首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
Siow LF  Rades T  Lim MH 《Cryobiology》2008,(3):276-285
Cryo-responses of two types of large unilamellar vesicles (LUV) that were made from either egg yolk l-α-phosphatidylcholine (EPC) or 1,2-dipalmitoyl-rac-glycero-3-phosphocholine (DPPC), in the presence of non-permeable or permeable cryoprotective agents (CPA) was investigated. Partial ternary phase diagrams of CPA–salt–water with specific CPA to salt ratio (R), were constructed to estimate the phase volume of ice and unfrozen matrix of the LUV dispersion, which could aid in understanding the mechanistic actions of CPA. Leakage of both EPC and DPPC LUV was reduced if the sugar concentrations are above 10% (w/w) for disaccharides and 5% (w/w) for monosaccharides. Above these sugar concentrations, non-permeable CPA were more effective in preventing leakage of DPPC LUV than in EPC LUV. Below these sugar concentrations, EPC and DPPC LUV with limited mobility in the remaining unfrozen matrix were more likely to approach and interact with one and another, which were not anticipated when the LUV were completely embedded in the ice matrix. In the presence of Me2SO or EG, EPC LUV that had been subjected to freezing and thawing processes were protected from leakage. At room temperature, Me2SO and EG were detrimental to the DPPC LUV. This study suggests that the choice of CPA for cell cryopreservation depends on the type of phospholipids in plasma membranes, which vary in their acyl chain length and gel–liquid crystal phase transition temperature.  相似文献   

2.
The springtail Megaphorura arctica (Onychiuridae: Collembola) inhabits the arctic and sub-arctic parts of the northern hemisphere where it on a seasonal basis will be exposed to severe cold and desiccating conditions. In the present study we compared how traits of stress resistance differed between two populations of M. arctica that were collected at a high arctic site (Spitsbergen) and a sub-arctic site (Akureyri, Iceland) with contrasting thermal environments. In addition we investigated how cold and desiccation affected the phospholipid fatty acid composition of M. arctica from Spitsbergen. The springtails from Spitsbergen were the most cold tolerant and this was linked to an almost three times higher level of trehalose accumulation during cryoprotective dehydration (15% and 5% of tissue dry weight in the Spitsbergen and Iceland populations, respectively). Although cryoprotective dehydration is intimately related to desiccation stress it was shown that M. arctica had a higher mortality when dehydrated over ice (−10 or −20 °C) than when dehydrated at temperatures above 1 °C. Thus, survival was lower after exposure to −10 °C than after exposure to a relative humidity of 91.2% RH at +1 °C although both treatments led to the same level of dehydration. Exposure to both cold (−10 and −20 °C) and desiccation at +1 °C caused significant changes in the phospholipid fatty acid composition with some similarities. These changes included a decrease in average chain length of the fatty acids due primarily to an increase in the phospholipid fatty acids 16:0 and a decrease in 18:3 and 20:4ω6.  相似文献   

3.
In vitrified solutions, ice can form during warming if the concentration of the cryoprotectant is insufficient. For the cryopreservation of cells, ice is innocuous when it remains outside the cell, but intracellular ice (ICI) is lethal. We tried to estimate the conditions in which ICI forms in vitrified mouse morulae during warming. The solutions for the experiments (EFS10–EFS50) contained 10–50% ethylene glycol plus Ficoll plus sucrose. When vitrified EFS20, EFS30, and EFS40 were kept at −80 °C, they remained transparent after 3 min, but turned opaque after 60 min (EFS20, EFS30) or 24 h (EFS40). Morulae were vitrified with EFS solutions after exposure for 30–120 s at 25 °C. They were warmed by various methods and survival was assessed in culture. After rapid warming (control), survival was high with EFS30 (79–93%) and EFS40 (96–99%). After slow warming, survival decreased with both EFS30 (48–62%) and EFS40 (44–64%). This must be from the formation of ICI. To examine the temperature at which ICI formed during slow warming, vitrified embryos were kept at various sub-zero temperatures during warming. Survival with EFS30 and EFS40 decreased on keeping samples for 3 min at −80 (25–75%), −60 (7–49%), −40 (0–41%), or −20 °C (26–60%). When samples were kept at −80 °C for 24 h, the survival decreased to 0–14%. These results suggest that ICI forms at a wide range of temperatures including −80 and −20 °C, more likely between −60 and −40 °C, and the ice forms not only quickly but also slowly.  相似文献   

4.
The formation of more than trace amounts of ice in cells is lethal. The two contrasting routes to avoiding it are slow equilibrium freezing and vitrification. The cryopreservation of mammalian oocytes by either method continues to be difficult, but there seems a slowly emerging consensus that vitrification procedures are somewhat better for mouse and human oocytes. The approach in these latter procedures is to load cells with high concentrations of glass-inducing solutes and cool them at rates high enough to induce the glassy state. Several devices have been developed to achieve very high cooling rates. Our study has been concerned with the relative influences of warming rate and cooling rate on the survival of mouse oocytes subjected to a vitrification procedure. Oocytes suspended in an ethylene glycol–acetamide–Ficoll–sucrose solution were cooled to −196 °C at rates ranging from 37 to 1827 °C/min between 20 and −120 °C, and for each cooling rate, warmed at rates ranging from 139 to 2950 °C/min between −70 and −35 °C. The results are unambiguous. If the samples were warmed at the highest rate, survivals were >80% over cooling rates of 187–1827 °C/min. If the samples were warmed at the lowest rate, survivals were near 0% regardless of the cooling rate. We interpret the lethality of slow warming to be a consequence of it allowing time for the growth of small intracellular ice crystals by recrystallization.  相似文献   

5.
The freezing behavior of dormant buds in larch, especially at the cellular level, was examined by a Cryo-SEM. The dormant buds exhibited typical extraorgan freezing. Extracellular ice crystals accumulated only in basal areas of scales and beneath crown tissues, areas in which only these living cells had thick walls unlike other tissue cells. By slow cooling (5 °C/day) of dormant buds to −50 °C, all living cells in bud tissues exhibited distinct shrinkage without intracellular ice formation detectable by Cryo-SEM. However, the recrystallization experiment of these slowly cooled tissue cells, which was done by further freezing of slowly cooled buds with LN and then rewarming to −20 °C, confirmed that some of the cells in the leaf primordia, shoot primordia and apical meristem, areas in which cells had thin walls and in which no extracellular ice accumulated, lost freezable water with slow cooling to −30 °C, indicating ability of these cells to adapt by extracellular freezing, whereas other cells in these tissues retained freezable water with slow cooling even to −50 °C, indicating adaptation of these cells by deep supercooling. On the other hand, all cells in crown tissues and in basal areas of scales, areas in which cells had thick walls and in which large masses of ice accumulated, had the ability to adapt by extracellular freezing. It is thought that the presence of two types of cells exhibiting different freezing adaptation abilities within a bud tissue is quite unique and may reflect sophisticated freezing adaptation mechanisms in dormant buds.  相似文献   

6.
The influence of light and temperature on the cylindrospermopsin (CYN) production of two Aphanizomenon flos-aquae strains, isolated from North-eastern German lakes, was investigated with semi-continuously growing cultures. A light gradient from 10 to 60 μE m−2 s−1 in combination with temperatures of 16, 20, and 25 °C was tested.CYN concentrations varied by a maximum factor of 2.7 in strain 10E9 with a significant decrease with increasing temperature. Strain 22D11 showed less pronounced changes, i.e. by a factor of 1.6, and without clear relationship to temperature.Reaction patterns of CYN production to changing light intensities are different at different temperatures. In both strains CYN concentrations increase significantly at 20 °C between 10 and 60 μE m−2 s−1, whereas they decrease significantly at 25 °C in the same light gradient. The amount of synthesised CYN is not reflected by growth rates of the strains in a uniform manner. Nonetheless several temperature–light combinations which constitute physiological stress seem to trigger CYN production and particularly CYN release from cells. The lowest growth rate observed at 16 °C and 60 μE m−2 s−1 of strain 22D11 may reflect photoinhibition due to the lower temperature and related limited CO2-fixation. Under these conditions, extracellular CYN concentrations increased to 58% of total CYN, while the share of extracellular CYN of all other light and temperature regimes was 11–26%. From the results and the experimental design we conclude an active release of the toxin into medium to be more likely than mere leakage from cells.  相似文献   

7.
Mussels in subarctic Norway commonly occur in shallow intertidal pools. By living in pools (a habitat rarely inhabited in lower latitudes) they are insulated against low air temperatures but exposed to high salinities (<70°/oo) beneath overlying ice. Mussels avoid exposing their tissues to such high salinities because a shell valve closure response to low temperature operates at about −1.5°C before ice sheets form and bottom water salinities rise. Shell valve closure coincides with very low cardiac and ciliary activity.  相似文献   

8.
This article looks at storage factors influencing the stability of potential DNA calibration standards for use in quantitative polymerase chain reaction (PCR). Target sequences from the bacteria Campylobacter jejuni were cloned into a plasmid vector. Samples of these potential calibration standards were stored at +4, −20, and −80 °C as aqueous and lyophilized samples and were prepared as both single-use aliquots and multiple-use preparations. Results showed that the samples stored as single-use aqueous solutions at +4 °C and lyophilized samples stored at +4 and −20 °C were the most stable. Samples stored as frozen aqueous solutions at −20 °C were the least stable.  相似文献   

9.
Seasonal changes of field populations and growth rates of two dinoflagellates, Ceratium furca and Ceratium fusus, were examined in the temperate coastal water of Sagami Bay, Japan. Weekly field sampling was conducted from August 2002 to August 2003, and laboratory experiments were also carried out to investigate effects of temperature, irradiance and photoperiod on the growth rates of these two Ceratium species. In the field, the abundances of both species increased significantly from April to August 2003, were gradually decreased from November 2002 and were not observed in January 2003. C. fusus was able to increase at lower temperatures in February 2003 compared to C. furca. In the laboratory, the two species did not grow at <10 °C or >32 °C. The highest specific growth rate of C. furca was 0.72 d−1 at 24 °C and 600 μmol m−2 s−1. Optimum growth rates (>0.4 d−1) of C. furca were observed at temperatures from 18 to 28 °C and at irradiances from 216 to 796 μmol m−2 s−1. The highest growth rate of C. fusus was 0.56 d−1 at 26 °C and 216 μmol m−2 s−1. Optimum growth rates of C. fusus were observed at the same irradiance rage of C. furca, whereas optimum temperature range was narrower (26–28 °C). The growth curves of both species indicated saturation of the growth rates when light intensity was above 216 μmol m−2 s−1, and did not show photoinhibition at irradiances up to 796 μmol m−2 s−1. The specific growth rates of both Ceratium species were clearly decreased at L:D = 10:14 relative to those at L:D = 14:10 and L:D = 12:12. The present study indicates the two Ceratium species can adapt to a wide range of temperature and irradiance.  相似文献   

10.
Partition coefficients of the insecticide γ-1,2,3,4,5,6-hexachlorocyclohexane (trivially, lindane) were determined in model and native membranes. Partition in egg phosphatidylcholine bilayers decreases linearly with temperature, over a range (10–40°C) at which the lipid is in the liquid-crystalline state. Addition of 50 mol% cholesterol dramatically decreases partition (2100 falls to 100, at 10°C) and abolishes the temperature dependence. First-order phase transitions of dimyristoyl-, dipalmitoyl- and distearoylphosphatidylcholines (DMPC, DPPC and DSPC) are accompanied by a sharp increase in lindane partition. Apparently, the insecticide is easily accommodated in bilayers of short-aliphatic-chain lipids, since the partitions were 2450, 600 and 50 in DMPC, DPPC and DSPC, respectively, at temperatures 10 Cdeg below the midpoint of their transitions. The lindane partition sequence in native membranes is as follows: mitochondria, sarcoplasmic reticulum, myelin, brain microsomes and erythrocytes. This sequence correlates reasonably well with the relative content of cholesterol and is similar in liposomes of total extracted lipids, although the absolute partitions showed decreased values. Therefore, the presence of proteins in native membranes contributes to the insecticide partition, probably by favouring its interaction with lipids.  相似文献   

11.
Towards whole sheep ovary cryopreservation   总被引:1,自引:0,他引:1  
Cryopreservation of ovarian tissue aims to assist young women who require treatments that may lead to sterility or infertility. Cryopreservation procedures should therefore be as simple and efficient as possible. This study investigates rapid cooling outcomes for whole sheep ovaries. Ovaries were perfused with VS4 via the ovarian artery, and cooled by quenching in liquid nitrogen in less than a minute (estimated cooling rate above 300 °C/min till the vitreous transition temperature). The ovaries were rewarmed in two stages: slow warming (12–16 °C/min from −196 to −133 °C) in liquid nitrogen vapour, followed by rapid thawing in a 45 °C water bath at about 200 °C/min. DSC measurements showed that under these cryopreservation conditions VS4 would vitrify, but that VS4 perfused ovarian cortex fragments did not vitrify, but formed ice (around 18.4%). Immediately following rewarming, a dye exclusion test indicated that 61.4 ± 2.2% of small follicles were viable while histological analysis showed that 48 ± 3.8% of the primordial follicles were normal. It remains to be clarified whether follicle survival rates will increase if conditions allowing complete tissue vitrification were used.  相似文献   

12.
Differential scanning calorimetry (DSC) was used to determine the amount of water that freezes in an aqueous suspension of multilamellar dipalmitoylphosphatidylcholine (DPPC) liposomes. The studies were performed with dehydrated suspensions (12-20 wt% water) and suspensions containing an excess of water (30-70 wt% water). For suspensions that contained > or = 18 wt% water, two ice-formation events were observed during cooling. The first was attributed to heterogeneous nucleation of extraliposomal ice; the second was attributed to homogeneous nucleation of ice within the liposomes. In suspensions with an initial water concentration between 13 and 16 wt%, ice formation occurred only after homogeneous nucleation at temperatures below -40 degrees C. In suspensions containing < 13 wt% water, ice formation during cooling was undetectable by DSC, however, an endotherm resulting from ice melting during warming was observed in suspensions containing > or = 12 wt% water. In suspensions containing < 12 wt% water, an endotherm corresponding to the melting of ice was not observed during warming. The amount of ice that formed in the suspensions was determined by using an improved procedure to calculate the partial area of the endotherm resulting from the melting of ice during warming. The results show that a substantial proportion of water associated with the polar headgroup of phosphatidylcholine can be removed by freeze-induced dehydration, but the amount of ice depends on the thermal history of the samples. For example, after cooling to -100 degrees C at rates > or = 10 degrees C/min, a portion of water in the suspension remains supercooled because of a decrease in the diffusion rate of water with decreasing temperature. A portion of this supercooled water can be frozen during subsequent freeze-induced dehydration of the liposomes under isothermal conditions at subfreezing storage temperature Ts. During isothermal storage at Ts > or = -40 degrees C, the amount of unfrozen water decreased with decreasing Ts and increasing time of storage. After 30 min of storage at Ts = -40 degrees C and subsequent cooling to -100 degrees C, the amount of water associated with the polar headgroups was < 0.1 g/g of DPPC. At temperatures > -50 degrees C, the amount of unfrozen water associated with the polar headgroups of DPPC decreased with decreasing temperature in a manner predicted from the desorption isotherm of DPPC. However, at lower temperatures, the amount of unfrozen water remained constant, in large part, because the unfrozen water underwent a liquid-to-glass transformation at a temperature between -50 degrees and -140 degrees C.  相似文献   

13.
This paper provides quantitative reconstructions of the Lateglacial changes in four climate parameters from two fine-resolution pollen profiles in the Gutaiului Mountains, NW Romania. Climate estimates are based on two modern analogue techniques (with and without considering vegetation types) and weighted averaging partial least squares regression (WA-PLS), giving evidence for several climatic fluctuations during the period from > 14,700 to 11,500 cal. yr BP. The comparative results of the two modern analogue techniques show consistent trends of climate changes that are also coherent at both sites, but these results appear to largely disagree compared with climate reconstruction provided by WA-PLS.The modern analogue techniques revealed four intervals with low temperatures: prior to 14,700 cal. yr BP, between 13,950 and 13,800; 13,400 and 13,200; and 12,700 and 11,700 cal. yr BP. The temperature declines were more pronounced for winter than for summer, suggesting an intensification of seasonality, which together with a drop in precipitation indicates an increase in continentality. The Younger Dryas is the most pronounced cooling phase with winter temperatures ~ 14–16 °C colder than modern conditions, annual and summer temperatures ~ 2–5 °C and ~ 2 °C, respectively below present ones. Precipitation was ~ 400–500 mm, half that of present. During the Bølling and Allerød, summer temperatures were close to modern values (13 to 17 °C), whereas winter (− 6 to − 12 °C) and annual temperatures (0.5 to 6 °C) as well as precipitation were (550 to 700 mm) lower, indicating more continental conditions compared to the present-day climate.  相似文献   

14.
Cryosurgery offers a promising therapeutic alternative for the treatment of prostate cancer. While often successful, complete cryoablation of cancerous tissues sometimes fails due to technical challenges. Factors such as the end temperature, cooling rate, duration of the freezing episode, and repetition of the freezing cycle have been reported to influence cryosurgical outcome. Accordingly, we investigated the effects of these variables in an in vitro prostate cancer model. Human prostate cancer PC-3 and LNCaP cultures were exposed to a range of sub-zero temperatures (−5 to −40 °C), and cells were thawed followed by return to 37 °C. Post-thaw viability was assessed using a variety of fluorescent probes including alamarBlue™ (metabolic activity), calceinAM (membrane integrity), and propidium iodide (necrosis). Freeze duration following ice nucleation was investigated using single and double freezing cycles (5, 10, and 20 min). The results demonstrated that lower freezing temperatures yielded greater cell death, and that LNCaP cells were more susceptible to freezing than PC-3 cells. At −15 °C, PC-3 yielded 55% viability versus 20% viability for LNCaP. Double freezing cycles were found to be more than twice as destructive versus a single freeze–thaw cycle. Both cell types experienced increased cell death when exposed to freezing temperatures for longer durations. When thawing rates were considered, passive (slower) thawing following freezing yielded greater cell death than active (faster) thawing. A 20% difference in viability between passive and active thawing was observed for PC-3 for a 10 min freeze. Finally, the results demonstrate that just reaching −40 °C in vitro may not be sufficient to obtain complete cell death. The data support the use of extended freeze times, multiple freeze–thaw cycles, and passive thawing to provide maximum cell destruction.  相似文献   

15.
We studied the process of conversion of microcrystalline-cellulose into fermentable glucose in the formic acid reaction system using cross polarization/magic angle spinning 13C-nuclear magnetic resonance, X-ray diffraction and Fourier transform infrared spectroscopy. The results indicated that formic acid as an active agent was able to effectively penetrate into the interior space of the cellulose molecules, thus collapsing the rigid crystalline structure and allowing hydrolysis to occur easily in the amorphous zone as well as in the crystalline zone. The microcrystalline-cellulose was hydrolyzed using formic acid and 4% hydrochloric acid under mild conditions. The effects of hydrochloric acid concentration, the ratio of solid to liquid, temperature (55–75 °C) and retention time (0–9 h), and the concentration of glucose were analyzed. The hydrolysis velocities of microcrystalline-cellulose were 6.14 × 10− 3 h− 1 at 55 °C, 2.94 × 10− 2 h− 1 at 65 °C, and 6.84 × 10− 2 h− 1 at 75 °C. The degradation velocities of glucose were 0.01 h− 1 at 55 °C, 0.14 h− 1 at 65 °C, 0.34 h− 1 at 75 °C. The activation energy of microcrystalline-cellulose hydrolysis was 105.61 kJ/mol, and the activation energy of glucose degradation was 131.37 kJ/mol.  相似文献   

16.
The ciliated protozoan Tetrahymena pyriformis has been used to study the biochemistry of cellular injury induced by rapid cooling (cold shock). Cellular viability was found to depend on the time and temperature of cold exposure, and the rate of cooling. During cooling to −7.5 °C, in the absence of ice, an optimal rate of cooling of 2.5 °C min−1 was observed; at both faster and slower cooling the recovery decreased. Following acclimation at a reduced temprature (10 °C) the viability following rapid cooling was significantly different from that of cultures maintained at 20 °C. Analysis of the phospholipid fatty acids from cells grown at 10 °C demonstrated that, at the reduced temperature, there was an increase in the average degree of fatty acyl unsaturation. Cold-shock injury in Tetrahymena is associated with membrane thermotropic events which are determined by temperature per se, whereas viability is a function of the rate of cooling. A hypothesis of injury is presented in which the presence of gel-phase lipid within the membrane is not the critical event, but it is the pattern of nucleation within the membrane which ultimately determines the extent of cellular injury.  相似文献   

17.
Biodegradation of Methyl red by Galactomyces geotrichum MTCC 1360   总被引:1,自引:0,他引:1  
Galactomyces geotrichum MTCC 1360 can decolorize triphenylmethane, azo and reactive high exhaust textile dyes. At shaking condition this strain showed 100% decolorization of a toxic azo dye Methyl red (100 m gl−1) within 1 h in deionized water at 30 °C. The degradation of Methyl red was possible through a broad pH (3–12) and temperature (5–50 °C) range. Glucose and mycelium concentration had increased the decolorization rate, but the addition of 1 gl−1 molasses in deionized water made decolorization possible in only 10 min. Induction in the NADH–dichloro phenol indophenol (NADH–DCIP) reductase, Malachite green reductase, laccase and lignin peroxidase (Lip) activities were observed in the cells obtained after complete decolorization, showing that there is direct involvement in the degradation of Methyl red. The absence of N-N′-dimethyl-p-phenylenediamine (DMPD) in 5 °C, 2-aminobenzoic acid (ABA) in 50 °C and both the compounds in 30 °C sample have shown the differences in the metabolic fate of Methyl red at different temperatures. The untreated dye at 300 mg l−1 concentration showed 88% germination inhibition in Sorghum bicolor, whereas it was 72% in Triticum aestivum. There was no germination inhibition for both the plants by Methyl red metabolites at 300 mg l−1 concentration.

The scientific relevance of the paper

The azo dye Methyl red (100 mg l−1) was decolorized by G. geotrichum MTCC 1360 within 1 h at shaking condition in deionized water. This organism could decolorize Methyl red at wide pH and temperature ranges. Decolorization time was reduced to 10 min by the addition of molasses to deionized water. There was induction in laccase and Lip, NADH–DCIP reductase and Malachite green reductase activities. The metabolic fate of Methyl red changes with temperature which can be evidenced by the formation of 2-ABA at 5 °C, N-N′-DMPD at 50 °C and both the compounds were absent at 30 °C. Phytotoxicity showed that metabolites of dye had induced shoot and root length of both the tested plants.  相似文献   

18.
This study compared the mass-specific routine metabolic rate (RMR) of similar sized mulloway (Argyrosomus japonicus), a sedentary species, and yellowtail kingfish (Seriola lalandi), a highly active species, acclimated at one of several temperatures ranging from 10–35 °C. Respirometry was carried out in an open-top static system and RMR corrected for seawater–atmosphere O2 exchange using mass-balance equations. For both species RMR increased linearly with increasing temperature (T). RMR for mulloway was 5.78T − 29.0 mg O2 kg− 0.8 h− 1 and for yellowtail kingfish was 12.11T − 39.40 mg O2 kg− 0.8 h− 1. The factorial difference in RMR between mulloway and yellowtail kingfish ranged from 2.8 to 2.2 depending on temperature. The energetic cost of routine activity can be described as a function of temperature for mulloway as 1.93T − 9.68 kJ kg− 0.8 day− 1 and for yellowtail kingfish as 4.04T − 13.14 kJ kg− 0.8 day− 1. Over the full range of temperatures tested Q10 values were approximately 2 for both species while Q10 responses at each temperature increment varied considerably with mulloway and yellowtail kingfish displaying thermosensitivities indicative of each species respective niche habitat. RMR for mulloway was least thermally dependent at 28.5 °C and for yellowtail kingfish at 22.8 °C. Activation energies (Ea) calculated from Arrhenius plots were not significantly different between mulloway (47.6 kJ mol− 1) and yellowtail kingfish (44.1 kJ mol− 1).  相似文献   

19.
Survival of some polar fishes is associated with high levels of circulating antifreeze glycoproteins (AFGPs). AFGP prevent ice growth giving rise to thermal hysteresis. The inhibiting action of AFGPs implies that polar fish contain ice to which AFGPs adsorb. Cryopelagic Pagothenia borchgrevinki, inhabiting the ice-laden waters of McMurdo Sound, Antarctica, were assayed for ice and ice was found on skin, gills, in the intestine, and in the spleen. Two methods used to assess the number of ice crystals in spleens gave comparable results (12.1 +/− 1.9 and 22 +/− 3.8 per spleen). Attempts were made to measure the rate of uptake of ice by P. borchgrevinki held in cages immediately beneath the sub-ice platelet layer in McMurdo Sound; uptake was sporadic. Introduction of ice into fish by spray freezing a small patch of the integument resulted in detection of splenic ice after 1 h, illustrating that a mechanism exists for ice transport from the periphery to the spleen. Splenic ice did not seem to be eliminated from fish held in ice-free water at − 1.6 °C for approximately two months. The relatively small number of splenic ice crystals and the slow rate of ice uptake suggest efficient ice barriers exist in P. borchgrevinki.  相似文献   

20.
Glycerol diffusional permeabilities through the cytoplasmic cell membrane of Dunaliella salina, the cell envelope of pig erythrocyte and egg phosphattidylcholine vesicles were measured by NMR spectroscopy employing the spin-echo method and nuclear T1 relaxation. The following permeability coefficients (P) and corresponding enthalpies of activation (ΔH) were determined for glycerol at 25°C: for phosphatidylcholine vesicles 5·10−6 cm/s and 11±2 kcal/mol; for pig erythrocytes 7·10−8 cm/s and 18±3 kcal/mol, respectively; for the cytoplasmic membrane of D. salina the permeability at 17°C was found to be exceptionally low and only a lower limit (P<5·10−11cm/s) could be calculated. At temperatures above 50°C a change in membrane permeability occurred leading to rapid leakage of glycerol accompanied by cell death. The data reinforce the notion that the cytoplasmic membrane of Dunaliella represents a genuine anomaly in its exceptional low permeability to glycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号