首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Creatine kinase (CK; EC 2.7.3.2) isoenzymes play prominent roles in energy transduction. Mitochondrial CK (MtCK) reversibly catalyzes the transfer of high energy phosphate to creatine and exists, in the human, as two isoenzymes encoded by separate genes. We report here the cDNA sequences of the two isoenzymes of MtCK in the rat. Rat sarcomeric MtCK has 87% nucleotide identity in the 1257 bp coding region and 82% in the 154 bp 3' untranslated region as compared with human sarcomeric MtCK. Rat ubiquitous MtCK has 92% nucleotide identity over the 1254 bp coding region with human ubiquitous MtCK and 81% identity of the 148 by 3' untranslated region. Nucleotide identity between the rat sarcomeric and ubiquitous MtCK coding regions is 70%, with no conservation of their 3' untranslated regions. Thus, MtCK sequence is conserved in a tissue-specific, rather than species-specific, manner. Conservation of the 3' untranslated regions is highly unusual and suggests a regulatory function for this region. The NH2-terminal transit peptide sequences share 82% amino acid homology between rat and human sarcomeric MtCKs and 92% homology between rat and human ubiquitous MtCKs, but have only 41% homology to each other. This tissue-specific conservation of the transit peptides suggests receptor specificity in mitochondrial uptake. Rat sarcomeric MtCK mRNA is expressed only in skeletal muscle and heart, but rat ubiquitous MtCK mRNA is expressed in many tissues, with highest levels in brain, gut and kidney. Ubiquitous MtCK mRNA levels are dramatically regulated in uterus and placenta during pregnancy. Coexpression of sarcomeric and ubiquitous MtCK with their cytosolic counterparts, MCK and BCK, respectively, supports the creatine phosphate shuttle hypothesis and suggests that expression of these genes is coordinately regulated.  相似文献   

2.
Creatine kinase (CK; EC 2.7.3.2) isoenzymes play prominent roles in energy metabolism. Nuclear genes encode three known CK subunits: cytoplasmic muscle (MCK), cytoplasmic brain (BCK), and mitochondrial (MtCK). We have isolated the gene and cDNA encoding human placental MtCK. By using a dog heart MCK cDNA-derived probe, the 7.0-kb EcoRI fragment from one cross-hybridizing genomic clone was isolated and its complete nucleotide sequence determined. A region of this clone encoded predicted amino acid sequence identical to residues 15-26 of the human heart MtCK NH2-terminal protein sequence. The human placental MtCK cDNA was isolated by hybridization to a genomic fragment encoding this region. The human placental MtCK gene contains 9 exons encoding 416 amino acids, including a 38-amino acid transit peptide, presumably essential for mitochondrial import. Residues 1-14 of human placental MtCK cDNA-derived NH2-terminal sequence differ from the human heart MtCK protein sequence, suggesting that tissue-specific MtCK mRNAs are derived from multiple MtCK genes. RNA blot analysis demonstrated abundant MtCK mRNA in adult human ventricle and skeletal muscle, low amounts in placenta and small intestine, and a dramatic increase during in vitro differentiation induced by serum-deprivation in the non-fusing mouse smooth muscle cell line, BC3H1. These findings demonstrate coordinate regulation of MtCK and cytosolic CK gene expression and support the phosphocreatine shuttle hypothesis.  相似文献   

3.
4.
Doxorubicin (DXR) belongs to the most efficient anticancer drugs. However, its use is limited by a risk of cardiotoxicity, which is not completely understood. Recently, we have shown that DXR impairs essential properties of purified mitochondrial creatine kinase (MtCK), with cardiac isoenzyme (sMtCK) being particularly sensitive. In this study we assessed the effects of DXR on respiration of isolated structurally and functionally intact heart mitochondria, containing sMtCK, in the presence and absence of externally added creatine (Cr), and compared these effects with the response of brain mitochondria expressing uMtCK, the ubiquitous, non-muscle MtCK isoenzyme. DXR impaired respiration of isolated heart mitochondria already after short-term exposure (minutes), affecting both ADP- and Cr-stimulated respiration. During a first short time span (minutes to 1 h), detachment of MtCK from membranes occurred, while a decrease of MtCK activity related to oxidative damage was only observed after longer exposure (several hours). The early inhibition of Cr-stimulated respiration, in addition to impairment of components of the respiratory chain involves a partial disturbance of functional coupling between MtCK and ANT, likely due to interaction of DXR with cardiolipin leading to competitive inhibition of MtCK/membrane binding. The relevance of these findings for the regulation of mitochondrial energy production in the heart, as well as the obvious differences of DXR action in the heart as compared to brain tissue, is discussed.  相似文献   

5.
Creatine kinase isoenzymes are very susceptible to free radical damage and are inactivated by superoxide radicals and peroxynitrite. In this study, we have analyzed the effects of peroxynitrite on enzymatic activity and octamer stability of the two human mitochondrial isoenzymes (ubiquitous mitochondrial creatine kinase (uMtCK) and sarcomeric mitochondrial creatine kinase (sMtCK)), as well as of chicken sMtCK, and identified the involved residues. Inactivation by peroxynitrite was concentration-dependent and similar for both types of MtCK isoenzymes. Because peroxynitrite did not lower the residual activity of a sMtCK mutant missing the active site cysteine (C278G), oxidation of this residue is sufficient to explain MtCK inactivation. Mass spectrometric analysis confirmed oxidation of Cys-278 and further revealed oxidation of the C-terminal Cys-358, possibly involved in MtCK/membrane interaction. Peroxynitrite also led to concentration-dependent dissociation of MtCK octamers into dimers. In this study, ubiquitous uMtCK was much more stable than sarcomeric sMtCK. Mass spectrometric analysis revealed chemical modifications in peptide Gly-263-Arg-271 located at the dimer/dimer interface, including oxidation of Met-267 and nitration of Trp-268 and/or Trp-264, the latter being a very critical residue for octamer stability. These data demonstrate that peroxynitrite affects the octameric state of MtCK and confirms human sMtCK as the generally more susceptible isoenzyme. The results provide a molecular explanation of how oxidative damage can lead to inactivation and decreased octamer/dimer ratio of MtCK, as seen in neurodegenerative diseases and heart pathology, respectively.  相似文献   

6.
The mitochondrial isoenzymes of creatine kinase (MtCK), ubiquitous uMtCK and sarcomeric sMtCK, are key enzymes of oxidative cellular energy metabolism and play an important role in human health and disease. Very little is known about uMtCK in general, or about sMtCK of human origin. Here we have heterologously expressed and purified both human MtCK isoenzymes to perform a biochemical, kinetic and structural characterization. Both isoenzymes occurred as octamers, which can dissociate into dimers. Distinct Stokes' radii of uMtCK and sMtCK in solution were indicative for conformational differences between these equally sized proteins. Both human MtCKs formed 2D-crystals on cardiolipin layers, which revealed further subtle differences in octamer structure and stability. Octameric human sMtCK displayed p4 symmetry with lattice parameters of 145 A, indicating a 'flattening' of the octamer on the phospholipid layer. pH optima and enzyme kinetic constants of the two human isoenzymes were significantly different. A pronounced substrate binding synergism (Kd > Km) was observed for all substrates, but was most pronounced in the forward reaction (PCr production) of uMtCK and led to a significantly lower Km for creatine (1.01 mM) and ATP (0.11 mM) as compared to sMtCK (creatine, 7.31 mM; ATP, 0.68 mM).  相似文献   

7.
Doxorubicin (DXR) belongs to the most efficient anticancer drugs. However, its use is limited by a risk of cardiotoxicity, which is not completely understood. Recently, we have shown that DXR impairs essential properties of purified mitochondrial creatine kinase (MtCK), with cardiac isoenzyme (sMtCK) being particularly sensitive. In this study we assessed the effects of DXR on respiration of isolated structurally and functionally intact heart mitochondria, containing sMtCK, in the presence and absence of externally added creatine (Cr), and compared these effects with the response of brain mitochondria expressing uMtCK, the ubiquitous, non-muscle MtCK isoenzyme. DXR impaired respiration of isolated heart mitochondria already after short-term exposure (minutes), affecting both ADP- and Cr-stimulated respiration. During a first short time span (minutes to 1 h), detachment of MtCK from membranes occurred, while a decrease of MtCK activity related to oxidative damage was only observed after longer exposure (several hours). The early inhibition of Cr-stimulated respiration, in addition to impairment of components of the respiratory chain involves a partial disturbance of functional coupling between MtCK and ANT, likely due to interaction of DXR with cardiolipin leading to competitive inhibition of MtCK/membrane binding. The relevance of these findings for the regulation of mitochondrial energy production in the heart, as well as the obvious differences of DXR action in the heart as compared to brain tissue, is discussed.  相似文献   

8.
Octamer stability and membrane binding of mitochondrial creatine kinase (MtCK) are important for proper functioning of the enzyme and were suggested as targets for regulatory mechanisms. A quantitative analysis of these properties, using fluorescence spectroscopy, gel filtration, and surface plasmon resonance, revealed substantial differences between the two types of MtCK isoenzymes, sarcomeric (sMtCK) and ubiquitous (uMtCK). As compared with human and chicken sMtCK, human uMtCK showed a 23-34 times slower octamer dissociation rate, a reduced reoctamerization rate and a superior octamer stability as deduced from the octamer/dimer ratios at thermodynamic equilibrium. Octamer stability of sMtCK increased with temperature up to 30 degrees C, indicating a substantial contribution of hydrophobic interactions, while it decreased in the case of uMtCK, indicating the presence of additional polar dimer/dimer interactions. These conclusions are consistent with the recently solved x-ray structure of the human uMtCK (Eder, M., Fritz-Wolf, K., Kabsch, W., Wallimann, T., and Schlattner, U. (2000) Proteins 39, 216-225). When binding to 16% cardiolipin membranes, sMtCK showed slightly faster on-rates and higher affinities than uMtCK. However, human uMtCK was able to recruit the highest number of binding sites on the vesicle surface. The observed divergence of ubiquitous and sarcomeric MtCK is discussed with respect to their molecular structures and the possible physiological implications.  相似文献   

9.
10.
11.
Creatine kinase (CK), catalyzing the reversible trans-phosphorylation between ATP and creatine, plays a key role in the energy metabolism of cells with high and fluctuating energy requirements. We have solved the X-ray structure of octameric human ubiquitous mitochondrial CK (uMtCK) at 2.7 A resolution, representing the first human CK structure. The structure is very similar to the previously determined structure of sarcomeric mitochondrial CK (sMtCK). The cuboidal octamer has 422 point group symmetry with four dimers arranged along the fourfold axis and a central channel of approximately 20 A diameter, which extends through the whole octamer. Structural differences with respect to sMtCK are found in isoform-specific regions important for octamer formation and membrane binding. Octameric uMtCK is stabilized by numerous additional polar interactions between the N-termini of neighboring dimers, which extend into the central channel and form clamp-like structures, and by a pair of salt bridges in the hydrophobic interaction patch. The five C-terminal residues of uMtCK, carrying positive charges likely to be involved in phospholipid-binding, are poorly defined by electron density, indicating a more flexible region than the corresponding one in sMtCK. The structural differences between uMtCK and sMtCK are consistent with biochemical studies on octamer stability and membrane binding of the two isoforms.  相似文献   

12.
It is known that mitochondrial creatine kinase (MtCK) in mammals is always expressed in conjunction with one of the cytosolic forms of creatine kinase (CK), either muscle-type (MM-CK) or brain-type (BB-CK) in tissues of high, sudden energy demand. The two creatine kinase (CK) isoforms were detected in herring (Clupea harengus) skeletal muscle: cytosolic CK and mitochondrial CK (MtCK) that displayed the different electrophoretic mobility. These isoforms differ in molecular weight and some biochemical properties. Isolation and purification procedures allowed to obtain purified enzymes with specific activity of the 206 μmol/min/mg for cytosolic CK and 240 μmol/min/mg for MtCK. Native Mrs of the cytosolic CK and MtCK determined by gel permeation chromatography were 86.000 and 345.000, respectively. The results indicate that one of isoforms found in herring skeletal muscle is a cytosolic dimer and the other one, is a mitochondrial octamer. Octamerization of MtCK is not an advanced feature and also exists in fish. These values correspond well with published values for MtCKs and cytosolic CK isoforms from higher vertebrate classes and even from lower invertebrates.  相似文献   

13.
Creatine kinase (EC 2.7.3.2) isoenzymes play a central role in energy transduction. Nuclear genes encode creatine kinase subunits from muscle, brain, and mitochondria (MtCK). We have recently isolated a cDNA clone encoding MtCK from a human placental library which is expressed in many human tissues (Haas, R. C., Korenfeld, C., Zhang, Z., Perryman, B., Roman, D., and Strauss, A. W. (1989) J. Biol. Chem. 264, 2890-2897). With nontranslated and coding region probes, we demonstrated by RNA blot analysis that the MtCK mRNA in sarcomeric muscle is distinct from this placenta-derived, ubiquitous MtCK cDNA. To compare these different mRNAs, a MtCK cDNA clone was isolated from a human heart library and characterized by complete nucleotide sequence analysis. The chemically determined NH2-terminal 26 residues of purified human heart MtCK protein are identical to those predicted from this sarcomeric MtCK cDNA. The human sarcomeric and ubiquitous cDNAs share 73% nucleotide and 80% predicted amino acid sequence identities, but have less than 66% identity with the cytosolic creatine kinases. The sarcomeric MtCK cDNA encodes a 419-amino acid protein which contains a 39-residue transit peptide essential for mitochondrial import. Primer extension analysis predicts a 348-base pair 5'-nontranslated region. RNA blot analysis demonstrates that heart-derived MtCK is sarcomere-specific, but the ubiquitous MtCK mRNA is expressed in most tissues. Thus, separate nuclear genes encode two closely related, tissue-specific isoenzymes of MtCK. Our finding that multiple genes encode different mitochondrial protein isoenzymes is rare.  相似文献   

14.
15.
cDNA clones for human B creatine kinase were isolated from human brain and placenta libraries. The entire coding and 3' untranslated regions, as well as 23 bp of the 5' untranslated region were sequenced. Complete sequence identity was found among the clones, with the exception of an area of heterogeneity among the 3' untranslated region of the brain and placenta clones. A 77.7% nucleotide sequence identity was found between the coding region of human B creatine kinase and our previously reported human M creatine kinase. In contrast, no homology was found in the 3' untranslated regions. Probes were constructed from the nonconserved 3' untranslated regions of human M and B creatine kinase and were shown to be highly specific. Southern transfers of total genomic DNA derived from human placenta and digested to completion with several restriction enzymes were probed with the MCK and BCK specific probes producing single hybridization bands. These results suggest that creatine kinase M and B are single copy genes in the human genome.  相似文献   

16.
17.
We have evaluated surface plasmon resonance with avidin-biotin immobilized liposomes tocharacterize membrane binding of ubiquitous mitochondrial creatine kinase (uMtCK). Whilethe sarcomeric sMtCK isoform is well known to bind to negatively charged phospholipids,especially cardiolipin, this report provides the first experimental evidence on the membraneinteraction of an uMtCK isoform. Qualitative measurements showed that liposomes containing16% (w/w) cardiolipin bind octameric as well as dimeric human uMtCK and also cytochromec, but not bovine serum albumin. Quantitative parameters could be derived only for themembrane interaction of octameric human uMtCK using an improved analytical approach.Association and dissociation kinetics of octameric uMtCK fit well to a model for heterogeneousinteraction suggesting two independent binding sites. Rate constants of the two sites differedby one order of magnitude, while their affinity constants were both about 80–100 nM. Thedata obtained demonstrate that surface plasmon resonance with immobilized liposomes is asuitable approach to characterize the binding of peripheral proteins to a lipid bilayer and thatthis method yields consistent quantitative binding parameters.  相似文献   

18.
High affinity interaction between octameric mitochondrial creatine kinase (MtCK) and the phospholipid cardiolipin in the inner mitochondrial membrane plays an important role in metabolite channeling between MtCK and inner membrane adenylate translocator, which itself is tightly bound to cardiolipin. Three C-terminal basic residues revealed as putative cardiolipin anchors in the x-ray structures of MtCK and corresponding to lysines in human sarcomeric MtCK (sMtCK) were exchanged by in vitro mutagenesis (K369A/E, K379Q/A/E, K380Q/A/E) to yield double and triple mutants. sMtCK proteins were bacterially expressed, purified to homogeneity, and verified for structural integrity by enzymatic activity, gel filtration chromatography, and CD spectroscopy. Interaction with cardiolipin and other acidic phospholipids was quantitatively analyzed by light scattering, surface plasmon resonance, and fluorescence spectroscopy. All mutant sMtCKs showed a strong decrease in vesicle cross-linking, membrane affinity, binding capacity, membrane ordering capability, and binding-induced changes in protein structure as compared with wild type. These effects did not depend on the nature of the replacing amino acid but on the number of exchanged lysines. They were moderate for Lys-379/Lys-380 double mutants but pronounced for triple mutants, with a 30-fold lower membrane affinity and an entire lack of alterations in protein structure compared with wild-type sMtCK. However, even triple mutants partially maintained an increased order of cardiolipin-containing membranes. Thus, the three C-terminal lysines determine high affinity sMtCK/cardiolipin interaction and its effects on MtCK structure, whereas low level binding and some effect on membrane fluidity depend on other structural components. These results are discussed in regard to MtCK microcompartments and evolution.  相似文献   

19.
20.
AMP-activated protein kinase (AMPK) and cytosolic brain-type creatine kinase (BCK) cooperate under energy stress to compensate for loss of adenosine triphosphate (ATP) by either stimulating ATP-generating and inhibiting ATP-consuming pathways, or by direct ATP regeneration from phosphocreatine, respectively. Here we report on AMPK-dependent phosphorylation of BCK from different species identified by in vitro screening for AMPK substrates in mouse brain. Mass spectrometry, protein sequencing, and site-directed mutagenesis identified Ser6 as a relevant residue with one site phosphorylated per BCK dimer. Yeast two-hybrid analysis revealed interaction of active AMPK specifically with non-phosphorylated BCK. Pharmacological activation of AMPK mimicking energy stress led to BCK phosphorylation in astrocytes and fibroblasts, as evidenced with a highly specific phospho-Ser6 antibody. BCK phosphorylation at Ser6 did not affect its enzymatic activity, but led to the appearance of the phosphorylated enzyme at the endoplasmic reticulum (ER), close to the ER calcium pump, a location known for muscle-type cytosolic creatine kinase (CK) to support Ca2+-pumping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号