首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 619 毫秒
1.
myogenin (-/-) mice display severe skeletal muscle defects despite expressing normal levels of MyoD. The failure of MyoD to compensate for myogenin could be explained by distinctions in protein function or by differences in patterns of gene expression. To distinguish between these two possibilities, we compared the abilities of constitutively expressed myogenin and MyoD to support muscle differentiation in embryoid bodies made from myogenin (-/-) ES cells. Differentiated embryoid bodies from wild-type embryonic stem (ES) cells made extensive skeletal muscle, but embryoid bodies from myogenin (-/-) ES cells had greatly attenuated muscle-forming capacity. The inability of myogenin (-/-) ES cells to generate muscle was independent of endogenous MyoD expression. Skeletal muscle was restored in myogenin (-/-) ES cells by constitutive expression of myogenin. In contrast, constitutive expression of MyoD resulted in only marginal enhancement of skeletal muscle, although myocyte numbers greatly increased. The results indicated that constitutive expression of MyoD led to enhanced myogenic commitment of myogenin (-/-) cells but also indicated that committed cells were impaired in their ability to form muscle sheets without myogenin. Thus, despite their relatedness, myogenin's role in muscle formation is distinct from that of MyoD, and the distinction cannot be explained merely by differences in their expression properties.  相似文献   

2.
A variety of differentiated cell types can be converted to skeletal muscle cells following transfection with the myogenic regulatory gene MyoD1. To determine whether multipotent embryonic stem (ES) cells respond similarly, cultures of two ES cell lines were electroporated with a MyoD1 cDNA driven by the beta-actin promoter. All transfected clones, carrying a single copy of the exogenous gene, expressed high levels of MyoD1 mRNA. Surprisingly, although maintained in mitogen-rich medium, this ectopic expression was associated with a transactivation of the endogenous myogenin and myosin light chain 2 gene but not the endogenous MyoD1, MRF4, Myf5, the skeletal muscle actin, or the myosin heavy chain genes. Preferential myogenesis and the appearance of contracting skeletal muscle fibers were observed only when the transfected cells were allowed to differentiate in vitro, via embryoid bodies, in low-mitogen-containing medium. Myogenesis was associated with the activation of MRF4 and Myf5 genes and resulted in a significant increase in the level of myogenin mRNA. Not all cells were converted to skeletal muscle cells, indicating that only a subset of stem cells can respond to MyoD1. Moreover, the continued expression of the introduced gene was not required for myogenesis. These results show that ES cells can respond to MyoD1, but environmental factors control the expression of its myogenic differentiation function, that MyoD1 functions in ES cells even under environmental conditions that favor differentiation is not dominant (incomplete penetrance), that MyoD1 expression is required for the establishment of the myogenic program but not for its maintenance, and that the exogenous MyoD1 gene can trans-activate the endogenous myogenin and MLC2 genes in undifferentiated ES cells.  相似文献   

3.
Expression of the myogenic gene MRF4 during Xenopus development.   总被引:5,自引:0,他引:5  
  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
cis-4-Hydroxy-L-proline (cis-OH-Pro) and ethyl-3,4-dihydroxybenzoate (EDHB), two distinct inhibitors of collagen synthesis, prevented myogenesis in C2C12 mouse skeletal muscle cells. Both inhibitors blocked myotube formation and the expression of sarcomeric myosin heavy chain. Northern blot analysis showed that cis-OH-Pro- and EDHB-treated C2C12 muscle cells did not express the myogenic regulatory genes, MyoD1 and myogenin, but continued to express non-muscle isoforms of actin (beta and gamma) and alpha-tropomyosin. 10TFL2-3B cells, a C3H10T1/2 cell line permanently transfected with myogenin cDNA, constitutively expressed exogenous myogenin in the presence of cis-OH-Pro but failed to activate endogenous myogenin and to undergo myogenesis. These results demonstrate that commitment to terminal differentiation and activation of myogenic regulatory genes requires active synthesis of the extracellular matrix component collagen.  相似文献   

13.
14.
15.
In vertebrate development, a prominent feature of several cell lineages is the coupling of cell cycle regulation with terminal differentiation. We have investigated the basis of this relationship in the skeletal muscle lineage by studying the effects of the proliferation-associated regulator, c-myc, on the differentiation of MyoD-initiated myoblasts. Transient cotransfection assays in NIH 3T3 cells using MyoD and c-myc expression vectors demonstrated c-myc suppression of MyoD-initiated differentiation. A stable cell system was also developed in which MyoD expression was constitutive, while myc levels could be elevated conditionally. Induction of this conditional c-myc suppressed myogenesis effectively, even in the presence of MyoD. c-myc suppression also prevented up-regulation of a relative of MyoD, myogenin, which is normally expressed at the onset of differentiation in all muscle cell lines examined and may be essential for differentiation. Additional experiments tested whether failure to differentiate in the presence of myc could be overcome by providing myogenin ectopically. Cotransfection of c-myc with myogenin, MyoD, or a mixture of myogenin and MyoD showed that neither myogenin alone nor myogenin plus MyoD together could bypass the c-myc block. The effects of c-myc were further dissected by showing that c-myc can inhibit differentiation independently of Id, a negative regulator of muscle differentiation. These results lead us to propose that c-myc and Id constitute independent negative regulators of muscle differentiation, while myogenin and any of the other three related myogenic factors (MyoD, Myf-5, and MRF4/herculin/Myf-6) act as positive regulators.  相似文献   

16.
To analyze the formation of neuromuscular junctions, mouse pluripotent embryonic stem (ES) cells were differentiated via embryoid bodies into skeletal muscle and neuronal cells. The developmentally controlled expression of skeletal muscle-specific genes coding for myf5, myogenin, myoD and myf6, α1subunit of the L-type calcium channel, cell adhesion molecule M-cadherin, and neuron-specific genes encoding the 68-, 160-, and 200-kDa neurofilament proteins, synaptic vesicle protein synaptophysin, brain-specific proteoglycan neurocan, and microtubule-associated protein tau was demonstrated by RT-PCR analysis. In addition, genes specifically expressed at neuromuscular junctions, the γ- and ?-subunits of the nicotinic acetylcholine receptor (AChR) and the extracellular matrix protein S-laminin, were found. At the terminal differentiation stage characterized by the formation of multinucleated spontaneously contracting myotubes, the myogenic regulatory gene myf6 and the AChR ?-subunit gene, both specifically expressed in mature adult skeletal muscle, were found to be coexpressed. Only the terminally differentiated myotubes showed a clustering of nicotinic acetylcholine receptors (AChR) and a colocalization with agrin and synaptophysin. The formation of AChRs was also demonstrated on a functional level by using the patch clamp technique. Taken together, our results showed that during ES cell differentiationin vitroneuron- and muscle-specific genes are expressed in a developmentally controlled manner, resulting in the formation of postsynaptic-like membranes. Thus, the embryonic stem cell differentiation model will be helpful for studying cellular interactions at neuromuscular junctions by “loss of function” analysisin vitro.  相似文献   

17.
18.
The purpose of this study was to investigate mRNA expression of several key skeletal muscle myogenic controllers; myogenic differentiation factor (MyoD), muscle regulatory factor 4 (MRF4), myogenic factor 5 (Myf5), myogenin, myostatin, and myocyte enhancer factor 2 (MEF2) at rest and 4 h after a single bout of resistance exercise (RE) in young and old women. Eight young women (YW; 23 +/- 2 yr, 67 +/- 5 kg) and six old women (OW; 85 +/- 1 yr, 67 +/- 4 kg) performed 3 sets of 10 repetitions of bilateral knee extensions at 70% of one repetition maximum. Muscle biopsies were taken from the vastus lateralis before and 4 h after RE. Using real-time RT PCR, mRNA from the muscle samples was amplified and normalized to GAPDH. At rest, OW expressed higher (P < 0.05) levels of MyoD, MRF4, Myf5, myogenin, and myostatin compared with YW. In response to RE, there was a main time effect (P < 0.05) for the YW and OW combined in the upregulation of MyoD (2.0-fold) and MRF4 (1.4-fold) and in the downregulation of myostatin (2.2-fold). There was a trend (P = 0.08) for time x age interaction in MRF4. These data show that old women express higher myogenic mRNA levels at rest. The higher resting myogenic mRNA levels in old women may reflect an attempt to preserve muscle mass and function. When challenged with RE, old women appear to respond in a similar manner as young women.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号