首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Previous studies have shown that the PDZ-binding motif of the E6 oncoprotein from the mucosal high-risk (HR) human papillomavirus (HPV) types plays a key role in HPV-mediated cellular transformation in in vitro and in vivo experimental models. HR HPV E6 oncoproteins have the ability to efficiently degrade members of the PDZ motif-containing membrane-associated guanylate kinase (MAGUK) family; however, it is possible that other PDZ proteins are also targeted by E6. Here, we describe a novel interaction of HPV type 16 (HPV16) E6 with a PDZ protein, Na(+)/H(+) exchange regulatory factor 1 (NHERF-1), which is involved in a number of cellular processes, including signaling and transformation. HPV16 E6 associates with and promotes the degradation of NHERF-1, and this property is dependent on the C-terminal PDZ-binding motif of E6. Interestingly, HPV16 E7, via the activation of the cyclin-dependent kinase complexes, promoted the accumulation of a phosphorylated form of NHERF-1, which is preferentially targeted by E6. Thus, both oncoproteins appear to cooperate in targeting NHERF-1. Notably, HPV18 E6 is not able to induce NHERF-1 degradation, indicating that this property is not shared with E6 from all HR HPV types. Downregulation of NHERF-1 protein levels was also observed in HPV16-positive cervical cancer-derived cell lines, such as SiHa and CaSki, as well as HPV16-positive cervical intraepithelial neoplasia (CIN). Finally, our data show that HPV16-mediated NHERF-1 degradation correlates with the activation of the phosphatidylinositol-3'-OH kinase (PI3K)/AKT signaling pathway, which is known to play a key role in carcinogenesis.  相似文献   

3.
4.
Human papillomavirus (HPV) E6 and E7 oncogenes are expressed in the great majority of human cervical carcinomas, whereas the viral E2 regulatory gene is usually disrupted in these cancers. To investigate the roles of the papillomavirus E2 genes in the development and maintenance of cervical carcinoma, the bovine papillomavirus (BPV) E2 gene was acutely introduced into cervical carcinoma cell lines by infection with high-titer stocks of simian virus 40-based recombinant viruses. Expression of the BPV E2 protein in HeLa, C-4I, and MS751 cells results in specific inhibition of the expression of the resident HPV type 18 (HPV18) E6 and E7 genes and in inhibition of cell growth. HeLa cells, in which HPV gene expression is nearly completely abolished, undergo a dramatic and rapid inhibition of proliferation, which appears to be largely a consequence of a block in progression from the G1 to the S phase of the cell cycle. Loss of HPV18 gene expression in HeLa cells is also accompanied by a marked increase in the level of the cellular p53 tumor suppressor protein, apparently as a consequence of abrogation of HPV18 E6-mediated destabilization of p53. The proliferation of HT-3 cells, a human cervical carcinoma cell line devoid of detectable HPV DNA, is also inhibited by E2 expression, whereas two other epithelial cell lines that do not contain HPV DNA are not inhibited. Thus, a number of cervical carcinoma cell lines are remarkably sensitive to growth inhibition by the E2 protein. Although BPV E2-mediated inhibition of HPV18 E6 and E7 expression may contribute to growth inhibition in some of the cervical carcinoma cell lines, the BPV E2 protein also appears to exert a growth-inhibitory effect that is independent of its effects on HPV gene expression.  相似文献   

5.
The E6 and E7 oncoproteins of human papillomavirus (HPV) play a major role in the development of cervical carcinoma. In this study, a recombinant adenovirus that expresses the bovine papillomavirus (BPV) E2, which has been shown to inhibit HPV early gene expression, was delivered to two HPV-immortalized cell lines as well as CaSki, a cervical carcinoma cell line. We tested whether the carcinoma and the immortal cells were equally affected by the expression of BPV E2. In all cell lines, BPV E2-mediated inhibition of HPV E6/E7 expression caused a dramatic suppression of cell growth, being preceded by the activation of the p53-Rb growth-inhibitory pathway, and a decrease in hTERT mRNA expression and telomerase activity. This suggests that the HPV E6 and E7 proteins are required not only for induction of the proliferative phenotype and telomerase activity, but also for their maintenance. In both the carcinoma and the immortal lines, the number of cells with enlarged cytoplasm and senescence-associated beta-galactosidase activity, which are markers for cellular senescence, was significantly increased. These results suggest that a senescence program exists in cells immortalized by HPV DNA as well as in cervical carcinoma cells.  相似文献   

6.
The major difficulties of human papillomavirus(HPV) treatment are its persistence and recurrence. The HPV E7 oncoprotein-loaded dendritic cells have been evaluated as cellular vaccine in previous reports. Plasmacytoid dendritic cells(pDCs) play an essential role of connecting the innate immune response and adaptive immune response in the immune system. But they function in HPV E7 loading is unclear. To investigate whether loading of the HPV type 6b, 11, and 16 E7 proteins affects the activity of pDCs, human peripheral blood-separated pDCs and mouse bone marrow-derived pDCs were pulsed with the HPV E7 proteins. The expression levels of CD40, CD80, CD86, and MHC II were significantly upregulated in pDCs upon HPV 6b/11 E7 protein pulse. The secretion and gene expression of type I IFN and IL-6 were both upregulated by HPV 6b/11 E7 proteins, more significant than HPV 16 E7 protein. The expression of essential factors of TLR signaling pathway and JNK/p38 MAP kinase signaling pathway were all increased in HPV 6b/11 E7 proteins pulsed pDCs. Our results suggest that HPV E7 proteins could promote the differentiation and maturation of pDCs and activate the TLR and MAPK pathway to induce host innate immune response. It might be conducive to explore novel immunotherapy targeting HPV infection with HPV E7 loaded pDC.  相似文献   

7.
The high-risk human papillomavirus (HPV) E6 proteins are consistently expressed in HPV-associated lesions and cancers. HPV16 E6 sustains the activity of the mTORC1 and mTORC2 signaling cascades under conditions of growth factor deprivation. Here we report that HPV16 E6 activated mTORC1 by enhanced signaling through receptor protein tyrosine kinases, including epidermal growth factor receptor and insulin receptor and insulin-like growth factor receptors. This is evidenced by sustained signaling through these receptors for several hours after growth factor withdrawal. HPV16 E6 increased the internalization of activated receptor species, and the signaling adaptor protein GRB2 was shown to be critical for HPV16 E6 mediated enhanced EGFR internalization and mTORC1 activation. As a consequence of receptor protein kinase mediated mTORC1 activation, HPV16 E6 expression increased cellular migration of primary human epithelial cells. This study identifies a previously unappreciated mechanism by which HPV E6 proteins perturb host-signaling pathways presumably to sustain protein synthesis during the viral life cycle that may also contribute to cellular transforming activities of high-risk HPV E6 proteins.  相似文献   

8.
Cervical carcinoma is the predominant cancer among malignancies in women throughout the world, and human papillomavirus (HPV) 16 is the most common agent linked to human cervical carcinoma. The present study was performed to investigate the mechanisms of immune escape in HPV-induced cervical cancer cells. The presence of HPV oncoproteins E6 and E7 in the extracellular fluids of HPV-containing cervical cancer cell lines SiHa and CaSki was demonstrated by ELISA. The effect of HPV 16 oncoproteins E6 and E7 on the production of IFN-gamma by IL-18 was assessed. E6 and E7 proteins reduced IL-18-induced IFN-gamma production in both primary PBMCs and the NK0 cell line. FACS analysis revealed that the viral oncoproteins reduced the binding of IL-18 to its cellular surface receptors on NK0 cells, whereas there was no effect of oncoproteins on IL-1 binding to its surface IL-1 receptors on D10S, a subclone of the murine Th cell D10.G4.1. In vitro pull-down assays also revealed that the viral oncoproteins and IL-18 bound to IL-18R alpha-chain competitively. These results suggest that the extracellular HPV 16 E6 and E7 proteins may inhibit IL-18-induced IFN-gamma production locally in HPV lesions through inhibition of IL-18 binding to its alpha-chain receptor. Down-modulation of IL-18-induced immune responses by HPV oncoproteins may contribute to viral pathogenesis or carcinogenesis.  相似文献   

9.
The human DEK proto-oncogene is a nucleic acid binding protein with suspected roles in human carcinogenesis, autoimmune disease, and viral infection. Intracellular DEK functions, however, are poorly understood. In papillomavirus-positive cervical cancer cells, downregulation of viral E6/E7 oncogene expression results in cellular senescence. We report here the specific repression of DEK message and protein levels in senescing human papillomavirus type 16- (HPV16-) and HPV18-positive cancer cell lines as well as in primary cells undergoing replicative senescence. Cervical cancer cell senescence was partially overcome by DEK overexpression, and DEK overexpression was sufficient for extending the life span of primary keratinocytes, supporting critical roles for this molecule as a senescence regulator. In order to determine whether DEK is a bona fide HPV oncogene target in primary cells, DEK expression was monitored in human keratinocytes transduced with HPV E6 and/or E7. The results identify high-risk HPV E7 as a positive DEK regulator, an activity that is not shared by low-risk HPV E7 protein. Experiments in mouse embryo fibroblasts recapitulated the observed E7-mediated DEK induction and demonstrated that both basal and E7-induced regulation of DEK expression are controlled by the retinoblastoma protein family. Taken together, our results suggest that DEK upregulation may be a common event in human carcinogenesis and may reflect its senescence inhibitory function.  相似文献   

10.
Cervical cancer cells express high-risk human papillomavirus (HPV) E6 and E7 proteins, and repression of HPV gene expression causes the cells to cease proliferation and undergo senescence. However, it is not known whether both HPV proteins are required to maintain the proliferative state of cervical cancer cells, or whether mutations that accumulate during carcinogenesis eliminate the need for one or the other of them. To address these questions, we used the bovine papillomavirus E2 protein to repress the expression of either the E6 protein or the E7 protein encoded by integrated HPV18 DNA in HeLa cervical carcinoma cells. Repression of the E7 protein activated the Rb pathway but not the p53 pathway and triggered senescence, whereas repression of the E6 protein activated the p53 pathway but not the Rb pathway and triggered both senescence and apoptosis. Telomerase activity, cyclin-dependent kinase activity, and expression of c-myc were markedly inhibited by repression of either E6 or E7. These results demonstrate that continuous expression of both the E6 and the E7 protein is required for optimal proliferation of cervical carcinoma cells and that the two viral proteins exert distinct effects on cell survival and proliferation. Therefore, strategies that inhibit the expression or activity of either viral protein are likely to inhibit the growth of HPV-associated cancers.  相似文献   

11.
Human cervical carcinoma cell lines that harbor human papillomavirus (HPV) have been reported to retain selectively and express HPV sequences which could encode viral E6 and E7 proteins. The potential importance of HPV E6 to tumors is suggested further by the observation that bovine papillomavirus (BPV) E6 can induce morphologic transformation of mouse cells in vitro. To identify HPV E6 protein, a polypeptide encoded by HPV-16 E6 was produced in a bacterial expression vector and used to raise antisera. The antisera specifically immunoprecipitated the predicted 18-kd protein in two human carcinoma cell lines known to express HPV-16 RNA and in mouse cells morphologically transformed by HPV-16 DNA. The 18-kd E6 protein was distinct from a previously identified HPV-16 E7 protein. The HPV-16 E6 antibodies were found to be type specific in that they did not recognize E6 protein in cells containing HPV-18 sequences and reacted weakly, if at all, to BPV E6 protein. The results demonstrate that human tumors containing HPV-16 DNA can express an E6 protein product. They are consistent with the hypothesis that E6 may contribute to the transformed phenotype in human cervical cancers that express this protein.  相似文献   

12.
We have analyzed the induction and role of phosphatidylinositol 3-kinase (PI3K) by Notch signaling in human papillomavirus (HPV)-derived cancers. Jagged1, in contrast to Delta1, is preferentially upregulated in human cervical tumors. Jagged1 and not Delta1 expression sustained in vivo tumors by HPV16 oncogenes in HaCaT cells. Further, Jagged1 expression correlates with the rapid induction of PI3K-mediated epithelial-mesenchymal transition in both HaCaT cells and a human cervical tumor-derived cell line, suggestive of Delta1;Serrate/Jagged;Lag2 ligand-specific roles. Microarray analysis and dominant-negatives reveal that Notch-PI3K oncogenic functions can be independent of CBF1;Su(H);Lag-1 activation and instead relies on Deltex1, an alternative Notch effector.  相似文献   

13.
Deregulation of the expression of human papillomavirus (HPV) oncogenes E6 and E7 plays a pivotal role in cervical carcinogenesis because the E6 and E7 proteins neutralize p53 and Rb tumor suppressor pathways, respectively. In approximately 90% of all cervical carcinomas, HPVs are found to be integrated into the host genome. Following integration, the core-enhancer element and P105 promoter that control expression of E6 and E7 adopt a chromatin structure that is different from that of episomal HPV, and this has been proposed to contribute to activation of E6 and E7 expression. However, the molecular basis underlying this chromatin structural change remains unknown. Previously, BAF53 has been shown to be essential for the integrity of higher-order chromatin structure and interchromosomal interactions. Here, we examined whether BAF53 is required for activated expression of E6 and E7 genes. We found that BAF53 knockdown led to suppression of expression of E6 and E7 genes from HPV integrants in cervical carcinoma cell lines HeLa and SiHa. Conversely, expression of transiently transfected HPV18-LCR-Luciferase was not suppressed by BAF53 knockdown. The level of the active histone marks H3K9Ac and H4K12Ac on the P105 promoter of integrated HPV 18 was decreased in BAF53 knockdown cells. BAF53 knockdown restored the p53-dependent signaling pathway in HeLa and SiHa cells. These results suggest that activated expression of the E6 and E7 genes of integrated HPV is dependent on BAF53-dependent higher-order chromatin structure or nuclear motor activity.  相似文献   

14.
15.
Human papillomavirus (HPV) infection, particularly type 16, is causally associated with the development of cervical cancer. The E6 and E7 proteins of HPV are constitutively expressed in cervical carcinoma cells making them attractive targets for CTL-based immunotherapy. However, few studies have addressed whether cervical carcinomas can process and present HPV E6/E7-derived Ags for recognition by CTL. We generated HLA-A*0201-restricted CTL clones against HPV16 E6(29-38) that recognized HPV16 E6 Ags transfected into B lymphoblastoid cells. These CTL were unable to recognize HLA-A*0201(+) HPV16 E6(+) cervical carcinoma cell lines even when the level of endogenous HPV16 E6 in these cells was increased by transfection. This defect in presentation of HPV16 E6(29-38) correlated with low level expression of HLA class I, proteasome subunits low molecular mass protein 2 and 7, and the transporter proteins TAP1 and TAP2 in the cervical carcinoma cell lines. The expression of all of these proteins could be up-regulated by IFN-gamma, but this was insufficient for CTL recognition unless the level of HPV16 E6 Ag was also increased by transfection. CTL recognition of the HPV16 E6(29-38) epitope in 721.174 B cells was dependent on TAP expression but independent of immunoproteasome expression. Collectively, these findings suggest that presentation of the HPV16 E6(29-38) epitope in cervical carcinoma cell lines is limited both by the level of TAP expression and by the low level or availability of the source HPV E6 oncoprotein. These observations place constraints on the use of this, and potentially other, HPV-derived CTL epitopes for the immunotherapy of cervical cancer.  相似文献   

16.
17.
18.
19.
20.
Tumor cells utilize preferably glucose for energy production. They accomplish cellular glucose uptake in part through Na+-coupled glucose transport mediated by SGLT1 (SLC5A1). This study explored the possibility that the human papillomavirus 18 E6 protein HPV18 E6 (E6) participates in the stimulation of SGLT1 activity. E6 is one of the two major oncoproteins of high-risk human papillomaviruses, which are the causative agent for cervical carcinoma. According to Western blotting, SGLT1 is expressed in the HPV18-positive cervical carcinoma cell line HeLa. To explore whether E6 affects SGLT1 activity, SGLT1 was expressed in Xenopus oocytes with and without E6 and electrogenic glucose transport determined by dual electrode voltage clamp. In SGLT1-expressing oocytes, but not in oocytes injected with water or expressing E6 alone, glucose triggered a current (Ig). Ig was significantly increased by coexpression of E6 but not by coexpression of E2. According to chemiluminescence and confocal microscopy, coexpression of E6 significantly increased the SGLT1 protein abundance in the cell membrane. The decay of Ig following inhibition of carrier insertion by Brefeldine A (5 μM) was not significantly affected E6 coexpression. Accrodingly, E6 was not effective by increasing carrier protein stability in the membrane. In conclusion, HPV18 E6 oncoprotein participates in the upregulation of SGLT1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号