首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.
The fatty acid composition of two motile (strains WH 8113 and WH 8103) and one nonmotile (strain WH 7803) marine cyanobacteria has been determined and compared with two freshwater unicellular Synechocystis species (strain PCC 6308 and PCC 6803). The fatty acid composition of lipid extracts of isolated membranes from Synechocystis PCC 6803 was found to be identical to that of whole cells. All the marine strains contained myristic acid (14:0) as the major fatty acid, with only traces of polyunsaturated fatty acids. This composition is similar to Synechocystis PCC 6308. The major lipid classes of the nonmotile marine strain were identified as digalactosyl diacylglycerol, monogalactosyl diacylglycerol, phosphatidylglycerol, and sulfoquinovosyl diacylglycerol, identical to those found in other cyanobacteria.Abbreviations DGDG Digalactosyl diacylglycerol - MGDG Monogalactosyldiacylglycerol - PG Phosphatidylglycerol - SGDG sulfoquinovosyl diacylglycerol - gc gas chromatography - ms mass spectrometry  相似文献   

2.
Cyanobacteria produce industrially important secondary metabolites such as lipopeptide, oligosaccharide, fatty acid (esp. sulfolipid),etc. Among them,Synechocystis PCC6803 is the first strain with a publicly available full genome sequence, as of 1996, and is one of the most extensively studied photosynthetic microorganisms. Using this genomic information, the central metabolism ofSynechocystis PCC6803 was reconstructed, including photosynthesis, oxidative phosphorylation, glycolysis, pyruvate metabolism, TCA cycle, carbon fixation, and transport system. Each biochemical reaction was carefully incorporated into the model, taking into consideration the metabolite formula, stoichiometry, charge balance, and thermodynamic properties using information from genomic and metabolic databases as well as biochemical literature. The metabolic flux of the model was calculated using flux balance analysis according to its cultivation with various carbon sources. The results of simulation were in accordance with experimental data, which suggests that the central metabolism model can properly estimate the behavior ofSynechocystis PCC6803. This model would aid in the understanding of the whole cell metabolism ofSynechocystis PCC6803, the first effort of its kind for photosynthetic bacteria.  相似文献   

3.
l-myo-inositol 1-phosphate synthase (EC 5.5.1.4; MIPS) catalyzes the first rate limiting conversion of d-glucose 6-phosphate to l-myo-inositol 1-phosphate in the inositol biosynthetic pathway. In an earlier communication we have reported two forms of MIPS in Synechocystis sp. PCC6803 (Chatterjee et al. in Planta 218:989–998, 2004). One of the forms with a ~50 kDa subunit has been found to be coded by an as yet unassigned ORF, sll1722. In the present study we have purified the second isoform of MIPS as a ~65 kDa protein from the crude extract of Synechocystis sp. PCC6803 to apparent homogeneity and biochemically characterized. MALDI-TOF analysis of the 65 kDa protein led to its identification as acetolactate synthase large subunit (EC 2.2.1.6; ALS), the putatively assigned ORF sll1981 of Synechocystis sp. PCC6803. The PCR amplified ~1.6 kb product of sll1981 was found to functionally complement the yeast inositol auxotroph, FY250 and could be expressed as an immunoreactive ~65 kDa MIPS protein in the natural inositol auxotroph, Schizosaccharomyces pombe. In vitro MIPS activity and cross reactivity against MIPS antibody of purified recombinant sll1981 further consolidated its identity as the second probable MIPS gene in Synechocystis sp. PCC6803. Sequence comparison along with available crystal structure analysis of the yeast MIPS reveals conservation of several amino acids in sll1981 essential for substrate and co-factor binding. Comparison with other prokaryotic and eukaryotic MIPS sequences and phylogenetic analysis, however, revealed that like sll1722, sll1981 is quite divergent from others. It is probable that sll1981 may code for a bifunctional enzyme protein having conserved domains for both MIPS and acetolactate synthase (ALS) activities.Anirban Chatterjee and Krishnarup Ghosh Dastidar contributed equally.  相似文献   

4.
Synechocystis sp. PCC 6803, a cyanobacterium widely used for basic research, is often cultivated in a synthetic medium, BG-11, in the presence of 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid (HEPES) or 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid buffer. Owing to the high cost of HEPES buffer (96.9% of the total cost of BG-11 medium), the biotechnological application of BG-11 is limited. In this study, we cultured Synechocystis sp. PCC 6803 cells in BG-11 medium without HEPES buffer and examined the effects on the primary metabolism. Synechocystis sp. PCC 6803 cells could grow in BG-11 medium without HEPES buffer after adjusting for nitrogen sources and light intensity; the production rate reached 0.54 g cell dry weight·L−1·day−1, exceeding that of commercial cyanobacteria and Synechocystis sp. PCC 6803 cells cultivated under other conditions. The exclusion of HEPES buffer markedly altered the metabolites in the central carbon metabolism; particularly, the levels of compatible solutes, such as sucrose, glucosylglycerol, and glutamate were increased. Although the accumulation of sucrose and glucosylglycerol under high salt conditions is antagonistic to each other, these metabolites accumulated simultaneously in cells grown in the cost-effective medium. Because these metabolites are used in industrial feedstocks, our results reveal the importance of medium composition for the production of metabolites using cyanobacteria.  相似文献   

5.
Although type IV pilus has been implicated in the phototactic motility of some unicellular cyanobacteria, its regulatory mechanism and the effect of environmental factors on motility are still unknown. Equally important is the ability of cyanobacterial cells to anchor themselves to an environment that is conducive for survival. We compared the motility of a newly isolated unicellular brackish cyanobacterium, Synechocystis sp. UNIWG, with the morphologically and phylogenetically similar freshwater cyanobacterium Synechocystis sp. PCC6803 under different environmental conditions. The phototactic motility of Synechocystis sp. UNIWG on semisolid BG‐11 medium with various concentrations of nitrogen source was significantly faster than that of Synechocystis PCC6803. Interestingly, the cell surface of Synechocystis sp. UNIWG showed the presence of rigid spicules when grown in liquid BG‐11, a phenomenon that was absent in Synechocystis PCC6803. Negative staining of Synechocystis sp. UNIWG revealed the presence of two distinct pilus morphotypes, which resembled type IV pili and thin pili of Synechocystis PCC6803. This finding suggested a similar pattern of phototactic motility in both strains. However, the rigid spicules on Synechocystis sp. UNIWG seem to be more of a hindrance during type IV motility. It was determined that the spicules were degraded when the cells moved, such as under prolonged darkness and/or depletion of nitrogen source, indicating that the function of the spicules is to attach the cell to an environment that is conducive for its survival. Thus, Synechocystis sp. UNIWG shows phototaxis regulation that is more complex than Synechocystis PCC6803.  相似文献   

6.
During cultivation under storage conditions with BG11 medium containing acetate as a carbon source, Synechocystis sp. PCC6803 accumulated poly(3-hydroxybutyrate) up to 10% (w/w) of the cell dry weight. Our analysis of the complete Synechocystis sp. PCC6803 genome sequence, which had recently become available, revealed that not only the open reading frame slr1830 (which was designated as phaC) but also the open reading frame slr1829, which is located colinear and upstream of phaC, most probably represent a polyhydroxyalkanoic acid (PHA) synthase gene. The open reading frame slr1829 was therefore designated as phaE. The phaE and phaC gene products exhibited striking sequence similarities to the corresponding PHA synthase subunits PhaE and PhaC of Thiocystis violacea, Chromatium vinosum, and Thiocapsa pfennigii. The Synechocystis sp. PCC6803 genes were cloned using PCR and were heterologously expressed in Escherichia coli and in Alcaligenes eutrophus. Only coexpression of phaE and phaC partially restored the ability to accumulate poly(3-hydroxybutyrate) in the PHA-negative mutant A. eutrophus PHB4. These results confirmed our hypothesis that coexpression of the two genes is necessary for the synthesis of a functionally active Synechocystis sp. PCC6803 PHA synthase. PHA granules were detected by electron microscopy in these cells, and the PHA-granule-associated proteins were studied. Western blot analysis of Synechocystis sp. PCC6803 crude cellular extracts and of granule-associated proteins employing antibodies raised against the PHA synthases of A. eutrophus (PhaC) and of C. vinosum (PhaE and PhaC) revealed no immunoreaction. Received: 11 March 1998 / Accepted: 2 June 1998  相似文献   

7.
The gene encoding subunit IV of the cytochrome b6/f complex (petD) has been isolated from a genomic library of the unicellular cyanobacterium Synechocystis sp. PCC 6803. The coding region consists of 480 nucleotides and can code for a polypeptide with a molecular weight of 17.5 kDa. The deduced amino acid sequence shows high identity with the corresponding sequences of both the photoautotrophic prokaryote Nostos sp. PCC 7906 as well as of lower and higher photoautotrophic eukaryotes (e.g. Chlorella protothecoides, Nicotiana tabacum). Transformation of Synechocystis sp. PCC 6803 with a plasmid containing the cloned petD gene in which the coding sequence is interrupted by the aminoglycoside 3-phosphotransferase gene (aph) from Tn903 resulted in the formation of km resistant transformants. The molecular analysis of independent transformants revealed that all clones were merodiploid containing both uninterrupted wild-type as well as interrupted mutant petD copies. Approaches to segregate these two genomes were unsuccessful implying an essential function of the petD gene product in Synechocystis sp. PCC 6803.Abbreviations aph aminoglycoside 3-phosphotransferase - cpDNA chloroplast DNA - km kanamycin - PSI photosystem I - PSII photosystem II  相似文献   

8.
The photosynthetic apparatus of Synechocystis sp. PCC 6714 cells grown chemoheterotrophically (dark with glucose as a carbon source) and photoautotrophically (light in a mineral medium) were compared. Dark-grown cells show a decrease in phycocyanin content and an even greater decrease in chlorophyll content with respect to light-grown cells. Analysis of fluorescence emission spectra at 77 K and at 20 °C, of dark- and light-grown cells, and of phycobilisomes isolated from both types of cells, indicated that in darkness the phycobiliproteins were assembled in functional phycobilisomes (PBS). The dark synthesized PBS, however, were unable to transfer their excitation energy to PS II chlorophyll. Upon illumination of dark-grown cells, recovery of photosynthetic activity, pigment content and energy transfer between PBS and PS II was achieved in 24–48 h according to various steps. For O2 evolution the initial step was independent of protein synthesis, but the later steps needed de novo synthesis. Concerning recovery of PBS to PS II energy transfer, light seems to be necessary, but neither PS II functioning nor de novo protein synthesis were required. Similarly, light, rather than functional PS II, was important for the recovery of an efficient energy transfer in nitrate-starved cells upon readdition of nitrate. In addition, it has been shown that normal phycobilisomes could accumulate in a Synechocystis sp. PCC 6803 mutant deficient in Photosystem II activity.Abbreviations APC allophycocyanin - CAP chloroamphenicol - Chl chlorophyll - DCMU 3(3,4-dichlorophenyl)-1,1-dimethylurea - CP-47 chlorophyll-binding Photosystem II protein of 47 kDa - EF exoplasmic face - PBS phycobilisome - PC phycocyanin - PS Photosystem  相似文献   

9.
The oxygenic phototrophic cyanobacterium Synechocystis sp. strain PCC 6803 inevitably evolves superoxide during photosynthesis. Synechocystis 6803 contains only one type of superoxide dismutase, designated as SodB; therefore, this protein plays an important role in preventing oxidative damages caused by light. Because there was no direct evidence that SodB in Synechocystis 6803 could be regulated by light, the relationship between SodB and light was investigated in the present study. The activity of SodB from the cells grown in continuous light culture was about 3.5-fold higher than that from the cells cultivated in continuous dark. Illumination maximally activated SodB within 12 h. The level of sodB mRNA increased 12-fold by light, and that of SodB protein proportionally. Therefore, the expression and activity of SodB from Synechocystis 6803 were dependent on the light.  相似文献   

10.
Screening of 55 different cyanobacterial strains revealed that an extract from Nostoc XPORK14A drastically modifies the amplitude and kinetics of chlorophyll a fluorescence induction of Synechocystis PCC 6803 cells. After 2 d exposure to the Nostoc XPORK14A extract, Synechocystis PCC 6803 cells displayed reduced net photosynthetic activity and significantly modified electron transport properties of photosystem II under both light and dark conditions. However, the maximum oxidizable amount of P700 was not strongly affected. The extract also induced strong oxidative stress in Synechocystis PCC 6803 cells in both light and darkness. We identified the secondary metabolite of Nostoc XPORK14A causing these pronounced effects on Synechocystis cells. Mass spectrometry and nuclear magnetic resonance analyses revealed that this compound, designated as M22, has a non‐peptide structure. We propose that M22 possesses a dual‐action mechanism: firstly, by photogeneration of reactive oxygen species in the presence of light, which in turn affects the photosynthetic machinery of Synechocystis PCC 6803; and secondly, by altering the in vivo redox status of cells, possibly through inhibition of protein kinases.  相似文献   

11.
Compensating changes in the pigment apparatus of photosynthesis that resulted from a complete loss of phycobilisomes (PBS) were investigated in the cells of a PAL mutant of cyanobacterium Synechocystis sp. PCC 6803. The ratio PBS/chlorophyll calculated on the basis of the intensity of bands in the action spectra of photosynthetic activity of two photosystems in the wild strain was 1: 70 for PSII and 1: 300 for PSI. Taking into consideration the number of chlorophyll molecules per reaction center in each photosystem, these ratios could be interpreted as association of PBS with dimers of PSII and trimers of PSI as well as greater dependence of PSII as compared with PSI on light absorption by PBS. The ratio PSI/PSII determined by photochemical cross-section of the reactions of two photosystems was 3.5: 1.0 for wild strain of Synechocystis sp. PCC 6803 and 0.7: 1.0 for the PAL mutant. A fivefold increase in the relative content of PSII in pigment apparatus corresponds to a 5-fold increase in the intensity of bands at 685 and 695 nm as related to the band of PSI at 726 nm recorded in low-temperature fluorescence spectrum of the PAL mutant. Inhibition of PSII with diuron resulted in a pronounced stimulation of chlorophyll fluorescence in the PAL mutant as compared to the wild strain of Synechocystis sp. PCC 6803; these data suggested an activation of electron transfer between PSII and PSI in the mutant cells. Thus, the lack of PBS in the mutant strain of Synechocystis sp. PCC 6803 was compensated for by the higher relative content of PSII in the pigment apparatus of photosynthesis and by a rise in the rate of linear electron transport.  相似文献   

12.

Background  

Synechocystis sp. PCC6803 is a cyanobacterium considered as a candidate photo-biological production platform - an attractive cell factory capable of using CO2 and light as carbon and energy source, respectively. In order to enable efficient use of metabolic potential of Synechocystis sp. PCC6803, it is of importance to develop tools for uncovering stoichiometric and regulatory principles in the Synechocystis metabolic network.  相似文献   

13.
A high CO2-requiring mutant of Synechocystis PCC6803 (G3) capable of Ci transport but unable to utilize the intracellular Ci pool for photosynthesis was constructed. A DNA clone of 6.1 kbp that transforms the G3 mutant to the wild-type phenotype was isolated from a Synechocystis PCC6803 genomic library. Complementation test with subclones allocated the mutation site within a DNA fragment of 674 bp nucleotides. Sequencing analysis of the mutation region elucidated an open reading frame encoding a 534 amino-acid protein with a significant sequence homology to the protein coded by the ccmN gene of Synechococcus PCC7942. The ccmM-like gene product of Synechocystis PCC6803 contains four internal repeats with a week similarity to the rbcS gene product. An open reading frame homologous to the ccmN gene of Synechococcus PCC7942 was found downstream to the ccmM-like gene. As opposed to the Synechococcus PCC7942 ccmM and ccmN genes located 2 kbp upstream to, and oriented in the same direction as, the rbc operon, the ccm-like genes in Synechocystis PCC6803 are not located within 22 kbp upstream to the rbcL gene of the Rubisco operon. Thus, despite the resemblance in clustering of the ccmM and ccmN genes in both cyanobacterial species, the difference in their genomic location relative to the rbc genes demonstrates variability in structural organization of the genes involved in inorganic carbon acquisition.Abbreviations CCM CO2-concentrating mechanism - Ci inorganic carbon - HCR high CO2-requiring - kbp kilobase pair - ORF open reading frame - Rubisco ribulose 1,5-bisphosphate carboxylase-oxygenase gene - SSC sodium chloride and sodium citrate - WT wild-type  相似文献   

14.
Fluorescence excitation spectra of highly anisotropic emission from Photosystem I (PS I) were measured at 295 and 77 K on a PS II-less mutant of the cyanobacterium Synechocystis sp. PCC 6803 (S. 6803). When PS I was excited with light at wavelengths greater than 715 nm, fluorescence observed at 745 nm was highly polarized with anisotropies of 0.32 and 0.20 at 77 and 295 K, respectively. Upon excitation at shorter wavelengths, the 745-nm fluorescence had low anisotropy. The highly anisotropic emission observed at both 77 and 295 K is interpreted as evidence for low-energy chlorophylls (Chls) in cyanobacteria at room temperature. This indicates that low-energy Chls, defined as Chls with first excited singlet-state energy levels below or near that of the reaction center, P700, are not artifacts of low-temperature measurements.If the low-energy Chls are a distinct subset of Chls and a simple two-pool model describes the excitation transfer network adequately, one can take advantage of the low-energy Chls' high anisotropy to approximate their fluorescence excitation spectra. Maxima at 703 and 708 nm were calculated from 295 and 77 K data, respectively. Upper limits for the number of low-energy Chls per P700 in PS I from S. 6803 were calculated to be 8 (295 K) and 11 (77 K).Abbreviations Chl - chlorophyll - BChl - bacteriochlorophyll - LHC - light-harvesting chlorophyll - PS - Photosystem - RC - reaction center - S. 6803 - Synechocystis sp. PCC 6803  相似文献   

15.
We investigated the slow signal of apparent O2 release under brief light flashes by using mutants of Synechocystis sp. PCC 6803 which lacked CP43 and D1. The slow signal was present at higher amplitudes in the mutants. It was inhibited by starving the mutants of glucose (>90%), by 10 mM NaN3 (85%) and by boiling samples for 2 min (100%). In the mutants and in the wild-type, the slow signal was 95% inhibited by the combination of DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone) and HQNO (2-n-heptyl-4-hydroxyquinoline-N-oxide). In the wild type, the addition of DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) or CCCP (carbonylcyanide m-chlorophenylhydrazone) completely inhibited photosynthetic O2 evolution, yet failed to inhibit the slow signal. We explain the kinetics of the wild-type signal as a positive deflection due to the inhibition of respiration by PS I activity, and a negative deflection due to the stimulation of respiration by electrons originating from PS II. We found no evidence of a meta-stable S3 in Synechocystis sp. PCC 6803 that could contribute to the slow signal of apparent O2 release. We present a calculation which involves only averaging, division and subtraction, that can remove the contribution of the slow signal from the true photosynthetic O2 signal and provide up to a 10-fold improved accuracy of the S-state models.Abbreviations ADRY Acceleration of the Deactivation Reactions of the water-splitting enzyme system Y - Ant-2-p 2-(3-chloro-4-trifluoromethyl)-anilino-3,5-dinitrothiophene - CCCP carbonylcyanide m-chlorophenylhydrazone - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, a.k.a. Dibromothymoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron) - HQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - S. 6803 Synechocystis sp. PCC 6803  相似文献   

16.
An isolated 25 kDa protein of Synechocystis sp. PCC 6803 was N-terminally sequenced and assigned to a protein encoded by the ORF slr0924. This ORF shows a certain degree of sequence similarity to a subunit from the protein Translocon at the Inner envelope of pea Chloroplasts (Tic22). The deduced amino acid sequence of Slr0924 has a N-terminal extension, that contains two possible translational start points and two possible cleavage sites for leader peptidases. Immunostaining with an antibody raised to the over-produced protein revealed two cross-reacting forms, which probably correspond to a larger intermediate and the mature protein. Immunogold labelling of thin sections showed that the protein is located mainly in the thylakoid region. This result was verified by thylakoid membrane fractionation indicating that Slr0924 is a lumenal protein. The slr0924 gene product is essential for the viability of Synechocystis sp. PCC 6803 as shown by interposon mutagenesis. The merodiploid strain showed reduced photosynthetic activity compared to the wild-type. Furthermore, growth of the merodiploid strain was found to be completely inhibited after cultivation with glucose. Accordingly, the amount of the slr0924 gene product was regulated by glucose and light intensities in wild-type cells. The potential function of the protein in Synechocystis sp. PCC 6803 will be discussed.  相似文献   

17.
Heat shock proteins are ubiquitous and highly conserved. Recently they have become implicated in the import of proteins into organelles. All the heat shock genes characterized to date, however, are known or assumed to be encoded in the nuclear genome even if the corresponding protein can be localised in the mitochondrion or chloroplast. In contrast, we identify here an hsp70 gene in the unicellular chromophytic alga Pavlova lutherii which is located on the chloroplast genome. Localisation of this gene to the chloroplast chromosome is confirmed by Southern blot analysis and pulse-field gel electrophoresis which also reveals that the length of the P. lutherii chloroplast chromosome is 115 kb. We compare the predicted protein of this hsp70 gene with that of maize and of the analogous proteins in the prokaryotic organisms Escherichia coli and Synechocystis PCC6803. The greatest identity is found with the cyanobacterium Synechocystis PCC6803.  相似文献   

18.
The cyanobacterium Synechocystis sp. PCC 6803 was the first phototrophic organism to be fully sequenced. The genomic sequence has revealed the structure of the genome and its gene constituents (3167 genes), as well as the relative map positions of each gene. The functions of nearly half of the genes has been deduced using similarity searches. The genome sequence has also allowed for the implementation of systematic strategies to study gene function and the mechanisms of gene regulation on a genome-wide level. Two genome databases, CyanoBase and CyanoMutants, have been established and act as a central repository for information on gene structure and gene function, respectively. As a result of the genome sequencing and the establishment of these databases, Synechocystis sp. PCC 6803 provides an extremely versatile and easy model to study the genetic systems of photosynthetic organisms. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
The unicellular cyanobacterium Synechocystis sp. PCC6714 can grow not only under photoautotrophic conditions, but also under chemoheterotrophic conditions if glucose is added to the medium. This makes it useful for the study of many aspects of bioenergetic mechanisms. In contrast to its closely related strain Synechocystis sp. PCC6803, which cannot grow chemoheterotrophically, Synechocystis PCC6714 is not naturally transformable. To enable gene transfer in this strain, we established a method for the introduction of self-replicating IncQ plasmids and for gene replacement using electroporation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
A 5.5-kb HindIII fragment of Synechocystis PCC6803 containing a liverwort (ORF316) homolog encoding a putative zinc finger protein was cloned. Nucleotide sequence analysis showed that the homology of the amino acid sequence deduced from the ORF326 of Synechocystis PCC6803 with the counterparts of a liverwort and tobacco was 50% and 46%, respectively. Synechocystis ORF326 also showed 38% homology with the dedB gene in Escherichia coli. The gene organization of the region in these species of organisms was quite different. This suggests that the Synechocystis ORF326 and liverwort ORF316 genes may be related to a common regulatory gene, but not photosynthetic gene characteristic to chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号