首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. We investigated the phylogeny and taxonomy of the Prenolepis genus‐group, a clade of ants we define within the subfamily Formicinae comprising the genera Euprenolepis, Nylanderia, gen. rev. , Paraparatrechina, gen. rev. & stat. nov. , Paratrechina, Prenolepis and Pseudolasius. We inferred a phylogeny of the Prenolepis genus‐group using DNA sequence data from five genes (CAD, EF1αF1, EF1αF2, wingless and COI) sampled from 50 taxa. Based on the results of this phylogeny the taxonomy of the Prenolepis genus‐group was re‐examined. Paratrechina (broad sense) species segregated into three distinct, robust clades. Paratrechina longicornis represents a distinct lineage, a result consistent with morphological evidence; because this is the type species for the genus, Paratrechina is redefined as a monotypic genus. Two formerly synonymized subgenera, Nylanderia and Paraparatrechina, are raised to generic status in order to provide names for the other two clades. The majority of taxa formerly placed in Paratrechina, 133 species and subspecies, are transferred to Nylanderia, and 28 species and subspecies are transferred to Paraparatrechina. In addition, two species are transferred from Pseudolasius to Paraparatrechina and one species of Pseudolasius is transferred to Nylanderia. A morphological diagnosis for the worker caste of all six genera is provided, with a discussion of the morphological characters used to define each genus. Two genera, Prenolepis and Pseudolasius, were not recovered as monophyletic by the molecular data, and the implications of this result are discussed. A worker‐based key to the genera of the Prenolepis genus‐group is provided.  相似文献   

2.
The genus Stenamma Westwood comprises a group of cryptic, cold tolerant ants that occur throughout the Holarctic and Middle American regions. Traditional approaches to taxonomy and phylogeny are confounded by multiple factors, including the conservative and often convergent morphology of workers and the rarity of reproductive castes in collections. Monophyly of Stenamma and relationships within the genus are uncertain as nearly all previous taxonomic work has been regional in scope. Furthermore, the sister group to Stenamma has not been well established. Here an extensive molecular dataset consisting of ten genes (~8 kb of data), 48 ingroup taxa (20 Nearctic, 6 Palaearctic and 22 Neotropical) and 8 outgroup taxa (6 closely related non‐Stenamma and 2 additional myrmicines) is used to investigate the broad‐scale phylogeny and evolutionary history of Stenamma. Phylogenetic analysis is performed under maximum likelihood and Bayesian frameworks on individual genes and several alternate concatenated datasets, which are used to investigate the effects of inclusion or exclusion of COI and intronic regions. The timing of Stenamma evolution is inferred in beast and ancestral areas are reconstructed using both the s‐diva and DEC methods, as implemented in the programs rasp and lagrange , respectively. Stenamma is revealed as monophyletic with high support and tentatively is sister to a group of New World species placed currently in Aphaenogaster Mayr and Messor Forel. Within Stenamma, two major clades are recovered: a ‘Holarctic clade’ (HOC) and a ‘Middle American clade’ (MAC). The HOC consists of the European S. striatulum Emery sister to two well‐supported groups, the informal ‘debile’ and ‘brevicorne’ clades. The ‘brevicorne’ clade is entirely Nearctic, whereas the ‘debile’ clade includes both Nearctic and Palaearctic representatives. The MAC occurs from the southern United States to northern South America and, with the exception of S. huachucanum Smith, is almost completely isolated geographically from the HOC. It includes a depauperate northern clade and the ‘MAC core’, which is a diverse assemblage of wet forest adapted species found throughout Central America. Divergence dating and biogeographic reconstruction show that Stenamma is most likely to have originated in the Nearctic at the Eocene–Oligocene boundary (~35 Ma) and diversified more rapidly at 16 and 8 Ma for the HOC and MAC, respectively. Potential environmental factors affecting the evolution of Stenamma include the intense global cooling of the late Eocene combined with aridification and mountain building. The phylogenetic results are discussed in relation to the current Stenamma species groups and several new morphological characters are presented to help in identification.  相似文献   

3.
Zhou, H., Fend, S. V., Gustafson, D. L., De Wit, P. & Erséus, C. (2010). Molecular phylogeny of Nearctic species of Rhynchelmis (Annelida). —Zoologica Scripta, 39, 378–393. The Nearctic species of Rhynchelmis (Clitellata, Lumbriculidae) are known primarily from cool‐water habitats in western North America. Their taxonomy has so far been based on limited collections from isolated localities, using intuitive assessment of morphological characters. This approach has proved unsatisfactory when additional populations of closely related species were sampled and scrutinized for incorporation in the present classification. Therefore, in this study, mitochondrial (cytochrome c oxidase subunit I and 16S rDNA) and nuclear internal transcriber spacer (ITS rDNA) genes were analysed as phylogenetic markers of Nearctic Rhynchelmis species. A combined approach with all the three gene regions provided a better resolution than any of the individual genes by itself. The genes demonstrated monophyly of all major groupings proposed on the morphological basis. Within the Rhynchelmis yakimorum complex, however, the genetic data and distribution suggested that two clades initially referred to as a ‘R. yakimorum variant 1’, one from the lower Snake River drainage in Idaho and one from southern coastal Oregon, might represent two separate species. On the other hand, the sympatric distribution and low genetic distance between Rhynchelmis gustafsoni and a form tentatively identified as ‘R. cf. yakimorum’ (both collected in eastern Idaho) indicated conspecific status. This study also showed that the cytochrome c oxidase subunit I (COI) gene, which may be informative of recent and on‐going speciation and useful for species discrimination (as a DNA barcode), is less suitable as a single molecular marker for phylogenetic inference. Regardless of whether one deals with very closely related species (such as those of the yakimorum complex), with taxa with a wide and disjunct distribution (such as Rhynchelmis rostrata), or with more distantly related species, COI data should be supplemented by other genetic markers as well as morphological and biogeographical information.  相似文献   

4.
Monomorium is a large and diverse ant genus with speciose radiations in both the Afrotropical and Australian regions. According to the most recent taxonomic revision, many Australian species are characterised by very broad distributions and variable morphology, which suggests that some species may be unrecognised species complexes. With a continent‐wide distribution and diverse yet overlapping morphology, M. rothsteini (Forel) is representative of the greater challenge that exists in Australian Monomorium systematics. Here we investigate species boundaries in M. rothsteini using a molecular phylogenetic framework to interpret the complex overlap of nine morphological characters (with 31 states) and examine biogeographic relationships among the lineages. Bayesian inference resolved 38 mtDNA lineages that were morphologically separable, at least from their sister lineage. Although the morphological characters were intermixed across the phylogeny, instances of inseparable morphology among sister clades was rare. Seventeen lineages exhibited complete morphological overlap with one or more other lineages and could not be separated by Principal Component Analysis based on 12 morphometric variables. Two‐thirds of all lineages occurred sympatrically with one or more both genetically and morphologically divergent lineages. The two nuclear markers EF1αF2 and wingless were used to generate haplotype networks which were characterised by a star‐like pattern indicative of a rapid and recent radiation. Several haplotypes for both nuclear gene regions were shared among individuals occurring in separate mtDNA clades which we were also unable to distinguish morphologically or that were occurring in sympatry, indicating possible introgression in both the mtDNA and nuclear genomes. Clear biogeographic affinities among samples within a lineage were detected but there was no overall pattern in the biogeographic relationships among the lineages. We conclude that M. rothsteini is a large species complex that has undergone a complex evolutionary history following aridification of the Australian continent, and discuss the implications of this conclusion for the systematics of Australian Monomorium more generally.  相似文献   

5.
A phylogeny of the 37 known species and subspecies of the micropterous snow fly genus Chionea Dalman is presented using adult morphological characters. The genus contains two major clades: a strictly Palaearctic clade, and a combined Nearctic‐Palaearctic clade with representatives in the Nearctic and Western Palaearctic regions. As there is little congruence between the recovered phylogeny of Chionea and the currently used subgeneric division in Chionea s.s. and Sphaeconophilus Becker, we propose to abandon the use of subgeneric taxa in Chionea. A strictly morphological analysis appears to be insufficient to fully resolve the phylogeny of the genus at the species level, and future molecular work should provide additional evidence for the establishment of relationships among the members of Chionea. The large‐scale historical biogeography of Chionea was analysed using dispersal‐vicariance analysis. The initial distribution area of the genus probably extended in the Eastern Palaearctic, and the Nearctic and the origin of Chionea could be dated in the Late Cretaceous. The various dispersal and vicariance events that led to the major speciation events in the genus are set against major paleogeographic developments. The ancestor of the Western Palaearctic group in the second major clade originated from the Nearctic. The presence of the cold‐adapted Chionea in currently temperate to warm climatic zones in the southern parts of its distribution was analysed using ecological niche modelling. It appears that prolonged periods of climate cooling, as occurred during the Last Glacial Maximum, enabled Chionea to cover large parts of central and southern Europe and reach the southern distribution areas where the genus is present today. A similar biogeographic pattern was less evident in the Nearctic region.  相似文献   

6.
Phylogenetic analysis of the genus Euscorpius (Scorpiones: Euscorpiidae) across the Mediterranean region (86 specimens, 77 localities, four DNA markers: 16S rDNA, COI, COII, and ITS1), focusing on Greek fauna, revealed high variation, deep clade divergences, many cryptic lineages, paraphyly at subgenus level, and sympatry of several new and formerly known lineages. Numerous specimens from mainland and insular Greece, undoubtedly the least studied region of the genus' distribution, have been included. The reconstructed phylogeny covers representative taxa and populations across the entire genus of Euscorpius. The deepest clades detected within Euscorpius correspond (partially) to its current subgeneric division, outlining subgenera Tetratrichobothrius and Alpiscorpius. The rest of the genus falls into several clades, including subgenus Polytrichobothrius and a paraphyletic subgenus Euscorpius s.s. Several cryptic lineages are recovered, especially on the islands. The inadequacy of the morphological characters used in the taxonomy of the genus to delineate species is discussed. Finally, the time frame of differentiation of Euscorpius in the study region is estimated and the distributional patterns of the lineages are contrasted with those of other highly diversified invertebrate genera occurring in the study region. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 728–748.  相似文献   

7.
This work is an assessment of the biogeographical, taxonomic, biological and phylogenetic knowledge of the poorly defined family Eriococcidae. The study of its geographical diversity shows the richness of the Palearctic fauna on which the present analysis focuses. The numerous systems dealing with the taxonomy of Eriococcidae are detailed, and the specific taxonomical status of the genus Eriococcus, which contains 155 out of the 175 known Palearctic species is reevaluated. The phylogeny of the palaearctic members of the scale insect family Eriococcidae is reconstructed, using 9 genera and 52 species. Three more scale insect species belonging to 3 families were used as outgroups. The cladistic analysis of 130 morphological characters of the adults resulted in 10 most parsimonious trees, placing Eriococcus buxi as the sister-group of all other sampled Eriococcidae. The genera Acanthococcus, Rhizococcus, Greenisca and Anophococcus appear as para- or polyphyletic, but the weakness of most of the clades does not allow to denounce strictly the monophyly of these genera. However, some clades are supported with high confidence, like (Kaweckia + Neokaweckia), (Anophococcus parvispinus(Anophococcus inermis+Greenisca placida) and (Gossyparia spuria+Acanthococcus aceris). Concerning host-plant relationships, the phylogeny supports an evolutionary scenario whereby the ancestor of the family Eriococcidae fed originally on woody plants, and more typically on leaves. The switch observed from Poaceae to other herbaceous plants is correlated to the switch from leaves as preferred site of nutrition to branches and stems. The supported scenario shows another switch, back from other herbs to Poaceae, associated to the choice of leaves as nutrition site.  相似文献   

8.
Although diurnal birds of prey have historically been placed in a single order due to a number of morphological characters, recent molecular phylogenies have suggested that this is a case of convergence rather than homology, with hawks (Accipitridae) and falcons (Falconidae) forming two distantly related groups within birds. The feather lice of birds have often been used as a model for comparing host and parasite phylogenies, and in some cases there is significant congruence between the two. Thus, studying the phylogeny of the lice of diurnal raptors may be of particular interest with respect to the independent evolution of hawks vs. falcons. Using one mitochondrial gene and three nuclear genes, we inferred a phylogeny for the feather louse genus Degeeriella (which are all obligate raptor ectoparasites) and related genera. This phylogeny indicated that Degeeriella is polyphyletic, with lice from falcons vs. hawks forming two distinct clades. Falcon lice were sister to lice from African woodpeckers, whereas Capraiella, a genus of lice from rollers lice, was embedded within Degeeriella from hawks. This phylogeny showed significant geographical structure, with host geography playing a larger role than host taxonomy in explaining louse phylogeny, particularly within clades of closely related lice. However, the louse phylogeny does reflect host phylogeny at a broad scale; for example, lice from the hawk genus Accipiter form a distinct clade. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 837–847.  相似文献   

9.
Analysis of an invasive species' niche shift between native and introduced ranges, along with potential distribution maps, can provide valuable information about its invasive potential. The tawny crazy ant, Nylanderia fulva, is a rapidly emerging and economically important invasive species in the southern United States. It is originally from east‐central South America and has also invaded Colombia and the Caribbean Islands. Our objectives were to generate a global potential distribution map for N. fulva, identify important climatic drivers associated with its current distribution, and test whether N. fulva's realized climatic niche has shifted across its invasive range. We used MaxEnt niche model to map the potential distribution of N. fulva using its native and invaded range occurrences and climatic variables. We used principal component analysis methods for investigating potential shifts in the realized climatic niche of N. fulva during invasion. We found strong evidence for a shift in the realized climatic niche of N. fulva across its invasive range. Our models predicted potentially suitable habitat for N. fulva in the United States and other parts of the world. Our analyses suggest that the majority of observed occurrences of N. fulva in the United States represent stabilizing populations. Mean diurnal range in temperature, degree days at ≥10°C, and precipitation of driest quarter were the most important variables associated with N. fulva distribution. The climatic niche expansion demonstrated in our study may suggest significant plasticity in the ability of N. fulva to survive in areas with diverse temperature ranges shown by its tolerance for environmental conditions in the southern United States, Caribbean Islands, and Colombia. The risk maps produced in this study can be useful in preventing N. fulva's future spread, and in managing and monitoring currently infested areas.  相似文献   

10.
Heterotermes Froggatt is a subterranean termite genus consisting of 30 living described species worldwide, with nine occurring in the New World. Herein we provide a molecular phylogeny, using both mitochondrial and nuclear markers, of all New World species of Heterotermes, including biogeographical analysis, and describe a new species from Paraguay and Bolivia, based on morphological and molecular evidence. Our analysis recovered the New World species as paraphyletic to a monophyletic Australian clade. Within this New World + Australian clade, two monophyletic major groups were formed c. 28 Ma: the aureus- and tenuis-groups. The aureus-group has a disjunct and broad distribution consisting of two clades. The first clade extends into the Nearctic region and a second is composed of a branch in the Caatinga and Cerrado biomes (H. sulcatus Mathews) and a branch in the Chacoan biome (a new species, Heterotermes lauralinearum Carrijo sp.n. ). The tenuis-group is composed of four broadly distributed Neotropical species and the Australian clade. A single dispersion event from South America to Australia probably occurred between 13 and 24 Ma. Heterotermes crinitus Emerson was the first to diverge, being sister group of all other species in the tenuis-group, followed by Heterotermes assu Constantino. An analysis of the historical biogeography of Heterotermes suggests that jump dispersal was the most important cladogenetic process for the genus. This study is the most comprehensive phylogeny of Heterotermes and contributes to the understanding of termite evolution and geographic distribution in the New World, complementing recent studies focused on worldwide patterns. This published work has been registered on Zoobank, http://zoobank.org/urn:lsid:zoobank.org:pub:8951A29B-8B69-4CD5-B9DF-2C70D4628D97 .  相似文献   

11.
Among the questions surrounding the biogeographical history of the Chilean biota, none has gathered more interest than the origin of the Fray Jorge (FJ) forest relict and its biota. Inserted in a semi‐desert area, this forest enclave exists due to the existence of a very particular microclimate in this region. The age of the disjunction and the historical relationship between the FJ biota with the remaining components of South America are explained by two distinct, competing hypotheses: the first suggests that it would have become isolated during the climatic changes of the Paleogene/Neogene, while the second suggests that the isolation is a product of Quaternary glaciations. To discriminate between these competing hypotheses, we used DNA sequence phylogeny methods and molecular genetic dating to the study of a genus of land snails (Plectostylus) that occurs in the FJ relict and throughout Chile. The phylogeny shows a clear distinction between forest and arid clades, and each of these clades is formed by many geographically circumscribed populations. The FJ fragment snails form a clade that is sister to all other forest clades. The separation between the Fray Jorge clade and the other forest clades dates back to the Paleogene/Neogene. Our data suggest that the FJ forest is a relict from the forests that occupied that landscape during the Paleogene/Neogene and retreated due to the aridification of the region. We also observe that the current taxonomy of the Plectostylus genus must be re‐evaluated.  相似文献   

12.
The bean goose Anser fabalis and the pink-footed goose A. brachyrhynchus breed in the tundra and taiga zones of Eurasia and eastern Greenland, and the taxonomy of the group based on morphology has been controversial. We investigated the phylogenetic relationships within the bean goose–the pink-footed goose complex using mitochondrial control region sequences of 199 individuals collected from the breeding areas in the Palaearctic and Eastern Nearctic. We found three mitochondrial clades geographically distributed to (1) Greenland, Iceland and Svalbard (A. brachyrhynchus), (2) the eastern taiga zone (former subspecies A. fabalis middendorffii), and (3) the western taiga and the tundra zone (subspecies A. fabalis rossicus, serrirostris and fabalis). MtDNA phylogeny suggests that morphological affinities between the taxa, e.g. in the bill structure, result from convergent evolution due to adaptation to similar habitats. Although a latitudinal cline in morphology was observed, clear phylogenetic discontinuities exist in the taiga and tundra zones supporting a species status for brachyrhynchus and middendorffii.  相似文献   

13.
Aim Boreal forest bird species appear to be divided into lineages endemic to each northern continent, in contrast to Holarctic species living in open habitats. For example, the three-toed woodpecker (Picoides tridactylus) and the winter wren (Troglodytes troglodytes) have divergent Nearctic and Palaearctic mitochondrial DNA clades. Furthermore, in these species, the next closest relative of the Nearctic/Palaearctic sister lineages is the Nearctic clade, suggesting that the Palaearctic may have been colonized from the Nearctic. The aim of this study is to test this pattern of intercontinental divergence and colonization in another Holarctic boreal forest resident – the pine grosbeak (Pinicola enucleator). Location The Holarctic. Methods We sequenced the mitochondrial ND2 gene and Z-specific intron 9 of the ACO1 gene for 74 pine grosbeaks collected across the Holarctic. The sequences were used to reconstruct the phylogeographical history of this species using maximum likelihood analysis. Results We discovered two distinct mitochondrial and Z-specific lineages in the Nearctic and one in the Palaearctic. The two Nearctic mtDNA lineages, one in the northern boreal forest and one in south-western mountain forest, were more closely related to each other than either was to the Palaearctic clade. Two Nearctic Z-chromosome clades were sympatric in the boreal and south-western mountain forests. Unlike the topology of the mtDNA tree, the relationship among the Z-chromosome clades was the same as in the three-toed woodpecker and winter wren [Nearctic (Nearctic, Palaearctic)]. The Palaearctic Z-chromosome clade had much lower genetic diversity and a single-peak mismatch distribution with a mean < 25% of that for either Nearctic region, both of which had ragged mismatch distributions. Main conclusions Our data suggest that, similar to the other boreal forest species, the pine grosbeak has divergent lineages in each northern continent and could have colonized the Palaearctic from the Nearctic. Compared with many Holarctic birds inhabiting open habitats, boreal forest species appear to be more differentiated, possibly because the boreal forests of the Nearctic and Palaearctic have been isolated since the Pliocene (3.5 Ma).  相似文献   

14.
Rock-dwelling gastropods are usually patchily distributed in limestone habitats, presumably have low active and passive dispersal ability and often represent narrow-ranged endemic taxa. Their current taxonomy is predominantly shell morphology based, and it remains unknown whether the morphologically differentiated and geographically separated populations represent phylogenetic clades. In this study, we analysed the hyperdiverse, terrestrial door snail genus Montenegrina. Based on the current taxonomy defined by shell morphology, it contains 29 species and 106 subspecies distributed in the Balkan region. The constructed phylogenetic tree using three mitochondrial markers was used to test whether it agrees with the current taxonomy. In this comprehensive tree, about half of the species and subspecies are monophyletic. Some of the paraphylies could be reasonably resolved by taxonomic changes; that is, some subspecies should be reassigned or raised to species level. Other incongruencies probably arose due to introgression even between distant clades. The histone genes turned out to be unsuitable for elucidating the phylogeny of Montenegrina. In the species-delimitation tests, considerably more molecular operational taxonomic units were delimited than the number of presently described species. The present data indicate that (a) shell morphology-based taxonomy and taxon recognition can be problematic in such a large and morphologically highly variable genus; (b) the potential error due to incomplete sampling presents a problem in a genus as variable as Montenegrina; (c) multi-locus analyses should be conducted to arrive at a better basis for species delimitation; and (d) integrative approaches including genetic as well as morphological/anatomical data from a comprehensive geographic sample are necessary.  相似文献   

15.
The first dated phylogeny of the weevil subfamily Cryptorhynchinae is presented within a framework of Curculionoidea. The inferred pattern and timing of weevil family relationships are generally congruent with previous studies, but our data are the first to suggest a highly supported sister-group relationship between Attelabidae and Belidae. Our biogeographical inferences suggest that Cryptorhynchinae s.s. originated in the Late Cretaceous (c. 86 Ma) in South America. Within the ‘Acalles group’ and the ‘Cryptorhynchus group’, several independent dispersal events to the Western Palaearctic via the Nearctic occurred in the Late Cretaceous and Early Paleogene. A second southern route via Antarctica may have facilitated the colonization of Australia in the Late Cretaceous (c. 82 Ma), where a diverse Indo-Australian clade probably emerged c. 73 Ma. In the Early Eocene (c. 50–55 Ma), several clades independently dispersed from Australia to proto-New Guinea, i.e. the tribe Arachnopodini s.l., the ‘Rhynchodes group’ and the genus Trigonopterus. New Zealand was first colonized in the Late Palaeocene (c. 60 Ma). Divergence time estimations and biogeographical reconstructions indicate that the colonization of New Guinea is older than expected from current geological reconstructions of the region.  相似文献   

16.
Ants that resemble Camponotus maculatus (Fabricius, 1782) present an opportunity to test the hypothesis that the origin of the Pacific island fauna was primarily New Guinea, the Philippines, and the Indo‐Malay archipelago (collectively known as Malesia). We sequenced two mitochondrial and four nuclear markers from 146 specimens from Pacific islands, Australia, and Malesia. We also added 211 specimens representing a larger worldwide sample and performed a series of phylogenetic analyses and ancestral area reconstructions. Results indicate that the Pacific members of this group comprise several robust clades that have distinctly different biogeographical histories, and they suggest an important role for Australia as a source of Pacific colonizations. Malesian areas were recovered mostly in derived positions, and one lineage appears to be Neotropical. Phylogenetic hypotheses indicate that the orange, pan‐Pacific form commonly identified as C. chloroticus Emery 1897 actually consists of two distantly related lineages. Also, the lineage on Hawai?i, which has been called C. variegatus (Smith, 1858), appears to be closely related to C. tortuganus Emery, 1895 in Florida and other lineages in the New World. In Micronesia and Polynesia the C. chloroticus‐like species support predictions of the taxon‐cycle hypothesis and could be candidates for human‐mediated dispersal.  相似文献   

17.
A recently introduced, ecologically dominant, exotic ant species, Nylanderia fulva, is invading the Southeastern United States and Texas. We evaluate how this invader impacts diversity and abundance of co-occurring ants and other arthropods in two grasslands. N. fulva rapidly attains densities up to 2 orders of magnitude greater than the combined abundance of all other ants. Overall ant biomass increases in invaded habitat, indicating that N. fulva exploits resources not fully utilized by the local ant assemblage. At high density, as N. fulva spreads, it eliminates the current ecologically dominant invasive ant, red imported fire ants (Solenopsis invicta). Compared to imported fire ant dominated habitat, N. fulva invasion zones have lower non-ant arthropod species richness and abundance with impacts differing by trophic category. Further, N. fulva reduces abundance and species richness of the remainder of the ant assemblage and does so in a non-random manner: impacting species with small sized workers much less than species with larger workers. In these and other ant assemblages with a large exotic component, the exotics tend to be small bodied species. As a result, N. fulva almost completely eliminates regionally distributed species, but leaves globally distributed species largely unaffected, thereby systematically favoring introduced over native diversity. S. invicta impacts wildlife and arthropod assemblage structure and is nearly ubiquitous in non-forested habitats of the Southeastern United States and Texas. Its displacement by N. fulva has critical implications for the natural systems of this region.  相似文献   

18.
The Small Five-toed Jerboa, Allactaga elater, is a small rodent adapted to desert and semi-arid habitats with a widespread distribution around the Caucasus. Previous studies have suggested the occurrence of subspecific variation within the species but, except for a recent phylogeny of the genus Allactaga, most of the work done on the taxonomy of the group relies on morphological data only. To contribute to the current understanding of patterns of genetic diversity of A. elater we analysed one mitochondrial locus, cytochrome b, from 13 Iranian specimens. Comparing to a recent phylogeny, our results suggest the existence of two additional mitochondrial lineages, one that clusters within previously described lineages and a new and highly divergent one. The two novel mitochondrial lineages occur in the north and form two highly divergent monophyletic groups (Dxy = 14%), which likely separated during the Pleistocene.  相似文献   

19.
The historical biogeography of the southern group of Moxostoma Rafinesque, 1820, a genus of Nearctic freshwater fishes belonging to the Catostomidae, along its entire distribution in North America was inferred to: (1) determine the biogeographical events responsible for its current pattern of diversity and distribution; (2) correlate the climatic and geologic history of the region with the biogeographical pattern observed; and (3) trace the colonization route into central Mexico and the western Pacific slope drainages. The sequences of mitochondrial cytochrome b and the third intron of the growth hormone were obtained for the members of the southern group and related species of the Catostomidae. Phylogenetic analyses and relaxed molecular clock analyses were performed to determine the relatedness of the species and to estimate divergence times. To uncover biogeographical patterns, a dispersal–extinction–cladogenesis (DEC) analysis was conducted. The phylogenetic analyses were consistent with the historical hydrographic scenario in the region. The divergence times show that the southern group evolved during the Pliocene–Pleistocene. The DEC analyses showed that vicariance and dispersal played an important role in the current distribution patterns of the lineages in central Mexico, and allow us to trace an independent route of colonization from the northern areas of North America into central Mexico.  相似文献   

20.
Scytalopus and the recently erected Eleoscytalopus are among the Neotropical groups of birds whose taxonomy is most difficult to resolve given their very conservative morphology. We investigated the phylogeny and species limits of Eleoscytalopus and the eastern Scytalopus using two mitochondrial genes and two nuclear introns of multiple individuals from all species of these groups. The eastern Scytalopus are separated in three well defined clades also supported by morphological or vocal characteristics, although the relationships between these clades could not be resolved. We found several allopatric and very divergent lineages in these genera whose characteristics are consistent with species-level divergence, especially in S. speluncae. The great divergence between E. psychopompus and its sister species supports the former as a valid species. Our results corroborate the importance of the Bahia refuge as an avian center of endemism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号