首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The IFPCS presidential lecture: a chemist's view of melanogenesis   总被引:2,自引:0,他引:2  
The significance of our understanding of the chemistry of melanin and melanogenesis is reviewed. Melanogenesis begins with the production of dopaquinone, a highly reactive o-quinone. Pulse radiolysis is a powerful tool to study the fates of such highly reactive melanin precursors. Based on pulse radiolysis data reported by Land et al. (J Photochem Photobiol B: Biol 2001;64:123) and our biochemical studies, a pathway for mixed melanogenesis is proposed. Melanogenesis proceeds in three distinctive steps. The initial step is the production of cysteinyldopas by the rapid addition of cysteine to dopaquinone, which continues as long as cysteine is present (1 microM). The second step is the oxidation of cysteinyldopas to give pheomelanin, which continues as long as cysteinyldopas are present (10 microM). The last step is the production of eumelanin, which begins only after most cysteinyldopas are depleted. It thus appears that eumelanin is deposited on the preformed pheomelanin and that the ratio of eu- to pheomelanin is determined by the tyrosinase activity and cysteine concentration. In eumelanogenesis, dopachrome is a rather stable molecule and spontaneously decomposes to give mostly 5,6-dihydroxyindole. Dopachrome tautomerase (Dct) catalyses the tautomerization of dopachrome to give mostly 5,6-dihydroxyindole-2-carboxylic acid (DHICA). Our study confirmed that the role of Dct is to increase the ratio of DHICA in eumelanin and to increase the production of eumelanin. In addition, the cytotoxicity of o-quinone melanin precursors was found to correlate with binding to proteins through the cysteine residues. Finally, it is still unknown how the availability of cysteine is controlled within the melanosome.  相似文献   

2.
Melanin from several insect samples was isolated and subjected to chemical degradation and HPLC analysis for melanin markers. Quantification of different melanin markers reveals that insect melanins are significantly different from that of the mammalian epidermal melanins. The eumelanin produced in mammals is derived from the oxidative polymerization of both 5,6‐dihydroxyindole and 5,6‐dihydroxyindole‐2‐carboxylic acids. The pheomelanin is formed by the oxidative polymerization of cysteinyldopa. Thus, dopa is the major precursor for both eumelanin and pheomelanin in mammals. But insect eumelanin appears to be mostly made from 5,6‐dihydroxyindole and originates from dopamine. More importantly, our study points out the wide spread occurrence of pheomelanin in many insect species. In addition, cysteinyldopamine and not cysteinyldopa is the major precursor for insect pheomelanin. Thus, both eumelanin and pheomelanin in insects differ from higher animals using dopamine and not dopa as the major precursor.  相似文献   

3.
Dopachrome conversion, in which dopachrome is converted into 5,6‐dihydroxyindole (DHI) or 5,6‐dihydroxyindole‐2‐carboxylic acid (DHICA) upstream of eumelanogenesis, is a key step in determining the DHI/DHICA monomer ratio in eumelanin, which affects the antioxidant activity. Although the ratio of DHI/DHICA formed and the conversion rate can be regulated depending on pH, the mechanism is still unclear. To clarify the mechanism, we carried out first‐principles calculations. The results showed the kinetic preference of proton rearrangement to form quinone methide intermediate via β‐deprotonation. We also identified possible pathways to DHI/DHICA from the quinone methide. The DHI formation can be achieved by spontaneous decarboxylation after proton rearrangement from carboxyl group to 6‐oxygen. α‐Deprotonation, which leads to DHICA formation, can also proceed with a significantly reduced activation barrier compared with that of the initial dopachrome. Considering the rate of the proton rearrangements in a given pH, we conclude that the conversion is suppressed at acidic pH.  相似文献   

4.
The diversity of pigmentation in the skin, hair, and eyes of humans has been largely attributed to the diversity of pH in melanosomes with acidic pH being proposed to suppress melanin production. Tyrosinase has an optimum pH of 7.4 and its activity is suppressed greatly at lower pH values. The first step of eumelanogenesis is the oxidation of tyrosine to dopachrome (DC) via dopaquinone. However, how eumelanogenesis is controlled by pH beyond this stage is not known. In this study, we examined the effects of pH (5.3–7.3) on the conversion of DC to 5,6‐dihydroxyindole (DHI) and 5,6‐dihydroxyindole‐2‐carboxylic acid (DHICA) and the subsequent oxidation of DHI and DHICA to form eumelanin. The effects of Cu2+ ions on those reactions were also compared. The results indicate that an acidic pH greatly suppresses the late stages of eumelanogenesis and that Cu2+ ions accelerate the conversion of DC to DHICA and its subsequent oxidation.  相似文献   

5.
Eumelanin photoprotects pigmented tissues from ultraviolet (UV) damage. However, UVA‐induced tanning seems to result from the photooxidation of preexisting melanin and does not contribute to photoprotection. We investigated the mechanism of UVA‐induced degradation of 5,6‐dihydroxyindole‐2‐carboxylic acid (DHICA)‐melanin taking advantage of its solubility in a neutral buffer and using a differential spectrophotometric method to detect subtle changes in its structure. Our methodology is suitable for examining the effects of various agents that interact with reactive oxygen species (ROS) to determine how ROS is involved in the UVA‐induced oxidative modifications. The results show that UVA radiation induces the oxidation of DHICA to indole‐5,6‐quinone‐2‐carboxylic acid in eumelanin, which is then cleaved to form a photodegraded, pyrrolic moiety and finally to form free pyrrole‐2,3,5‐tricarboxylic acid. The possible involvement of superoxide radical and singlet oxygen in the oxidation was suggested. The generation and quenching of singlet oxygen by DHICA‐melanin was confirmed by direct measurements of singlet oxygen phosphorescence.  相似文献   

6.
To inquire into the role of the carboxyl group as determinant of the properties of 5,6‐dihydroxyindole melanins, melanins from aerial oxidation of 5,6‐dihydroxyindole‐2‐carboxylic acid (DHICA) and its DHICA methyl ester (MeDHICA) were comparatively tested for their antioxidant activity. MALDI MS spectrometry analysis of MeDHICA melanin provided evidence for a collection of intact oligomers. EPR analysis showed g‐values almost identical and signal amplitudes (ΔB) comparable to those of DHICA melanin, but spin density was one order of magnitude higher, with a different response to pH changes. Antioxidant assays were performed, and a model of lipid peroxidation was used to compare the protective effects of the melanins. In all cases, MeDHICA melanin performed better than DHICA melanin. This capacity was substantially maintained following exposure to air in aqueous buffer over 1 week or to solar simulator over 3 hr. Different from DHICA melanin, MeDHICA melanin was proved to be fairly soluble in different water‐miscible organic solvents, suggesting its use in dermocosmetic applications.  相似文献   

7.
Eumelanin is a brown‐black pigment comprising 5,6‐dihydroxyindole (DHI) and its 2‐carboxy derivative (DHICA), but the detailed structure of eumelanin is unclear. Chemical degradation is a powerful tool for analyzing melanin. H2O2 oxidation degradation of eumelanin affords pyrrole‐2,3,5‐tricarboxylic acid (PTCA) and pyrrole‐2,3‐dicarboxylic acid (PDCA). The ratio of PDCA to PTCA provides information about the eumelanin structure. In this article, we propose simple equations on the basis of previous experimental results on dimer yields for evaluating the yields of PTCA and PDCA from any DHI oligomers. Assuming the chemical disorder model of DHI‐melanin, we solve an equation where a theoretical expression for the ratio of PDCA to PTCA is set to the corresponding experimental value to obtain a plausible Poisson distribution of DHI oligomers. The results demonstrate that the main contributors to DHI‐melanin are tetramers and pentamers as shown by the mass spectrometry.  相似文献   

8.
The mouse slaty (Dct(slt)) mutation is known to reduce the activity of dopachrome tautomerase (DCT). The reduced DCT activity inhibits melanosome maturation and reduces the melanin content in the skin, hair and eyes. It is not known whether eumelanin and pheomelanin synthesis in slaty melanocytes is modulated by melanogenic factors. In this study, to address this point, epidermal melanocytes derived from 0.5-, 3.5- and 7.5-day-old wild-type mice (Dct(+)/Dct(+) at the slaty locus) and from congenic mice mutant (Dct(slt) /Dct(slt) at that locus) were cultured in serum-free primary culture with or without additional L-tyrosine (Tyr). The content of melanin was measured by high-performance liquid chromatography in the cultured melanocytes as well as culture supernatants in serum-free primary culture. L-Tyr was found to increase the content of pheomelanin in addition to eumelanin in cultured slaty melanocytes and cuture supernatants at all ages tested. The eumelanin and pheomelanin contents in culture supernatants were greater than in cultured melanocytes. The eumelanin and pheomelanin contents in culture supernatants from 7.5-day-old slaty melanocytes in the presence of L-Tyr were greater than those from wild-type melanocytes. These results suggest that the inhibition of eumelanin synthesis by the slaty mutation can be partly restored by the addition of excess L-Tyr. Eumelanin and pheomelanin may accumulate with difficulty in slaty melanocytes and be easily released from them during skin development. L-Tyr may stimulate this release.  相似文献   

9.
Quinone methide as a new intermediate in eumelanin biosynthesis   总被引:1,自引:0,他引:1  
The conversion of dopachrome to dihydroxyindole(s), a key reaction in eumelanin biosynthetic pathway, has been shown to be under the control of dopachrome conversion factor. Dopachrome conversion factor isolated from the hemolymph of Manduca sexta larvae, which is devoid of any tyrosinase activity, exhibits a narrow substrate specificity and readily bleaches the iminochromes derived from the oxidation of L-dopa, L-dopa methyl ester, and alpha-methyl-L-dopa, but failed to attack the corresponding D-isomers. The product formed in the case of L-dopachrome was identified to be 5,6-dihydroxyindole. Therefore, aromatization of dopachrome seems to accompany its decarboxylation as well. However, the enzyme also converts L-dopachrome methyl ester to an indole derivative indicating that it can deprotonate the alpha-hydrogen when the carboxyl group is blocked. These results are accounted for by the transient formation and further transformation of a reactive quinone methide intermediate during the dopachrome conversion factor-catalyzed reaction. The fact that the enzyme-catalyzed conversion of alpha-methyl dopachrome methyl ester (where both decarboxylation and deprotonation are blocked) resulted in the generation of a stable quinone methide in the reaction mixture confirms this contention and supports our recent proposal that quinone methide and not indolenine is the key transient intermediate in the conversion of dopachrome to dihydroxyindole observed during melanogenesis.  相似文献   

10.
Melanin pigments produced in human melanocytes are classified into two categories; black coloured eumelanin and reddish‐yellow pheomelanin. Stimulation of melanocytes with α‐melanocyte‐stimulating hormone (α‐MSH), one of several melanogenic factors, has been reported to enhance eumelanogenesis to a greater degree than pheomelanogenesis, which contributes to hyperpigmentation in skin. Nitric oxide (NO) and histamine are also melanogenesis‐stimulating factors that are released from cells surrounding melanocytes following ultraviolet (UV) irradiation. In this study, the effects of NO and histamine on the ratio of eumelanin and pheomelanin were examined in human melanocytes, and then compared with that of α‐MSH. The amounts of eumelanin and pheomelanin were quantified using high‐performance liquid chromatography analysis after oxidation and hydrolysis of melanin. Melanogenesis was induced by the addition of α‐MSH, NO, or histamine to melanocytes. The amount of eumelanin production significantly increased with independent stimulation by these melanogenic factors, especially histamine, while that of pheomelanin significantly increased with α‐MSH and NO, but only slightly with histamine. As a result, the ratio of eumelanin and pheomelanin increased significantly with the addition of NO or histamine. These results suggest that NO and histamine, as in the case of α‐MSH, may contribute to UV‐induced hyperpigmentation by enhancing eumelanogenesis.  相似文献   

11.
The regulation of the final steps of the melanogenesis pathway, after L-2-carboxy-2,3-dihydroindole-5,6-quinone (dopachrome) formation, is studied. It is shown that both tyrosinase and dopachrome tautomerase are involved in the process. In vivo, it seems that tyrosinase is involved in the regulation of the amount of melanin formed, whereas dopachrome tautomerase is mainly involved in the size, structure and composition of melanin, by regulating to the incorporation of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) into the polymer. Moreover, using L-3,4-dihydroxyphenylalanine (dopa) and related compounds, it was shown that the presence of dopachrome tautomerase mediates an initial acceleration of melanogenesis since L-dopachrome is rapidly transformed to DHICA, but that melanin formation is inhibited because of the stability of this carboxylated indole compared to 5,6-dihydroxyindole (DHI), its decarboxylated counterpart obtained by spontaneous decarboxylation of L-dopachrome. Using L-dopa methyl ester as a precursor of melanogenesis, it is shown that this carboxylated indole does not polymerize in the absence of DHI, even in the presence of tyrosinase. However, it is incorporated into the polymer in the presence of both tyrosinase and DHI. Thus, this study suggests that DHI is essential for melanin formation, and the rate of polymerization depends on the ratio between DHICA and DHI in the medium. In the melanosome, this ratio should be regulated by the ratio between the activities of dopachrome tautomerase and tyrosinase.  相似文献   

12.
A principal reaction in the eumelanin biosynthetic pathway is the conversion of dopachrome (DC) to dihydroxyindole(s). Dopachrome isomerase (DI), the enzyme that catalyzes this reaction, was detected for the first time in larvae of D. melanogaster. Unlike the enzyme from B16 mouse melanoma cells which converts dopachrome to 5,6-dihydroxyindole-2-carboxylic acid (DHICA), the insect enzyme forms 5,6-dihydroxyindole (DHI). The activity of the insect DI was linear through 15 min incubation, and the amount of DHI produced was proportional to the amount of enzyme that was incorporated into the reaction mixtures.  相似文献   

13.
Although melanins can be formed in vitro by the unique action of tyrosinase on L-tyrosine, it is now well accepted that other enzymes termed tyrosinase-related proteins are involved in mammalian melanogenesis. However, some aspects of their roles in the regulation of the pathway are still unknown. The action of dopachrome tautomerase on L-dopachrome yields DHICA, a stable dihydroxyindole with a low rate of spontaneous oxidation. However, DHICA is efficiently incorporated to the pigment, as judged by the high content of carboxylated indole units in natural melanins. Therefore, the fate of this melanogenic intermediate and the mechanisms of its incorporation to the melanin polymer are major issues in the study of melanogenesis. We have recently shown that mouse melanosomes contain two electrophoretically distinguishable tyrosinase isoenzymes, LEMT and HEMT, that can be purified and completely resolved (Jiménez-Cervantes et al., 1993a). Herein, we have compared the ability of these tyrosinases to catalyze DHICA oxidation. Although highly purified LEMT shows a very low specific activity for dopa oxidation in comparison to HEMT, it is able to catalyze DHICA oxidation. However, the DHICA oxidase activity of HEMT was very low, if significant. The ability of purified LEMT to catalyze DHICA oxidation was abolished by heat, trypsin, or phenylthiourea treatments. LEMT acting on DHICA caused the formation of a brownish soluble color similar to DHICA-melanin. Immunoprecipitation of the DHICA oxidase activity of LEMT by specific antibodies suggests that this activity corresponds to TRP1. These results indicate that LEMT, most probably identical to the product of the b locus, is a tyrosinase having a specific DHICA oxidase activity. Opposite to HEMT, the true tyrosinase encoded by the albino locus, its role in melanogenesis would be related to the incorporation of DHICA into eumelanin rather than to the first steps of the pathway.  相似文献   

14.
The diversity of pigmentation in the skin, hair, and eyes of humans has been largely attributed to the diversity of pH in melanosomes with an acidic pH being proposed to suppress melanin production, especially eumelanogenesis. We previously showed that an acidic pH greatly suppresses the late stage of eumelanogenesis after the dopachrome stage. The oxidation of tyrosine by tyrosinase in the presence of cysteine forms cysteinyldopa isomers, which are further oxidized to give rise to pheomelanin via benzothiazine intermediates. However, how those steps are controlled by pH has not been characterized. We therefore examined whether pheomelanin synthesis is chemically promoted at an acidic pH. We found that pheomelanin production either from dopa or tyrosine in the presence of cysteine by tyrosinase was greatest at pH values of 5.8–6.3, while eumelanin production was suppressed at pH 5.8. This suggests that mixed melanogenesis is chemically shifted to more pheomelanic states at a weakly acidic pH.  相似文献   

15.
Methods not only for characterizing but also for quantitating melanin subtypes from the two types of melanin found in hair--eumelanin and pheomelanin--have been established. In relation to testing for drugs of abuse in hair, these methods will allow for correction of drug binding to specific melanin subtypes and will serve to improve drug measurement in hair. 5,6-Dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) make up the majority of the eumelanin polymer while benzothiazene units derived from 2-cysteinyl-S-Dopa (2-CysDopa) and 5-cysteinyl-S-Dopa (5-CysDopa) compose the majority of the pheomelanin polymer. Our results show that: (1) pyrrole-2,3-dicarboxylic acid (PDCA) and pyrrole-2,3,5-tricarboxylic acid (PTCA), markers for DHI and DHICA units, respectively, are produced in 0.37 and 4.8% yields, respectively, when melanins are subjected to alkaline hydrogen peroxide degradation, (2) 3-aminotyrosine (3AT) and 4-amino-3-hydroxyphenylalanine (AHP), markers for 2-CysDopa and 5-CysDopa, respectively, are produced in 16 and 23% yield, respectively, when subjected to hydriodic acid hydrolysis, and (3) that black human hair contains approximately 99% eumelanin and 1% pheomelanin, brown and blond hair contain 95% eumelanin and 5% pheomelanin; and red hair contains 67% eumelanin and 33% pheomelanin. These data will allow deeper investigation into the relationship between melanin composition and drug incorporation into hair.  相似文献   

16.
After dopachrome?   总被引:4,自引:0,他引:4  
Dopachrome, an intermediate in melanin biosynthesis, exhibits some unusual properties. At physiologic pH (e.g., pH 6-8) it is unstable and spontaneously loses its carboxyl group to form 5,6-dihydroxyindole (DHI) and CO2. However, over this same pH range, if various metals or a melanocyte-specific enzyme are present, it rapidly rearranges to its isomer form--5,6-dihydroxyindole-2-carboxylic acid (DHICA)--which is far more stable than dopachrome in its ability to retain the carboxyl group. Whether or not the carboxyl group is retained could have important implications for the regulation of melanogenesis, since in the presence of oxygen DHI spontaneously forms a black precipitate, whereas DHICA forms a golden-brown solution. The solubility of "DHICA-melanin" is due to the presence of carboxyl groups, which provide negative charges and hydrophilicity. Thus, in vivo, the extent to which dopachrome is converted to DHI or DHICA may well influence the solubility and color of the melanin formed. The purpose of this article is to review recent findings in these areas and to discuss the possible significance of dopachrome conversion in the regulation of melanogenesis and color formation.  相似文献   

17.
Melanogenesis involves oxidation of 3,4-dihydroxyphenylalanine (dopa) to dopachrome which then is converted into 5,6-dihydroxyindole by dopachrome isomerase. 5,6-Dihydroxyindole is oxidized to its quinone which in turn is metabolized nonenzymatically to melanin. In addition to dopachrome isomerase, a new dopminechrome isomerase activity involved in the conversion of dopaminechrome into 5,6-dihydroxyindole has been observed in the larva of Rhinoceros oryctes. This dopaminechrome isomerase differs from dopachrome isomerase in its electrophoretic mobility and substrate specificity. The present study reports a specific, sensitive and rapid staining method for detecting dopaminechrome isomerase activity after electrophoresis. Using this new method, the presence of the dopaminechrome isomerase activity, which is involved in melanogenesis, could easily be detected by staining tyrosinase embedded native gels in dopamine solution. Tyrosinase entrapped in the gels converts dopamine in dopaminechrome. The dopaminechrome isomerase separated in the gels catalyzes dopaminechrome to 5,6-dihydroxyindole which is oxidized further by tyrosinase to colored melanochrome. The dopaminechrome isomerase appears as a bluish purple band against a pink background.  相似文献   

18.
The color of hair, skin, and eyes in animals mainly depends on the quantity, quality, and distribution of the pigment melanin, which occurs in two types: black to brown eumelanin and yellow to reddish pheomelanin. Microanalytical methods to quantify the amounts of eumelanin and pheomelanin in biological materials were developed in 1985. The methods are based on the chemical degradation of eumelanin to pyrrole‐2,3,5‐tricarboxylic acid and of pheomelanin to aminohydroxyphenylalanine isomers, which can be analyzed and quantitated by high performance liquid chromatography. This review summarizes and compares eumelanin and pheomelanin contents in various pigmented tissues obtained from humans, mice, and other animals. These methods have become valuable tools to study the functions of melanin, the control of melanogenesis, and the actions and interactions of pigmentation genes. The methods have also found applications in many clinical studies. High levels of pheomelanin are found only in yellow to red hairs of mammals and in red feathers of birds. It remains an intriguing question why lower vertebrates such as fishes do not synthesize pheomelanin. Detectable levels of pheomelanin are detected in human skin regardless of race, color, and skin type. However, eumelanin is always the major constituent of epidermal melanin, and the skin color appears to be determined by the quantity of melanin produced but not by the quality.  相似文献   

19.
5,6-Dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) are precursors of eumelanin. The effects of crustacean hemolymph proteins on these eumelanin-related metabolites were investigated. Zymogram analysis indicated that polymers of hemocyanin (Hc) subunits converted DHI into black pigment while no effects were observed using DHICA as a substrate. Spectrum changes for mixtures of purified Hc and DHI showed a profile similar to oxidized DHI by mushroom tyrosinase while Hc had only slight effects on DHICA. Typical inhibitors of tyrosinase and phenoloxidase severely hampered the production of oxidized DHI. Taken together with previous results, these data indicate that Hc plays a crucial role in the conversion of DHI in the hemolymph of crustaceans, which promotes late reactions in the melanin synthetic pathway as well as early reactions (oxidation of tyrosine and DOPA to dopaquinone).  相似文献   

20.
Eumelanogenesis and phaeomelanogenesis diverge at an early stage in pigment formation, namely at the point where dopaquinone, the initial product of tyrosine oxidation by tyrosinase, undergoes one of two types of reaction: either (1) a reductive endocyclisation in which a Michael addition of the side-chain amino group takes place; or (2) a reductive addition of cysteine to give cysteinyldopa. In the former case, the product cyclodopa, is known rapidly to undergo a redox exchange reaction with dopaquinone to yield dopachrome, the precursor of the eumelanogenic pathway. In the second instance, cysteinyldopa is regarded as leading to the formation of benzothiazoles, which are characteristic of phaeomelanin. The precursor molecule of the phaeomelanic pathway is cysteinyldopaquinone. We have examined quantitatively the role of dopaquinone in the non-enzymatic oxidation of 5-S-cysteinyldopa using pulse radiolysis and have demonstrated that the redox exchange reaction between dopaquinone and 5-S-cysteinyldopa occurs spontaneously with a rate constant of 8.8 x 10(5) M(-1) sec(-1). This study has also enabled an improved estimate of < or = 4 x 10(7) M(-1) sec(-1) to be obtained for the rate constant of the reaction of dopaquinone with cyclodopa. Calculations utilising these figures and estimates of the rate constants for the other reactions in early melanogenesis, demonstrate that, whilst similar pathways are invoked, the phaeomelanic pathway predominates in the presence of cysteine, irrespective of the availability of dopaquinone and thus independently of the rate of tyrosinase-catalysed oxidation. This suggests that the balance between the formation of eumelanin and phaeomelanin is regulated principally by the availability of cysteine at the site of melanogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号