首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
X射线对体外培养星形胶质细胞增生活化和分泌的影响   总被引:1,自引:0,他引:1  
目的观察X射线照射对培养星形胶质细胞(astrocyte,AS)增殖和分泌的影响。方法建立体外培养大鼠纯化的AS物理损伤模型(划痕损伤模型),分为对照组、划痕组和放疗组。利用免疫荧光观察胶质细胞胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)和5-溴脱氧尿嘧啶核苷(5-bromodeoxy uridine,BrdU)的表达,利用RT-PCR观察细胞因子IL-6和TNF-a的表达。结果划痕损伤刺激能使培养AS反应性增生活化。损伤后6h出现IL-6、TNF-a表达水平增高,24h后损伤周围BrdU阳性细胞率明显增加。通过X射线照射能抑制AS的BrdU表达,但并不能抑制损伤后IL-6和TNF-a的表达。结论X射线照射可以通过调控细胞周期,有效抑制损伤后AS的反应性增生,但不能对活化AS的IL-6和TNF-a的表达起到抑制作用。  相似文献   

2.
目的:研究星形胶质细胞活化后神经生长因子(nerve growth factor,NGF)、白细胞介素-6(interleukin-6,IL-6)表达的时间规律性,探讨星形胶质细胞活化后启动保护性机制与损伤性机制的时间特性.方法:体外分离培养星形胶质细胞,分为对照组、活化组、抑制组.通过光学显微镜及免疫荧光化学观察各组细胞的形态变化;应用半定量RT-PCR方法分析各组细胞间胶原纤维酸性蛋白(glial fibrillary acidic protein,GFAP)mRNA及NGF mRNA、IL-6 mRNA表达变化;用ELISA法检测各组细胞上清液中不同时间点(6h,24h,48h,72h)NGF、IL-6的含量.结果:活化组与对照组比较,细胞胞体变大,GFAP荧光增强;RT-PCR示GFAP mRNA、NGF mRNA、IL-6 mRNA表达均明显增高,与对照组比较差异有显著性(P<0.01);ELISA法检测示星形胶质细胞活化后NGF分泌量在活化后24小时达到高峰,与对照组比较差异有显著性(P<0.01);活化后48小时IL-6的含量达到高峰,与对照组比较差异有显著性(P<0.01);应用抑制剂Genistein干预后,与活化组相比,抑制组细胞胞体变小,星形胶质细胞活化被抑制,GFAP mRNA表达下降,NGF mRNA、IL-6 mMRA表达亦下降,与活化组比较差异有显著性(P<0.01).结论:星形胶质细胞活化后NGF、IL-6表达均上调,但NGF表达时间早于IL-6表达时间,表明在星形胶质细胞活化的早期,可能其神经保护作用占主导,而后期其神经毒性作用逐渐明显;Genistein能抑制星形胶质细胞活化,使NGF、IL-6表达下调.  相似文献   

3.
目的观察细胞周期调控对大鼠全脑缺血再灌流后海马区迟发性神经元死亡(delayed neuronal death,DND)以及星形胶质细胞的活化、增殖的影响.方法建立大鼠短暂性全脑缺血再灌流模型,利用尼氏染色、TUNEL、免疫组织化学方法观察再灌流后细胞周期素依赖的蛋白激酶(cyclin depedent kinase, CDK)抑制剂Olomoucine对海马DND以及星形胶质细胞活化增殖的影响.结果全脑缺血再灌流后3d、7d、30d海马神经元明显脱失,部分CA1、CA2区神经元凋亡;星形胶质细胞数目增多,GFAP表达上调,应用Olomoucine后TUNEL阳性神经元数目明显减少,幸存神经元数目增加;星形胶质细胞数目无明显增多,GFAP表达明显下调.结论 CDK抑制剂Olomoucine可有效抑制大鼠全脑缺血后海马神经元DND以及星形胶质细胞活化增殖.  相似文献   

4.
目的探讨正加速度( Gz)重复暴露后不同时间海马星形胶质细胞GFAP表达的变化.方法 SD大鼠60只,随机分成对照组、 Gz重复暴露后1h、6h、12h、24h和48h组,每组10只.采用动物离心机,建立 Gz引发急性脑缺血模型;应用免疫组织化学技术,分别检测 Gz重复暴露后不同时间,海马星形胶质细胞GFAP的表达状况.结果海马星形胶质细胞GFAP阳性细胞数,在 Gz暴露后1h即显著增加,于12h达到高峰,而后逐渐下降,48h仍维持在较高水平,实验组与对照组比较,有显著性差异.结论 Gz重复暴露导致海马星形胶质细胞GFAP表达上调,可能对神经元的缺血损伤起保护作用.  相似文献   

5.
目的观察细胞周期抑制剂olomoucine对培养星形胶质细胞机械损伤后增殖和活化分泌的影响。方法建立体外培养大鼠纯化的AS物理损伤模型(划痕损伤模型),分为对照组、划痕组和olomoucine干预组。利用免疫荧光细胞化学方法观察损伤后GFAP表达;利用RT-PCR观察细胞因子IL-6和TNF-α的表达情况。结果划痕损伤刺激能使培养AS反应性增生活化。损伤早期出现IL-6、TNF-α表达水平增高,从损伤后12h开始出现损伤边缘区AS胞体肥大,数目增加;给予olomoucine干预后,细胞数目减少、体积明显减小,损伤后IL-6和TNF-α表达也显著下降。结论损伤刺激可促使AS活化,并发生反应性胶质增生;CDK选择性细胞周期抑制剂olomoucine可以通过调控细胞周期,有效抑制损伤后星形胶质细胞的反应性增生,并能对AS的活化起到抑制作用。  相似文献   

6.
目的 观察局灶性脑缺血后海马和缺血边缘区星形胶质细胞过度增殖对微循环的影响。方法将大鼠随机分为假手术组、缺血组和干预组,缺血组和干预组采用线栓法制备大脑中动脉栓塞模型,缺血组侧脑室采用ALZET微渗透泵给予0.2%DMSO,干预组给予细胞周期抑制剂roscovitine,假手术组不插入线栓,不给与任何药物干预。缺血7d后于股静脉注入FITC标记的葡聚糖标记血管,小鼠抗大鼠单克隆抗胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)抗体标记星形胶质细胞;激光共聚焦三维成像显示胶质细胞于微循环之间的关系。结果缺血同侧海马和缺血边缘区在GFAP阳性细胞增多的同时,局部微血管血流灌注明显减少,应用细胞周期抑制剂roscovitine抑制星形胶质细胞增生可以明显增加局部微血管的血流灌注。结论脑缺血后缺血边缘区和海马的反应性星形胶质细胞增生与微循环灌注减少密切相关。  相似文献   

7.
IL-1β对星形胶质细胞的激活作用   总被引:2,自引:0,他引:2  
目的研究IL-1β对体外原代培养的星形胶质细胞中的激活及增殖作用,并探讨IL-1β对星形胶质细胞细胞周期的影响.方法将单层培养于盖玻片上的纯化的星形胶质细胞分为4组,分别采取血清培养和血清剥夺培养,加入不同浓度IL-1β,其浓度依次为0ng/ml、1ng/ml、10ng/ml、100ng/ml,作用24小时.采用免疫细胞化学观察GFAP和PCNA的表达.并且采用流式细胞术观察其对星形胶质细胞周期的影响.结果血清培养时不同浓度IL-1β组的星形胶质细胞GFAP表达和细胞指数无明显改变,PCNA表达较对照组明显增强,但是1ng/ml和10ng/ml IL-1β时星形胶质细胞PCNA表达无明显变化.而血清剥夺时不同浓度IL-1β组的星形胶质细胞GFAP和PCNA表达较对照组明显增强,S和G2/M期的细胞指数较对照组增多.结论 IL-1β激活星形胶质细胞,上调GFAP和PCNA的表达,并启动细胞周期进程,促使星形胶质细胞进入增殖周期.这对中枢神经系统损伤和疾病时反应性胶质增生及胶质瘢痕的形成机制起着重要作用.  相似文献   

8.
目的:探讨异丙酚对局灶性脑缺血/再灌注后星形胶质细胞胶质纤维酸性蛋白(GFAP)表达的影响。方法:大脑中动脉插线法制作大鼠局灶性脑缺血/再灌注模型。观察脑缺血2h再灌注24h后神经功能损害改变并评分,并采用免疫荧光组织化学法检测大鼠齿状回GFAP蛋白的表达。结果:缺血/再灌注后可诱导大鼠齿状回GFAP表达明显增强,异丙酚可抑制缺血/再灌注后GFAP的表达,明显改善大鼠神经功能损害(P〈0.05或0.01)。结论:异丙酚通过抑制脑缺血后星形胶质细胞GFAP的过度表达发挥抗脑缺血损伤保护神经元作用。  相似文献   

9.
目的 研究PDAPP转基因小鼠脑组织内反应性星形胶质细胞的活化程度。方法 通过免疫组织化学染色方法检测小鼠脑组织内反应性星形胶质细胞表达胶质纤维酸性蛋白 (GFAP)的情况 ,比较PDAPP转基因小鼠和C5 7 BL非转基因小鼠脑组织反应性星形胶质细胞的活化程度。结果 PDAPP转基因小鼠脑组织内反应性星形胶质细胞表达GFAP的水平明显高于C5 7 BL非转基因小鼠。结论 PDAPP转基因小鼠脑组织内存在明显的神经炎症反应  相似文献   

10.
睫状神经营养因子对体外培养星形胶质细胞的激活作用   总被引:1,自引:1,他引:0  
目的 观察睫状神经营养因子(CNIF)对体外培养星形胶质细胞的细胞激活作用。方法分别给予不同浓度(0、2、20、200ng/ml)的CNTF孵育有血清培养和无血清培养的星形胶质细胞,采用免疫细胞化学技术及流式细胞术,观察星形胶质细胞形态及细胞周期的变化。结果有血清培养和无血清培养时CNTF均使星形胶质细胞GFAP表达增强,胞核肥大。有血清培养时CNTF还可以促进星形胶质细胞进入细胞周期进行增殖;无血清培养时CNTF无此效应。结论无血清培养时CNTF可以刺激星形胶质细胞进入活化状态,但不刺激其增殖;有血清培养时CNTF可以协助血清中的丝裂原引起星形胶质细胞增殖。  相似文献   

11.
Focal adhesion kinase (FAK), a non-receptor type tyrosine kinase, is involved in the G1/S phase cell cycle transition of astrocytes induced by endothelin-1 (ET-1). In this study, the roles of FAK in the expression of cyclin D1 or D3, which are pivotal in G1/S phase transition, were examined in cultured astrocytes. Accompanied with increases in bromodeoxyuridine (BrdU) incorporation, ET-1 (100 nm) increased the numbers of cyclin D1- and D3-positive astrocytes. PD98059 (a MEK inhibitor) and PP-2 (a Src kinase inhibitor) inhibited ET-induced cyclin D1 expression and BrdU incorporation without affecting cyclin D3 expression. In contrast, cytochalasin D, lovastatin (a 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor) and Y-27632 (a rho-kinase inhibitor) prevented both cyclin D3 expression and BrdU incorporation. FAK phosphorylation by ET-1 was inhibited by cytochalasin D, lovastatin and Y-27632, but not by PD98059 or PP-2. Transfection with wild-type FAK increased expression of cyclin D3 in astrocytes, while that of cyclin D1 was not affected. Dominant-negative FAK mutants prevented an ET-induced increase in cyclin D3 expression, but not D1. These results suggest that activation of FAK causes cyclin D3 expression in cultured astrocytes, which would underlie the FAK-mediated astrocytic G1/S phase transition by ET-1.  相似文献   

12.
Pancreatic triglyceride lipase (PTL), an enzyme of digestive system, plays very important roles in the digestion and absorption of lipids. However, its distribution and function in the central nervous system (CNS) remains unclear. In the present study, we mainly investigated the expression and cellular localization of PTL during traumatic brain injury (TBI). Western blot and RT–PCR analysis revealed that PTL was present in normal rat brain cortex. It gradually increased, reached a peak at the 3rd day after TBI, and then decreased. Double immunofluorescence staining showed that PTL was co-expressed with neuron, but had a few colocalizations in astrocytes. When TBI occurred in the rat cortex, the expression of PTL gradually increased, reached the peak at the 3rd day after TBI, and then decreased. Importantly, more PTL was colocalized with astrocytes, which is positive for proliferating cell nuclear antigen (PCNA). In addition, Western blot detection showed that the 3rd day post injury was not only the proliferation peak indicated by the elevated expression of PCNA, glial fibrillary acidic protein (GFAP) and cyclin D1, but also the apoptotic peak implied by the alteration of caspase-3 and bcl-2. These data suggested that PTL may be involved in the pathophysiology of TBI and PTL may be complicated after injury, more PTL was colocalized with astrocytes. Importantly, injury-induced expression of PTL was colabelled by proliferating cell nuclear antigen (proliferating cells marker), and the western blot for GFAP, PCNA and cyclin D1, showed that 3 days post injury was the proliferation peak, in coincidence to it, the protein level change of caspase-3 and bcl-2 revealed that the stage was peak of apoptotic too. These data suggested that PTL may be involved in the pathophysiology of TBI and that PTL may be implicated in the proliferation of astrocytes and the recovery of neurological outcomes. But the inherent mechanisms remained unknown. Further studies are needed to confirm the exact role of PTL after brain injury.  相似文献   

13.
Cardiomyocytes withdraw from cell cycle after terminal differentiation due in part to impaired nuclear import of cyclin D1. Thus, we have previously shown that expression of nuclear localization signal-tagged cyclin D1 (D1NLS) and cyclin-dependent kinase 4 promotes cardiomyocyte proliferation both in vitro and in vivo. Here we show that cyclin D2 fails to stimulate cell cycle in cardiomocytes through a mechanism distinct from that of cyclin D1. We demonstrate that cyclin D2 can express in the nucleus much more efficiently than cyclin D1. Cyclin D2, however, was much less effective in activating CDK2 and cell proliferation than cyclin D1 when expressed transiently in the nucleus of cardiomyocytes using nuclear localization signals. Consistent with such an observation, CDK inhibitors p21cip1 and p27kip1 remained bound to CDK2 in cells expressing cyclin D2, whereas p21 and p27 were sequestered to cyclin D1 in cells expressing D1NLS. These data suggest that cyclin D2 has weaker affinities to the CDK inhibitors and therefore is less efficient in activating cell cycle than cyclin D1. According to such a notion, double knockdown of p21 and p27 in cells expressing D2NLS induced activation of CDK2/CDC2 and BrdU incorporation to levels similar to those in cells expressing D1NLS. Taken together, our data suggest that distinct mechanisms keep cyclin D1 and cyclin D2 from activating cell cycle in terminally differentiated cardiomyocytes.  相似文献   

14.
缺氧对体外培养的肺动脉平滑肌细胞形态及增殖的影响   总被引:7,自引:0,他引:7  
本实验应用形态学、免疫组化染色,^3H-TdR掺入、流式细胞等技术探讨缺氧(〈1%O2和2.5%O2)对肺动脉平滑肌细胞(PASM)形态及增殖的影响。结果表明:缺氧24h使PASM表型从收缩型向合成型转换,胞浆内SM-a actin减少,线粒体和粗面内质网增多,缺氧48h以后线粒体肿胀,空泡化,内质网扩张,胞浆内出现髓鞘样结构。流式细胞分析显示缺氧PASM G2/M期细胞比例明显增多(P〈0.00  相似文献   

15.
Arginine vasopressin (AVP) is a nonapeptide long known as an endocrine and paracrine regulator of important systemic functions, namely, vasoconstriction, gluconeogenesis, corticosteroidogenesis, and excretion of water and urea. Here we report, for the first time, that AVP specifically inhibits expression of the cyclin D1 gene, leading to cell cycle blockage and halting cell proliferation. In G0/G1-arrested mouse Y1 adrenocortical tumor cells, maintained in serum-free medium (SFM), AVP mimics FGF2, promoting rapid ERK1/2 activation (5 min) followed by c-Fos protein induction (2 h). PKC inhibitor Go6983 and PI3K inhibitors wortmannin and LY294002 all inhibit ERK1/2 activation by AVP, but not by FGF2. Thus, AVP and FGF2 concur to activate ERK1/2 by different regulatory pathways. However, AVP is not a mitogenic factor for Y1 cells. On the contrary, AVP strongly antagonizes FGF2 late induction (2-5 h) of the cyclin D1 gene, down-regulating both cyclin D1 mRNA and protein. AVP inhibition of cyclin D1 expression is sufficient to block G1 phase progression and cell entry into the S phase, monitored by BrdU nuclear labeling. In addition, AVP completely inhibits proliferation of Y1 cells in 10% fetal calf serum (10% FCS) medium. On the other hand, ectopic expression of the cyclin D1 protein renders Y1 cells resistant to AVP for both entry into the S phase in SFM and continuous proliferation in 10% FCS medium. In conclusion, inhibition of cyclin D1 expression by AVP is an efficient mechanism of cell cycle blockage and consequent proliferation inhibition in Y1 adrenocortical cells.  相似文献   

16.
Previous work has suggested that a major contributor to neuronal cell death is the aberrant induction of the cell cycle process, as indicated by an up-regulation of cyclin D. In order to examine the temporal and spatial relationship of cyclin D in a model of acute neurodegeneration, the hippocampal toxicant, trimethyltin (TMT; 2.0 mg/kg), was administered to 21-day old CD−1 male mice and the level and cellular localization of cyclin D1 examined. Within 24 h following TMT, dentate granule cells of the hippocampus showed evidence of neuronal necrosis resulting in severe cell loss over a 3-day period. The pyramidal cell layer was spared with only sparse punctate neuronal necrosis. Microglia response was seen at 72 h with ameboid microglia present in the dentate and ramified microglia present in the pyramidal cell layer, contributing to the elevation seen in TNF-alpha mRNA levels. A transient elevation was seen in mRNA levels for cyclin D1 over 48–72 h post-TMT. Immunohistochemistry demonstrated a transient increase in staining for cyclin D1 in CA1 pyramidal neurons as early as 24 h. Punctate staining occurred in neurons throughout the dentate at 48 h. BrdU positive cells were present along the inner blades of the dentate in control animals. Following TMT exposure, an increase was seen in both the number of neurons stained and a diffusion of the staining pattern into the full dentate region. Thus, in TMT-induced neurodegeneration, cyclin D1 is not expressed in the vulnerable neurons but rather in neurons spared from degeneration. This expression pattern appears to not be linked to an increase in the cellular processes for proliferation as the majority of BrdU positive cells were present in the region of neuronal damage.  相似文献   

17.
Tricyclodecan-9-yl-xanthogenate (D609) inhibits phosphatidylcholine (PC)-phospholipase C (PLC) and/or sphingomyelin (SM) synthase (SMS). Inhibiting SMS can increase ceramide levels, which can inhibit cell proliferation. Here, we examined how individual inflammatory and glia cell proliferation is altered by D609. Treatment with 100-μM D609 significantly attenuated the proliferation of RAW 264.7 macrophages, N9 and BV-2 microglia, and DITNC(1) astrocytes, without affecting cell viability. D609 significantly inhibited BrdU incorporation in BV-2 microglia and caused accumulation of cells in G(1) phase with decreased number of cells in the S phase. D609 treatment for 2 h significantly increased ceramide levels in BV-2 microglia, which, following a media change, returned to control levels 22 h later. This suggests that the effect of D609 may be mediated, at least in part, through ceramide increase via SMS inhibition. Western blots demonstrated that 2-h treatment of BV-2 microglia with D609 increased expression of the cyclin-dependent kinase (Cdk) inhibitor p21 and down-regulated phospho-retinoblastoma (Rb), both of which returned to basal levels 22 h after removal of D609. Exogenous C8-ceramide also inhibited BV-2 microglia proliferation without loss of viability and decreased BrdU incorporation, supporting the involvement of ceramide in D609-mediated cell cycle arrest. Our current data suggest that D609 may offer benefit after stroke (Adibhatla and Hatcher, Mol Neurobiol 41:206-217, 2010) through ceramide-mediated cell cycle arrest, thus restricting glial cell proliferation.  相似文献   

18.
研究小干扰RNA(small interfering RNA,siRNA)对乳腺癌MCF-7细胞株cyclin D1表达的抑制及对细胞增殖的影响。化学合成针对cyclin D1基因的siRNA,转染MCF-7细胞株;分别应用荧光定量PCR和免疫印迹测定cyclin D1 mRNA和蛋白的表达,CCK-8测定细胞的增殖活性,流式细胞仪检测细胞周期,软琼脂培养检测细胞克隆形成能力。在实验中,10、50、100 nmol/L siRNA-cyclin D1分别使MCF-7细胞cyclin D1 mRNA表达降低了57.85%、63.22%和68.02%,蛋白表达降低了51.13%、62.09%、77.68%。转染siRNA-cyclin D1后,细胞增殖受到抑制,细胞周期阻滞于G1期,软琼脂克隆形成率降低。结果提示siRNA可以有效抑制MCF-7细胞株中cyclin D1的表达,使细胞周期阻滞于G1期,从而抑制细胞增殖。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号