologous univalents to opposite poles at anaphase I.  相似文献   

9.
The Mre11-Rad50-Nbs1 (MRN) complex is required for numerous cellular processes that involve interactions with DNA double-strand breaks. For the majority of these processes, the MRN complex is thought to act as a unit, with each protein aiding the activity of the others. We have examined the relationship between Mre11 and Rad50 during meiosis in the basidiomycete Coprinus cinereus (Coprinopsis cinerea), investigating to what extent activities of Mre11 and Rad50 are interdependent. We showed that mre11-1 is epistatic to rad50-1 with respect to the time of meiotic arrest, indicating that Mre11 activity facilitates the diffuse diplotene arrest of rad50 mutants. Anti-Mre11 and anti-Rad50 antibodies were used to examine MRN complex localization in a wild-type strain and in spo11, mre11, and rad50 mutants. In wild type, numbers of Mre11 and Rad50 foci peaked at time points corresponding to leptotene and early zygotene. In the spo11-1 mutant, which is defective in meiotic double-strand break formation, foci accumulated throughout prophase I. Of seven MRN mutants examined, only two rad50 strains exhibited Mre11 and Rad50 foci that localized to chromatin, although Mre11 protein was found in the cell for all of them. Analysis of predicted mutant structures showed that stable localization of Mre11 and Rad50 does not depend upon a wild-type hook-proximal coiled coil, but does require the presence of the Rad50 ATPase/adenylate cyclase domains. We found that Mre11 and Rad50 were interdependent for binding to meiotic chromosomes. However, the majority of foci observed apparently contained only one of the two proteins. Independent Mre11 and Rad50 foci might indicate disassociation of the complex during meiosis or could reflect independent structural roles for the two proteins in meiotic chromatin. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
A New Mapping Method Employing a Meiotic Rec- Mutant of Yeast   总被引:30,自引:16,他引:30       下载免费PDF全文
A rapid new mapping method has been developed for localizing a dominant or recessive mutation to a particular chromosome of yeast. The procedure utilizes the ability of strains homozygous for the spo11-1 mutation to undergo chromosome segregation without appreciable recombination during sporulation. The level of sporulation in spo11-1/spo11-1 diploids is reduced and asci are often immature or abnormal in appearance; spore viability is less than 1%. The first step of the mapping procedure is the construction of a haploid spo11-1 strain carrying a recessive drug-resistance marker and the unmapped mutation(s). This strain is crossed to a set of three spo11-1 mapping tester strains containing, among them, a recessive marker on each chromosome. The resulting spo11-1/spo11-1 diploids are sporulated and plated on drug-containing medium. Viable meiotic products that express the drug-resistance marker due to chromosome haploidization are selectively recovered. These meiotic products are haploid for most, but generally not all, chromosomes. The level of disomy for individual chromosomes averages 19%. Each of the recessive chromosomal markers is expressed in approximately a third of the drug-resistant segregants. Ninety-eight percent of these segregants show no evidence of intergenic recombination. Thus, two markers located on the same chromosome, but on different homologs, are virtually never expressed in the same drug-resistant clone. The utility of this mapping procedure is demonstrated by confirming the chromosomal location of seven known markers, as well as by the assignment of a previously unmapped mutation, spo12-1, to chromosome VIII. In addition, the analysis of the products of spo11-1 meiosis indicates that several markers previously assigned to either chromosome XIV or chromosome XVII are actually on the same chromosome.  相似文献   

11.
Summary The response to ultraviolet light (254 nm) of two sporulation mutants during the meiotic process was compared to that of a wild type diploid strain of Saccharomyces cerevisiae. The cyclic pattern for cell killing and rho - induction characteristic of diploid wild type cells persists in a strain able to perform the premeiotic DNA synthesis but which is blocked in the further steps of meiosis (spo8 DMS1). On the contrary, these fluctations are abolished in a derived mutant (spo8 dsm1) which is blocked in the premeiotic DNA synthesis. Under these conditions, the response to cell killing can be dissociated from that observed for rho - induction.  相似文献   

12.
Synaptonemal complexes and meiosis in myxomycetes   总被引:4,自引:0,他引:4  
Synaptonemal complexes (SC) have been observed in spores 18–24 hr past cleavage in natural fruitings of Physarum cinereum, P. bogoriense, Hemitrichia stipitata, Tubifera ferruginosa, and Arcyria incarnata. Laboratory fruitings of Arcyria cinerea, Stemonitis herbatica, and a homothallic isolate of Physarum pusillum also have SC's present in spores during the same postcleavage period. The presence of these paired chromosomes of meiotic prophase in spores of species collected in nature and in a diversity of taxa suggests that the usual position of meiosis in Myxomycetes is inside the postcleavage spore. Criteria are proposed for evaluating the validity of the SC as an indicator of meiosis.  相似文献   

13.
Interhomolog crossovers promote proper chromosome segregation during meiosis and are formed by the regulated repair of programmed double-strand breaks. This regulation requires components of the synaptonemal complex (SC), a proteinaceous structure formed between homologous chromosomes. In yeast, SC formation requires the “ZMM” genes, which encode a functionally diverse set of proteins, including the transverse filament protein, Zip1. In wild-type meiosis, Zmm proteins promote the biased resolution of recombination intermediates into crossovers that are distributed throughout the genome by interference. In contrast, noncrossovers are formed primarily through synthesis-dependent strand annealing mediated by the Sgs1 helicase. This work identifies a conserved region on the C terminus of Zip1 (called Zip1 4S), whose phosphorylation is required for the ZMM pathway of crossover formation. Zip1 4S phosphorylation is promoted both by double-strand breaks (DSBs) and the meiosis-specific kinase, MEK1/MRE4, demonstrating a role for MEK1 in the regulation of interhomolog crossover formation, as well as interhomolog bias. Failure to phosphorylate Zip1 4S results in meiotic prophase arrest, specifically in the absence of SGS1. This gain of function meiotic arrest phenotype is suppressed by spo11Δ, suggesting that it is due to unrepaired breaks triggering the meiotic recombination checkpoint. Epistasis experiments combining deletions of individual ZMM genes with sgs1-md zip1-4A indicate that Zip1 4S phosphorylation functions prior to the other ZMMs. These results suggest that phosphorylation of Zip1 at DSBs commits those breaks to repair via the ZMM pathway and provides a mechanism by which the crossover/noncrossover decision can be dynamically regulated during yeast meiosis.  相似文献   

14.
Spo11 is considered responsible for initiation of meiotic recombination in higher organisms, but previous analysis using spo11 RIP mutants suggests that the his-3 region of Neurospora crassa experiences spo11-independent recombination. However, despite possessing several stop codons, it is conceivable that the mutants are not completely null. Also, since lack of spo11 interferes with chromosomal pairing and proper segregation at Meiosis I, spores can be partially diploid for a period after meiosis. Thus, it is possible that the recombination observed could be an abnormal event, occurring during the period of aneuploidy rather than during meiosis. To test the former hypothesis, we generated spo11 deletion homozygotes. Using crosses heteroallelic for his-3 mutations, we showed that His+ progeny are generated in spo11 deletion homozygotes at a frequency at least as high as in wild type and, as in the spo11 RIP mutants, local crossing over is not reduced. To test the latter hypothesis, we utilised mutations in either end of a histone H1-GFP fusion gene, inserted between the recombination hotspot cog and his-3, in which GFP+ spores arise as a result of recombination in a cross between the two GFP alleles. In a control cross homozygous for spo11 +, the frequency at which GFP+ spores arise is comparable to the frequency of His+ spores and glowing nuclei first appear during prophase, prior to metaphase I, as expected for a product of meiotic recombination. Similarly in spo11 deletion homozygotes, GFP+ spores arise at high frequency and glowing nuclei are first seen before metaphase, indicating that allelic recombination occurs during meiosis in the absence of spo11. We have therefore shown that spo11 is not essential for either his-3 allelic recombination or crossing over in the vicinity of his-3, and that spo11-independent allelic recombination is meiotic, indicating that there is a spo11-independent mechanism for initiation of recombination in Neurospora.  相似文献   

15.
The checkpoint proteins, Rad9, Rad1, and Hus1 (9-1-1), form a complex which plays a central role in the DNA damage-induced checkpoint response. Previously, we demonstrated that Drosophila hus1 is essential for activation of the meiotic checkpoint elicited in double-strand DNA break (DSB) repair enzyme mutants. The hus1 mutant exhibits similar oocyte nuclear defects as those produced by mutations in these repair enzymes, suggesting that hus1 plays a role independent of its meiotic checkpoint activity. In this study, we further analyzed the function of hus1 during meiosis and discovered that the synaptonemal complex (SC) disassembles abnormally in hus1 mutants. Oocyte nuclear and SC defects of hus1 mutants can be suppressed by blocking the formation of DSBs, implying that the hus1 oocyte nuclear defects depend upon DSBs. Interestingly, eliminating checkpoint activity through mutations in DmChk2 but not mei-41 suppress the oocyte nucleus and SC defects of hus1, suggesting that these processes are dependent upon DmChk2 checkpoint activity. Moreover, we showed that in hus1, DSBs that form during meiosis are not processed efficiently, and that this defect is not suppressed by a mutation in DmChk2. We found a genetic interaction between hus1 and the Drosophila brca2 homologue, which was shown to participate in DNA repair during meiosis. Together, our results imply that hus1 is required for repair of DSBs during meiotic recombination.  相似文献   

16.
The synaptonemal complexes of three amphimictic (meiotic) strains of Meloidogyne are examined in this study. M. microtyla (n = 19) has a tripartite synaptonemal complex (SC) comprised of two lateral elements and one central region with a distinct central element. The central region of the SC in both M. carolinensis (n = 18) and M. megatyla (n = 18) lack a distinct central element. The evolutionary history is different in the strains since M. microtyla has arisen by a mechanism involving an increase in chromosome number (from an ancestral stock of n = 18) while both M. carolinensis and M. megatyla have maintained the number of chromosomes of the ancestral stock. The structure of the SCs of the latter two strains are identical to the structure of the SC of the meiotic parthenogenetic M. hapla. Thus, the pachytene karyotype of M. carolinensis was reconstructed to establish the pairing pattern and identify any changes that may be related to the different morphology of the SC in an amphimictic stock. Although recombination nodules (RN) have been observed in the parthenogenetic M. hapla, none of the three amphimictic strains had any SC associated structures that resembled a RN.  相似文献   

17.
Multiple synaptonemal complexes (polycomplexes) (PC) are similar in structure to synaptonemal complexes (SC) and are also highly conserved through evolution. They have been described in over 70 organisms throughout all life forms. The appearance of PCs are restricted to meiotic and germ-line derived tissues and are most commonly present after SC formation. However, in a number of animals and plants, both extra- and intranuclear PCs are present during premeiotic and pre-pachytene stages. The structure and biochemical composition of PCs is similar to SCs that the basic unit is tripartite, consisting of two lateral elements and a central region (in which transverse elements are located), and the dimensions of such structures are equivalent. Stacking of SC subunits, while still maintaining equivalent SC dimensions, creates a problem since the lateral elements (LE) would then be twice as thick in the PC as compared to the SC. Recently, it has been shown that the LE of the SC is actually multistranded, thus the LE of each subunit of the PC is half as thick as its counterpart in the SC.  相似文献   

18.
Spo76p is conserved and related to the fungal proteins Pds5p and BIMD and the human AS3 prostate proliferative shutoff-associated protein. Spo76p localizes to mitotic and meiotic chromosomes, except at metaphase(s) and anaphase(s). During meiotic prophase, Spo76p assembles into strong lines in correlation with axial element formation. As inferred from spo76-1 mutant phenotypes, Spo76p is required for sister chromatid cohesiveness, chromosome axis morphogenesis, and chromatin condensation during critical transitions at mitotic prometaphase and meiotic midprophase. Spo76p is also required for meiotic interhomolog recombination, likely at postinitiation stage(s). We propose that a disruptive force coordinately promotes chromosomal axial compaction and destabilization of sister connections and that Spo76p restrains and channels the effects of this force into appropriate morphogenetic mitotic and meiotic outcomes.  相似文献   

19.
Synapsis of homologs during meiotic prophase I is associated with a protein complex built along the bivalents—the synaptonemal complex (SC). Mutations in the SC-component gene ZIP1 diminish SC formation, leading to reduced recombination levels and low spore viability. Here we show that in SK1 strains heterozygous for a deletion of ZIP1 in certain regions meiotic interference are impaired with no decrease in recombination levels. The extent of synapsis is over all reduced and NDJ levels of a large endogenous chromosome and of artificial chromosomes (YACs) rise to twice the level of wild type strains. A substantial proportion of mis-segregating YACs had undergone crossing over. This demonstrates that different functions of Zip1 display differential sensitivities to changes in expression levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号