首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The cauliflower mosaic virus 35S (35S-CaMV) promoter, which is generally used as a constitutive promoter in plants, is known to be silent during microspore and pollen development. Here we analyzed whether the 35S-CaMV promoter fused to thegus (-glucuronidase) gene can be used as a marker for early sporophytic development in embryogenic microspore cultures of tobacco andBrassica napus. In microspore culture ofB. napus, the 35S-CaMV promoter remained off from the start of embryogenic culture up to the mid-cotyledonary embryo stage. 35S-CaMV promoter activity was only present in those microspores that initiated sporophytic development, but failed to enter embryogenic development. Similar results were also obtained with shed-microspore cultures of tobacco, in which rapid, direct embryogenesis takes place. In isolated-microspore cultures, in which embryogenesis is delayed, an intermitting period of sporophytic development was observed, characterized by extensive 35S-CaMV promoter activity. Therefore, the 35S-CaMV promoter discriminates between two classes of sporophytic development: it is activated in microspores which change fate from gametophytic into (temporarily) nonembryogenic sporophytic development, whereas the promoter is silent in sporophytic microspores that enter embryogenic development directly. This mirrors our observation that the 35S-CaMV promoter is also silent in young zygotic embryos.  相似文献   

2.
Summary Brassica napus cv. Topas microspores isolated and cultured near the first pollen mitosis and subjected to a heat treatment develop into haploid embryos at a frequency of about 20%. In order to obtain a greater understanding of the induction process and embryogenesis, transmission electron microscopy was used to study the development of pollen from the mid-uninucleate to the bicellular microspore stage. The effect of 24 h of high temperature (32.5 °C) on microspore development was examined by heat treating microspore cultures or entire plants. Mid-uninucleate microspores contained small vacuoles. Late-uninucleate vacuolate microspores contained a large vacuole. The large vacuole of the vacuolate stage was fragmented into numerous small vacuoles in the late-uninucleate stage. The late-uninucleate stage contained an increased number of ribosomes, a pollen coat covering the exine and a laterally positioned nucleus. Prior to the first pollen mitosis the nucleus of the lateuninucleate microspore appeared to be appressed to the plasma membrane; numerous perinuclear microtubules were observed. Microspores developing into pollen divided asymmetrically to form a large vegetative cell with amyloplasts and a small generative cell without plastids. The cells were separated by a lens-shaped cell wall which later diminished. At the late-bicellular stage the generative cell was observed within the vegetative cell. Starch and lipid reserves were present in the vegetative cell and the rough endoplasmic reticulum and Golgi were abundant. The microspore isolation procedure removed the pollen coat, but did not redistribute or alter the morphology of the organelles. Microspores cultured at 25 °C for 24 h resembled late-bicellular microspores except more starch and a thicker intine were present. A more equal division of microspores occurred during the 24 h heat treatment (32.5 °C) of the entire plant or of cultures. A planar wall separated the cells of the bicellular microspores. Both daughter cells contained plastids and the nuclei were of similar size. Cultured embryogenie microspores contained electron-dense deposits at the plasma membrane/cell wall interface, vesicle-like structures in the cell walls and organelle-free regions in the cytoplasm. The results are related to embryogenesis and a possible mechanism of induction is discussed.Abbreviations B binucleate - LU late uninucleate - LUV late uninucleate vacuolate - M mitotic - MU mid-uninucleate - RER rough endoplasmic reticulum - TEM transmission electron micrograph  相似文献   

3.
Stress is an essential component during embryogenesis induction in microspore culture. Cold pretreatment has been used in cereal microspore culture but very seldom attempted in Brassica microspore culture. The effect of cold pretreatment of flower buds subjected to a liquid medium on microspore embryogenesis was investigated in spring and winter Brassica napus, as well as in B. rapa and B. oleracea. Cold pretreatment significantly enhanced microspore embryogenesis (by 1–7 fold) compared to commonly used microspore culture protocol in B. napus, while it was less effective in B. rapa or even negative in B. oleracea. The appropriate duration of cold pretreatment was found to be 2–4 days, which stimulated the best microspore embryogenesis. Cold pretreatment was also able to promote embryo development including the improvement of embryo quality and acceleration of embryogenesis. When incorporating with medium refreshing, cold pretreatment could initiate the most microspore embryogenesis than any other treatment used. With further improvement cold pretreatment method may have a positive potential in Brassica breeding programmes.  相似文献   

4.
In an attempt to discover the biological basis of microspore derived embryogenesis, the effect of the antimicrotubule agent colchicine on anther and free microspore embryogenesis was investigated. The microtubule inhibitor colchicine promoted embryogenesis from cultured anthers, both with regard to the number of anthers responding and the number of embryos being produced per anther. A similar promotional response was also observed with cultured microspores. Although the parameters for cultured anthers and free microspores differed, administration of the drug for a short period immediately prior to pollen mitosis I seems to exert the maximum promotional effect. Of the five cultivars of Brassica napus studied, all responded to colchicine treatment. However, the drug did release more embryogenic potential in poor-responding varieties (i.e. Lirawell and Optima) than in the highest responding variety (Topas). Colchicine also resulted in increased embryogenic response in microspores cultured at lower temperatures.These results are considered in terms of models proposed to explain the switch in microspore development from a gametophytic to a sporophytic pathway. The use ofcolchicine as agent to promote embryogenesis in previously recalcitrant species other than Brassica is also discussed.  相似文献   

5.
Brassica napus L. microspores at the late uninucleate to early binucleate stage of development can be induced in vitro to alter their development from pollen to embryo formation. High temperatures or other stress treatments are required to initiate this redirection process. The critical period for induction of microspore embryogenesis is within the first 8 h of temperature-stress imposition. During this period, which precedes the first embryogenic nuclear division, the process regulating the induction and sustainment of microspore embryogenesis is activated. A number of mRNAs and proteins, some of them possibly heat-shock proteins, appear in microspores during the commitment phase of the induction process.Abbreviations SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis  相似文献   

6.
Brassica napus cv. Topas microspores can be diverted from pollen development toward haploid embryo formation in culture by subjecting them to a heat stress treatment. We show that this switch in developmental pathways is accompanied by the induction of high levels of napin seed storage protein gene expression. Changes in the plant growth or microspore culture conditions were not by themselves sufficient to induce napin gene expression. Specific members of the napin multigene family were cloned from a cDNA library prepared from microspores that had been induced to undergo embryogenesis. The majority of napin clones represented three members (BnmNAP2, BnmNAP3 and BnmNAP4) that, along with a previously isolated napin genomic clone (BngNAP1), constitute the highly conserved BnmNAP subfamily of napin genes. Both RNA gel blot analysis, using a subfamily-specific probe, and histochemical analysis of transgenic plants expressing a BngNAP1 promoter--glucuronidase gene fusion demonstrated that the BnmNAP subfamily is expressed in embryogenic microspores as well as during subsequent stages of microsporic embryo development.  相似文献   

7.
Prior to this report, heat treatment (32.5°C, 24 h) was the method used to induce embryogenesis fromBrassica napus microspores. Continuous culture at 25°C results in pollen development. This study shows that colchicine alone, at the non-inductive temperature of 25°C, can induce embryogenesis, thus demonstrating that heat shock is not required for embryogenic induction inB. napus cv. Topas. Embryogenic frequencies of over 15% were obtained by culturing isolated microspores with 25 M colchicine for 42 h at 25°C. The microspore developmental stages responsive to colchicine were unicellular vacuolate and late unicellular, somewhat earlier stages than the population responsive to heat induction. Other groups have reported that heat-shock proteins are essential to the induction of embryogenesis. The present study offers a method of embryogenic induction without the use of heat which will allow discrimination between the factors associated with response to heat shock and those involved with changing cell development.Abbreviations LU Late-unicellular - PPB Preprophase band - UV unicellular-vacuolate The authors wish to thank C. Bornman for his interest and encouragement. We gratefully acknowledge support from the School of Graduate Studies and Research, Queen's University to J.-P. Z., from Hilleshog AB, Sweden to D.H.S., and from the Natural Sciences and Engineering Research Council of Canada to D.H.S. and W.N. Plant Research Centre contribution No. 1595.  相似文献   

8.
The dynamics of nuclear DNA synthesis were analysed in isolated microspores and pollen of Brassica napus that were induced to form embryos. DNA synthesis was visualized by the immunocytochemical labelling of incorporated Bromodeoxyuridine (BrdU), applied continuously or as a pulse during the first 24 h of culture under embryogenic (32 °C) and non-embryogenic (18 °C) conditions. Total DNA content of the nuclei was determined by microspectrophotometry. At the moment of isolation, microspore nuclei and nuclei of generative cells were at the G1, S or G2 phase. Vegetative nuclei of pollen were always in G1 at the onset of culture. When microspores were cultured at 18 °C, they followed the normal gametophytic development; when cultured at 32 °C, they divided symmetrically and became embryogenic or continued gametophytic development. Because the two nuclei of the symmetrically divided microspores were either both labelled with BrdU or not labelled at all, we concluded that microspores are inducible to form embryos from the G1 until the G2 phase. When bicellular pollen were cultured at 18 °C, they exhibited labelling exclusively in generative nuclei. This is comparable to the gametophytic development that occurs in vivo. Early bicellular pollen cultured at 32 °C, however, also exhibited replication in vegetative nuclei. The majority of vegetative nuclei re-entered the cell cycle after 12 h of culture. Replication in the vegetative cells preceded division of the vegetative cell, a prerequisite for pollen-derived embryogenesis.  相似文献   

9.
辣椒花药培养胚状体发生的组织学和细胞学研究   总被引:1,自引:0,他引:1  
采用荧光显微镜、扫描电镜和透射电镜技术.系统研究了辣椒花药培养胚状体发生的组织学和细胞学变化特征。辣椒单个花药中花粉发育具有强烈的不同步性。随着培养时期的变化.不同时期花粉的百分率也发生变化。处于单核靠边期的小孢子培养以后按两种发育途径之一进行发育。在多数情况下,孢子体不对称分裂,产生典型双核花粉。胚性花粉粒是由营养核的重复分裂形成的。当小孢子从四分体中释放出来.特殊类型的外壁已经形成。在随后的花粉发育过程中.小孢子体积增大,外壁继续加厚。培养24h后,小孢子体积增大。胚性发生的小孢子表现出两种不同的形态变化。当胚状体发育到心形胚时.胚状体的表皮细胞排列规则。用光学和电子显微镜分析了小孢子胚状体形态形成过程.及胚状体诱导后细胞组织发生的一系列结构变化的时序性特征,这些变化主要影响质体、液泡室、细胞壁和细胞核,进一步分化的程序模拟合子胚的发育。  相似文献   

10.
In this work, the cell architecture of the microspore following both gametophytic and embryogenic developmental pathways in vitro was compared with the gametophytic development in vivo in Brassica napus, at both light and electron microscopy level. The microspore reprogramming to embryogenesis involves defined changes affecting cell activities and structural organization which can be considered as markers of the microspore embryogenic pathway, but less is known about others developmental programmes followed by the microspore in vitro after both, inductive and non-inductive conditions. Low-temperature processing of the samples, cytochemical and immunocytochemical approaches to identify various cell components were performed. Differences in specific cellular features such as cellular size and shape, nuclear architecture, starch accumulation, presence of vacuoles and ribosomal population were studied to characterize sequential stages of microspore embryogenesis and other pathways occurring in vitro. The presence of abundant starch grains in a defined cytoplasmic region appeared as a specific feature of the in vitro gametophytic development, as well as of the non-induced microspores of in vitro cultures under embryogenic-inductive conditions.  相似文献   

11.
Genetic manipulation of microspores and microspore-derived embryos   总被引:4,自引:0,他引:4  
Summary Recent advances in plant cell and molecular biology have furthered the genetic manipulation of many plant species and advanced the options for crop improvement. Among the many targets for genetic manipulation, microspores offer several unique advantages: they are haploid, single-celled, and highly synchronized. In many plant species microspores develop into haploid embryos, and eventually haploid and doubled haploid plants, after in vitro anther or microspore culture. This induced in vitro developmental pathway of microspores, termed microspore embryogenesis, can be used to recover individual homozygous plants from microspores and microspore-derived embryos after genetic manipulation such as mutagenesis and gene transfer. The highly efficient microspore embryogenesis system inBrassica napus has been used successfully to obtain various mutants after microspore mutagenesis, and to achieve gene transfer mediated byAgrobacterium tumefaciens. Presented in the Session-in-Depth In Vitro Gametophyte Biology at the 1991 World Congress on Cell and Tissue Culture held in Anaheim, California, June 16–20, 1991.  相似文献   

12.
Summary Conditions favourable to embryogenesis from isolated microspores of Brassica rapa L. ssp. oleifera (canola quality) were identified. A population with enhanced responsiveness for microspore embryogenesis (C200) was synthesized by crossing individual plants showing microspore embryogenic potential. For optimal microspore embryogenesis, buds (2–3mm in length, containing mid-late uninucieate microspores) were collected from older plants (2 months old) and microspores isolated and washed in iron-free B5 medium. NLN medium with its iron content reduced to half was beneficial for initial microspore culture. An elevated temperature(33–35°C) during the first day of culture, followed by maintenance at 25°C resulted in dozens of embryos from each isolation (about 100 buds). Seeds were obtained from plants regenerated from microsporederived embryos after colchicine treatment.  相似文献   

13.
Changes in nuclear pore complex (NPC) densities, NPCs/nucleus and NPCs/μm3, are described using freeze-fractured Brassica napus microspores and pollen in vivo and in vitro. Early stages of microspore- and pollen-derived embryogenic cells were also analysed. The results of in vivo and in vitro pollen development indicate an increase in activity of the vegetative nucleus during maturation of the pollen. At the onset of microspore and pollen culture, NPC density decreased from 15 NPCs/μm2 at the stage of isolation to 9 NPCs/μm2, under both embryogenic and non-embryogenic conditions. This implies that the drop in NPC density might be a result of culturing the microspores and pollen rather than an indication for microspore and pollen embryogenesis in Brassica napus. However, after 1 day in culture under embryogenic conditions, the NPC density increased again and stabilised around 13 NPCs/μm2, whereas under non-embryogenic conditions the NPC density remained about 9 NPCs/μm2. This low density of 9 NPCs/μm2 was also found in the nuclei of sperm cells, in contrast to the 19 NPCs/μm2 found in the vegetative nucleus. It means that, although both the vegetative and sperm nuclei are believed to be metabolically rather inactive in mature pollen, the NPC density of vegetative nucleus is twice as high as the NPC density of the sperm nuclei. In a few cases, embryos formed suspensor-like structures with a NPC density of 9 NPCs/μm2, indicating a lower nucleocytoplasmic exchange of the nuclei of the suspensor cells than with the nuclei in the embryo proper. In addition, observations on NPCs and other organelles, obtained by high resolution cryo-scanning microscopy, are presented. Received: 29 December 1999 / Revision accepted: 3 March 2000  相似文献   

14.
Summary Embryogenic microspore and pollen culture followed by subculture of microspore-derived plantlets enabled the production of clones ofBrassica napus cv. Topas. Flow-cytometric analysis revealed that most microspore- and pollen-derived embryos (pEMs) were haploid initially. Spontaneous diploidization occurred at the globular stage of the pEMs, and was expressed as the relative increase of the 2C and 4C nuclear DNA content. Diploidization occurred throughout various organs of the pEMs and resulted in the formation of haploid and doubled haploid chimerics. In some embryos, nearly all cells were doubled haploid. From early cotyledon stage onward, pure haploid embryos were not observed anymore. At late cotyledon and germination stages, pure doubled haploid embryos and plantlets increased in number. Tetraploid pEMs were found occasionally. A culture regime was established to induce somatic embryos on the pEM-derived young plantlets. The ploidy of the somatic embryos varied highly and tended to be the same as that of the tissue at the initiation site on the pEM-plant. The results show that during the embryogenic development ofB. napus microspores, spontaneous diploidization occurs at globular stage, and increases progressively, resulting in the formation of chimerical haploid and doubled haploid plants as well as pure doubled haploid plants; ploidy neither affects pEM development at embryo developmental stages nor somatic embryogenesis, that starts on young pEM-derived plantlets; doubled haploid somatic embryos can be cloned from single pEM-derived plantlets; and doubled haploid embryos develop to fertile plants.  相似文献   

15.
A comparative morphological study of microspore-derived (MD)and zygotic embryos ofBrassica napusL. was conducted, illustratingsubstantial similarities in external morphology of these embryosthroughout their development. Haploid embryos were producedfrom isolated microspores cultured on high molecular weightpolyethylene glycol (PEG), replacing sucrose as an osmoticum.Morphological changes during the time-course of microspore embryodevelopment induced on PEG (25%) and sucrose (13%) are describedin detail as revealed by scanning electron microscopy (SEM)and compared to the corresponding stages of zygotic embryosdevelopedin ovulo. At the heart, torpedo and early cotyledonarystages, microspore-derived (MD) embryos on PEG closely resembletheir zygotic counterparts. In contrast, the external morphologyof embryos induced on high sucrose medium differs from thatof PEG and zygotic embryos indicating that a high concentrationof sucrose in culture has a morphogenetic effect on MD embryodevelopment inB. napus. Fragments of the original pollen wallare regularly observed at the root pole region and at the tipsof suspensors in MD embryos throughout their development. Thissuggests that polarity in MD embryos might originate from structurallypolarized late uninuclear microspores and early bicellular pollen.Copyright1998 Annals of Botany Company Brassica napusL., scanning electron microscopy, microspore-derived embryo, zygotic embryo, morphology, microspore, suspensor, exine, sucrose, polyethylene glycol.  相似文献   

16.
Specific stress treatments (sucrose starvation, alone or combined with a heat shock) applied to isolated tobacco (Nicotiana tabacum L.) microspores irreversibly blocked normal gametophytic development and induced the formation of embryogenic cells, which developed subsequently into pollen-derived embryos by culture at 25°C in a sugar-containing medium. A cold shock at 4°C did not inhibit microspore maturation in vitro and did not induce cell division activity, even when combined with a starvation treatment. In the absence of sucrose, microspores isolated in the G1 phase of the cell cycle replicated their DNA and accumulated in G2. Late microspores underwent miotosis during the first day of culture which resulted in a mixed population of bicellular pollen grains and uninucleate microspores, both embryogenic. After the inductive stress treatments the origin of the first multicellular structures, formed in the sugar-containing medium, could be traced to divisions of the microspore cell or divisions of the vegetative cell of bicellular pollen, indicating that the symmetry of microspore mitosis in vitro is not important for embryogenic induction. These results represent a step forward towards a unified model of induction of embryogenesis from microspores/pollen which, within a relatively wide developmental window, are competent to deviate from normal gametophytic development and initiate the alternative sporophytic programme, in response to specific stress signals.Abbreviation DAPI 4,6-diamidino-2-phenylindole We acknowledge the help of Monica Boscaiu and Zarko Hrzenjak with the artwork, and Michaela Braun-Mayer for growing the tobacco plants. This project was financed by the Austrian Fonds zur Forderung der wissenschaftlichen Forschung, grant S6003-BIO.  相似文献   

17.
Flow cytometry can be used to select and sort microspore subpopulations of Brassica napus cv. Topas. Data obtained from embryogenic microspore populations were used to identify potentially embryogenic microspores from developmentally heterogeneous microspore populations based on differences in forward light scatter and green autofluorescence. Culture enrichment for embryogenic microspores is possible. Frequencies of 8 and 14% microspore embryogenesis were obtained when selected 16 h and 72 h after culture initiation. This represents 5- and 13-fold increase in microspore embryogenesis compared to non-sorted controls.  相似文献   

18.
Summary Specific stress treatments applied to isolated tobacco (Nicotiana tabacum L.) microspores efficiently induced haploid embryo formation in vitro. A heat shock at 33 or 37°C in the presence of sugar, as well as sucrose-starvation at 25°C, resulted in the formation of embryogenic microspores. A combination of both treatments had an additive effect. Under optimal induction conditions all viable microspores in the culture were embryogenic and developed subsequently into pollen embryos by culture at 25°C in a sugar-containing medium, with induction frequencies of more than 70% with respect to the initial microspore population. A high fraction of the early pollen embryos continued their development in vitro, giving rise to haploid plants. In contrast to other available systems for microspore/pollen embryogenesis, the new protocol allows the production of homogeneous populations of embryogenic microspores and early globular embryos in large-scale cultures, without any purification step, and is therefore well suited for biochemical and molecular work.Abbreviations EDTA ethylenediaminetetraacetate - DAPI 4,6-diamidino-2-phenylindole  相似文献   

19.
Summary Brassica napus cv. Topas microspores, isolated and cultured near the time of the first pollen mitosis and subjected to a heat treatment of 24 h, can be induced to develop into haploid embryos. This is a study of microspore structure during induction and embryo determination. Early during the 32.5 °C incubation period the nucleus moved away from the edge of the cell, and granules, 30 to 60 nm in diameter, appeared in the mitochondria and as a cluster in the cytoplasm. Cells divided symmetrically and at the end of the heat treatment, acquired the features of induced bicellular structures described previously. The features persisted as the cells divided randomly within the exine for 4–7 days following heat induction. Multicellular structures released from the exine underwent periclinal divisions resulting in protoderm differentiation of the globular embryo, thus determining embryo development. The cytoplasm of early heart-stage embryos contains abundant polyribosomes. Non-embryogenic development was indicated by large accumulations of starch and/or lipid and thickened cell walls or an unorganized pattern of cell division following release of the multicellular structures from the exine. Embryogenesis is discussed in terms of induction, embryo determination and development.  相似文献   

20.
Summary Ultrastructural and cytochemical features of embryo development during anther and free microspore culture inBrassica napus have been followed from the late uninucleate microspore stage through the first embryonic division. On transfer to culture, the microspore cytoplasm possesses a large vacuole, often containing electron opaque aggregates, and a peripheral nucleus. Mitochondria, endoplasmic reticulum and starch-free plastids are distributed throughout the cytoplasm. The conditions of culture induce a number of major changes in the cytoplasmic organisation of the microspore. First, the central vacuole becomes fragmented allowing the nucleus to assume a central position within the cell. Secondly, starch synthesis commences in the plastids which, in turn, are seen to occupy a domain investing the nucleus. Thirdly, the cell develops a thick fibrillar wall, situated immediately adjacent to the intine of the immature pollen wall. Finally, the microspores develop large cytoplasmic aggregates of globular material. The nature of this substance remains unknown, but it remains present until the young embryos have reached the 30 cell stage. The first division of cultured microspores destined to become embryos is generally symmetrical, in contrast to the asymmetric division seen in normal development in vivo. Consideration is given to the differences observed between embryos developing from anthers and free microspores in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号