首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The changes in molecular weight of deoxyribonucleic acid (DNA) synthesized after ultraviolte irradiation of Escherichia coli WP28 uvrA, and strains additionally mutant at polA, exrA, recA, and exrA and polA loci, were examined by alkaline sucrose gradient centrifugation. In a repari=deficient uvrA recA strain, the frequency of breaks in newly synthesized DNA was equal to that for pyrimidine dimers in parental DNA. Measurements of the amounts and rates of postreplication repair of these breaks indicate that (i) repair is two to three times faster when DNA polymerase I is present, although (ii) almost all breaks are repaired regardless of DNA polymerase I activity. (iii) Increased ultraviolet doses lead to an increase in the proportion of breaks remaining unrepaired in uvrA recA, UVRA exrA, and uvrA exrA polA strains. The numbers of unrepaired breaks resemble the numbers expected if repair of one lesion is prevented by proximity of a second lesion.  相似文献   

2.
A series of Escherichia coli K-12 AB1157 strains with normal and defective deoxyribonucleic acid repair capacity were more resistant to treatment with 8-methoxypsoralen (8-MOP) and near-ultraviolet light (NUV) than a comparable series of strains from the B/r WP2 family although sensitivities to 254-nm ultraviolet light were closely similar. The difference was most marked with strains deficient in both excision and postreplication repair (uvrA recA). The hypothesis that the internal level of 8-MOP was lower in K-12 than B/r uvrA recA derivatives was ruled out on the basis of fluorometric determinations of 8-MOP content and the similar inactivation curves for phage T3 treated intracellularly within the two strains. The demonstration of liquid holding recovery with AB2480 but not WP100 (both recA uvrA strains) and the somewhat greater resistance of the former strain to inactivation by captan revealed the presence in the K-12 strain of a deoxyribonucleic acid repair system independent of the recA(+) and uvrA(+) genes. The presence of this repair system did not, however, affect the survival of T3 phage treated with 8-MOP plus NUV and probably has a relatively small effect on survival of AB2480 under normal conditions. Experiments in which 8-MOP monoadducts were converted to cross-links by a second NUV exposure in the absence of 8-MOP indicated that the level of potentially cross-linkable monoadducts immediately after 8-MOP + NUV is about eightfold lower in K-12-than in B/r-derived strains. It is therefore suggested that the photoproduct yield in the former is well below that in the latter. In agreement with this is the observation that, during the first 10 min after treatment, deoxyribonucleic acid synthesis was just over five times more sensitive to inhibition by 8-MOP plus NUV in WP100 than in AB2480. We assume that 8-MOP in K-12 bacteria is hindered in some way from adsorbing to cellular (though not to phage T3) deoxyribonucleic acid. Consistent with this, 8-MOP has been shown to act as an inhibitor of a component of repair of 254-nm ultraviolet light damage in WP2 but not in AB1157.  相似文献   

3.
Near-ultraviolet (300 to 400 nm) irradiation of L-tryptophan yielded H2O2 (a toxic photoproduct) that was selectively lethal for rec and polA1 Escherichia coli mutants. H2O2 treatment of cells resulted in the induction of single-strand deoxyribonucleic acid breaks. These breaks were repaired to only a small extent in polA1, recA recB, and recA mutants, but were efficiently repaired in wild-type strains. We conclude that H2O2 deoxyribonucleic acid lesions require both the polA+ and recA+ pathways for repair.  相似文献   

4.
Strains of Escherichia coli have been made carrying lesions in more than one gene determining recombination. The following genotypes were constructed and verified: recC22 recB21 recA(+), recC22 recB21 recA13, recC22 recB(+)recA13, and recC(+)recB21 recA13. All multiple rec(-) strains carrying recA13 were similar to AB2463, which carries recA13 alone, in their UV sensitivities, recombination deficiencies, and inabilities to induce lambda phage in a lysogen. However, whereas AB2463 shows a high rate of ultraviolet (UV)-induced deoxyribonucleic acid (DNA) breakdown, the multiple rec(-) strains showed the low level characteristic of strains carrying recC22 or recB21 alone. The strain carrying both recC22 and recB21 was similar in all properties to the single mutants, suggesting that both gene products act in the same part of the recombination and UV repair pathways. It is concluded that in a Rec(+) strain, the recA(+) product acts to inhibit DNA breakdown determined by the recC(+) and recB(+) products.  相似文献   

5.
Cells of Escherichia coli mounted on a hydrophobic filter membrane were dried under various vapor pressures. A mutant defective in deoxyribonucleic acid repair (uvrA recA) was more sensitive to drying at a water activity of 0.53 or below than the parent strain but not at a water activity of 0.75 and above. Sucrose gradient studies showed that single- and double-strand breaks of deoxyribonucleic acid occurred at a water activity of 0.53 or below, but no breaks could be observed at a water activity of 0.75 or above. These results were observed in all cells rehydrated with 0.03 M tris (hydroxymethyl) aminomethane-hydrocholoride buffer solution at 0 or 37 degrees C, in the presence or absence of oxygen, with saturated water vapor or with a hypertonic solution followed by a gradual dilution. Freezable water was detected in the cells only at a water activity above 0.75 by differential scanning calorimetry. Removal of unfreezable water of cells in the drying, therfore, might induce deoxyribonucleic acid strand breaks.  相似文献   

6.
Cells of Escherichia coli mounted on a hydrophobic filter membrane were dried under various vapor pressures. A mutant defective in deoxyribonucleic acid repair (uvrA recA) was more sensitive to drying at a water activity of 0.53 or below than the parent strain but not at a water activity of 0.75 and above. Sucrose gradient studies showed that single- and double-strand breaks of deoxyribonucleic acid occurred at a water activity of 0.53 or below, but no breaks could be observed at a water activity of 0.75 or above. These results were observed in all cells rehydrated with 0.03 M tris (hydroxymethyl) aminomethane-hydrocholoride buffer solution at 0 or 37 degrees C, in the presence or absence of oxygen, with saturated water vapor or with a hypertonic solution followed by a gradual dilution. Freezable water was detected in the cells only at a water activity above 0.75 by differential scanning calorimetry. Removal of unfreezable water of cells in the drying, therfore, might induce deoxyribonucleic acid strand breaks.  相似文献   

7.
The response of two mutant alleles of the RAD6+ gene of Saccharomyces cerevisiae to the ochre translational suppressor SUQ5 was determined. Both the ultraviolet sensitivity phenotype and the deficiency in ultraviolet-induced mutagenesis phenotype of the rad6-1 allele were suppressed in a [psi+] background. For the rad6-3 allele, only the ultraviolet-sensitivity phenotype was suppressible in a [psi+] background. An SUQ5 rad6-3 [psi+] strain that was examined showed the normal rad6-3 deficiency in ultraviolet-induced mutagenesis. We propose that the RAD6+ gene is divided into two cistrons, RAD6A and RAD6B. RAD6A codes for an activity responsible for the error-prone repair of ultraviolet-induced lesions in deoxyribonucleic acid but is not involved in a cell's resistance to the lethal effects of ultraviolet light. RAD6B codes for an activity essential for error-free repair of potentially lethal mutagenic damage.  相似文献   

8.
A strain of Bacillus subtilis, UVSSP-42-1, which produces ultraviolet (UV)-sensitive spores and vegetative cells, was found to possess germinated spores 25 times more UV resistant than the resting spores. This relative resistance achieved upon germination was associated with the transition of the heat-resistant refractile spores to the heat-sensitive phase-dark forms. Several generations of outgrowth were required before the cells attained the level of UV sensitivity characteristic of the vegetative cell. The UV sensitivity of germinated spores was compared with other strains with various combinations of mutations affecting deoxyribonucleic acid repair capabilities. The presence of hcr and ssp mutations which are known to abolish the removal of photoproducts from deoxyribonucleic acid did not alter significantly the sensitivity of the germinated forms. However, the addition of the recA mutation and, to some extent, the pol mutation increased the UV sensitivity of the germinated spores. These results indicate that deoxyribonucleic acid repair mechanisms dependent on the recA gene are active in the germinated spores. The chemical nature of the damage repaired by the recA gene product is not known. This study indicates that the life cycle of sporulating bacilli consists of at least three photobiologically distinct forms: spore, germinated spore, and vegetative cell.  相似文献   

9.
To determine whether it is possible to separate antitumour and mutagenic properties in the nitracrine series, a number of 4-substituted derivatives of the hypoxia-selective drug nitracrine have been evaluated for their mutagenic effects at three loci in several strains of Salmonella typhimurium differing in DNA-repair capacity (uvrB, recA, plasmid pKM101). The drugs divided into two series in terms of their biological effects. Group A compounds (nitracrine and its Cl, F, Me and OMe derivatives) were very toxic to bacteria, and uvrB and recA deletions enhanced toxicity by 10-80-fold. Mutagenic potency was high, being slightly enhanced by uvrB and reduced by recA deletions. In contrast the toxicities and mutagenic potentials of Group B compounds (COOMe, NMe2, and two other bulky amine derivatives) were reduced by at least an order of magnitude, with uvrB and recA deletions showing lesser influence. The COOMe derivative was the only compound showing greater effects at the hisC3076 locus than the hisD3052 or hisG46 loci. The data suggest that all the compounds cause mutations through intercalation and/or monoadduct formation, but only for the COOMe derivative is intercalation the dominant mode of action. Group A compounds appear to have the additional ability to cross-link DNA, a property which amounts for their high potency but which is not compatible with bulky 4-substituents. Apart from these generalizations, there was considerable variation in mutagenic efficiency (as measured by the maximum numbers of revertant colonies) within each series. Of the compounds studied, the 4-OMe derivative appears to best retain the desirable antitumour properties of nitracrine while showing greatly-reduced mutagenic potential, and is an interesting lead for further development.  相似文献   

10.
The effect of freeze-drying on phenotypic reversion of amino acid auxotrophy to prototrophy was studied in Escherichia coli. In a radioresistant strain, E. coli H/r 30 (uvr+ exr+), which can repair the deoxyribonucleic acid damaged due to freeze-drying, an increased mutation frequency from auxotrophy to prototrophy was observed with increased time of freeze-drying of the cells. On the other hand, in a radiosensitive strain, E. coli NG 30 (recA), which cannot repair the damaged deoxyribonucleic acid due to a lack of repair enzyme system, no significant reversion occurred, although the survival rate was very low. The rate of phenotypic reversion dut to freeze-drying in both E. coli RIMD 0509109 (uvr+ exr+) and RIMD 0509115 (uvr exr+) was almost the same, indicating that the phenomenon is independent of the uvr character. From these results it is concluded that mutation was induced in E. coli cells during the rehydration when the damaged deoxyribonucleic acid was repaired by exr character of the cells. Thus, we propose that a serious consideration should be paid to the freeze-drying technique to preserve bacterial cells.  相似文献   

11.
The mutagenic potential of 9-[(3-dimethylaminopropyl)amino]-acridine and its 1-, 2-, 3- and 4-nitro derivatives was studied in several strains of Salmonella typhimurium carrying the frameshift marker hisC3076. The strains all carried deep rough (rfa) mutations, and were either wild-type with respect to DNA repair capacity or carried recA, uvrB, polA1 or polA3 (amber) mutations. Derivatives with and without plasmid pKM101 were also studied. The des-nitro compound resembled 9 aminoacridine and other simple intercalating compounds. Both toxicity and mutagenesis were apparently unaffected by the uvrB and recA mutations or by the presence of plasmid pKM101. However, mutagenicity was reduced by the polA1 mutation, and virtually eliminated by the polA3 mutation. The drug was substantially more toxic in the latter, slightly more toxic in the former, of these polA- strains. Plasmid pKM101 enhanced mutagenesis and protected from toxicity in both polA1- and polA3- strains, although it did not restore either of these parameters to the level in the wild-type strain. The 2-nitro compound was generally similar to the des-nitro compound, except that it was considerably more toxic and apparently non-mutagenic in the recA-bearing strain. By contrast, mutagenicity of the 3- and 4-nitro compounds was enhanced by the uvrB mutation and by the presence of the plasmid. These compounds were highly toxic but non-mutagenic in the recA- strain, and showed some increased toxicity in polA1- and polA3- strains. The 1-nitro compound has been previously found to cross-link DNA. Unlike well-characterised cross-linkers such as mitomycin C it was highly mutagenic in the uvrB- strain, and this mutagenesis was enhanced by plasmid pKM101, but eliminated by the recA mutation. At high doses, where the drug was completely toxic towards uvrB- or recA-carrying strains, it became mutagenic in the DNA-repair-proficient strains. This 'high-dose' mutagenesis was enhanced by plasmid pKM101, but reduced by the polA1 mutation and almost eliminated by the polA3 mutation. Although there are several possible interpretations of these data, they are compatible with the suggestion that the lesion induced by high doses (but not by low doses) of nitracrine is a cross-link, but that this is not the major mutagenic lesion.  相似文献   

12.
The effect of freeze-drying on phenotypic reversion of amino acid auxotrophy to prototrophy was studied in Escherichia coli. In a radioresistant strain, E. coli H/r 30 (uvr+ exr+), which can repair the deoxyribonucleic acid damaged due to freeze-drying, an increased mutation frequency from auxotrophy to prototrophy was observed with increased time of freeze-drying of the cells. On the other hand, in a radiosensitive strain, E. coli NG 30 (recA), which cannot repair the damaged deoxyribonucleic acid due to a lack of repair enzyme system, no significant reversion occurred, although the survival rate was very low. The rate of phenotypic reversion dut to freeze-drying in both E. coli RIMD 0509109 (uvr+ exr+) and RIMD 0509115 (uvr exr+) was almost the same, indicating that the phenomenon is independent of the uvr character. From these results it is concluded that mutation was induced in E. coli cells during the rehydration when the damaged deoxyribonucleic acid was repaired by exr character of the cells. Thus, we propose that a serious consideration should be paid to the freeze-drying technique to preserve bacterial cells.  相似文献   

13.
Four hexavalent and two trivalent chromium compounds were tested for toxicity and mutagenicity by means of the Salmonella typhimurium/mammalian-microsome test. All hexavalent compounds yielded a complete inhibition of bacterial growth at doses of 400 to 800 mug/plate, a significant increase of his(+) revertant colonies at doses ranging from 10 to 200 mug, and no effect at doses of less than 10 mug. The distinctive sensitivity of the four Salmonella strains tested (TA1535, TA1537, TA98, and TA100) suggested that hexavalent chromium directly interacts with bacterial deoxyribonucleic acid by causing both frameshift mutations and basepair substitutions. The latter mutations, which are prevalent, are amplified by an error-prone recombinational repair of the damaged deoxyribonucleic acid. On the average, 1 mumol of hexavalent chromium yielded approximately 500 revertants of the TA100 strain, irrespective of the compound tested (sodium dichromate, calcium chromate, potassium chromate, or chromic acid). The mutagenic potency of the hexavalent metal was not enhanced by adding the microsomal fraction of rat hepatocytes, induced either with sodium barbital or with Aroclor 1254. The two trivalent compounds (chromium potassium sulfate and chromic chloride), with or without the microsomal fraction, were neither toxic nor mutagenic for the bacterial tester strains.  相似文献   

14.
Oxathiolanes and disulfonyl derivatives of steroids were tested for mutagenic activity in the Ames tester strains. The test compounds exhibited mutagenic activity without metabolic activation although metabolic activation markedly enhanced their activity. A significant decrease in the survival of the radiation-sensitive mutants recA, lexA and rer of E. coli was observed as compared to their wild-type counterpart in the presence of the test steroid. Structural features which appear to be crucial for the mutagenic activity in these steroidal drugs are: (i) an electron-donating group at position 3, and (ii) a bulky group anchored at the 5th and 6th positions. The test steroids appear to damage DNA which in turn initiates the SOS repair with the concomitant induction of mutation.  相似文献   

15.
Plasmid pBEU14, which carries the Escherichia coli recA+ gene and which can be amplified by manipulation of growth temperature, was constructed. When pBEU14 deoxyribonucleic acid was amplified, a high rate of synthesis and accumulation of recA protein resulted. Amplification of the recA gene and protein did not cause induction of prophage lambda, indicating that the proteolytic activity of the recA protein was not stimulated.  相似文献   

16.
UV-induced mutagenesis in Escherichia coli B/r WP2 was enhanced by certain derivatives of methyl cinnamate which themselves were not mutagenic. Methyl ferulate, methyl isoferulate and methyl sinapate showed this effect markedly. Such an enhancement effect was absent with the derivatives of cinnamic acid and ethyl cinnamate and was not observed in Escherichia coli WP2s uvrA. Methyl sinapate also enhanced 4NQO-induced mutation and suppressed liquid-holding recovery in the above repair-proficient strain. The presence of methyl sinapate in plating agar medium decreased the survival of UV-irradiated cells of a recombination-repair-deficient strain, CM571 recA. However, the effect was not observed with those of WP2s uvrA. In an in vitro experiment in which the removal rate of thymine dimers was measured, methyl sinapate clearly inhibited this repair event. From these results, we conclude that methyl sinapate inhibits DNA excision repair, thus enhancing UV mutagenicity.  相似文献   

17.
Drying of Escherichia coli to a required cellular water level was conducted on a hydrophobic membrane at the corresponding relative humidity. Mutation from an arginine auxotroph to the prototroph was induced by drying to a water activity (aw) of 0.53 and below, but not to an aw of 0.75 and above. The critical aw below which mutation occurred in the course of drying was similar to that for induction of deoxyribonucleic acid (DNA) strand breakage in the bacteria. Some ultraviolet or gamma-irradiation-sensitive strains, e.g., strains of carrying recA, recB, and uvrA recA were more sensitive to drying than the wild-type strains or strains carrying uvrA and polA. The DNA strand breakage of every strain was observed to be to a similar extent after drying to an aw of less than 0.53. The drying-resistant strains repaired the damaged DNA partially during postdrying incubation in a growth medium but not in phosphate buffer solution, while the drying-sensitive strains could not at all. Significant mutation on drying occurred in the wild-type strains, strains carrying uvrA and polA, but not in strains carrying recA. It is, therefore, concluded that the mutation is caused by errors in rec-dependent repair of the drying-induced breakage in DNA.  相似文献   

18.
Host cell reactivation of ultraviolet-irradiated phage can be used as a probe of the bacterial repair system and to determine phage and cellular contributions to the repair process. Using the Bacillus subtilis phages SPP1, SP01, phie, and phi29, we found that the uvr-1 and polA functions are involved in the host cell reactivation of the four phages. SPP1 was the only phage whose reactivation was also decreased in recA, recD, and recF mutant cells. We studied variations of host cell reactivation for SPP1 during spore outgrowth; at high ultraviolet doses the activity of a spore repair system requiring deoxyribonucleic acid polymerase I became evident. The spore repair system was completely replaced by the vegetative one by 120 min of outgrowth.  相似文献   

19.
Eight steroids, structurally related to cholesterol, were tested for mutagenic activity in the Ames tester strains. All the test compounds were mutagenic without metabolic activation, although metabolic activation markedly enhanced their activity. A significant decrease in the survival of the radiation-sensitive mutants recA and lexA of Escherichia coli was observed as compared to their wild-type counterpart in the presence of the steroids. The role of recA and lexA genes gains further support from the lambda prophage induction in the lysogen as well as with Salmonella strains triggering the error-prone SOS response. Structural features which appear to be essential for mutagenic activity in these strains of the steroids are (1) reactive thio, sulfonyl or sulfinyl groups at the 6 position and (2) a halogen group at the 3 position of the steroidal nucleus. The mutagenicity appears to involve the formation of H2O2 as well as superoxide and hydroxyl radicals.  相似文献   

20.
In addition to being an essential component of trans-lesion synthesis, the UmuD'C complex is an antagonist of RecA-mediated homologous recombination. When constitutively expressed at an elevated concentration, the UmuD'C complex sensitizes recA+ bacteria to DNA damage, whereas it has no effect on bacteria expressing a RecA [UmuR] protein that overcomes recombination inhibition. Using as a genetic screen enhanced cell killing on mitomycin plates, we isolated novel umuD' and umuC mutations that restored mitomycin sensitivity to recA D112G [UmuR] bacteria overproducing the UmuD'C complex. The mutations were named [Rin++] because a characterization in a recA+ as well in a recA D112G background showed that they enhanced UmuD'C-promoted recombination inhibition in two assays, conjugational recombination and recombinational repair of palindrome-containing DNA. The [Rin++] mutations affect five amino acids, G25D, S28T, P29L, E35K, and T95R, in UmuD' and seven, F10L, Y270C, K277E, F287L, F287S, K342Q and F351I, in UmuC. These amino acids might play a key role in the UmuD'C anti-recombination activity. None of the [Rin++] mutations enhanced UmuD'C-promoted mutagenic bypass of UV lesions, in contrast, several lead to a defect in this process. In this study, we discuss a few molecular mechanisms that could account for the recombination and mutagenesis phenotypes of a mutant UmuD'C [Rin++] complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号