首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased lipid peroxidation, enhanced nuclear factor kappa-B (NF-kappaB) activation and augmented tumor necrosis factor-alpha (TNF-alpha) production have been implicated in cerulein-induced pancreatitis. We investigated whether lipid peroxidation inhibition might reduce NF-kappaB activation and the inflammatory response in cerulein-induced pancreatitis. Male Sprague-Dawley rats of 230-250g body weight received administration of cerulein (80 microg/kg s.c. for each of four injections at hourly intervals). A control group received four s.c. injections of 0.9% saline at hourly intervals. Animals were randomized to receive either raxofelast, an inhibitor of lipid peroxidation (20 mg/kg i.p. administered with the first cerulein injection) or its vehicle (1 ml/kg of a 10% DMSO/NaCl solution). All these rats were sacrificed 2 h after the last injection of either cerulein or its vehicle. Raxofelast administration (20 mg/kg i.p. with the first cerulein) significantly reduced malondialdehyde (MDA) levels, an index of lipid peroxidation (CER + DMSO = 3.075 +/- 0.54 micromol/g; CER + raxofelast = 0.693 +/- 0.18 micromol/g; p < 0.001), decreased myeloperoxidase (MPO) activity (CER + DMSO = 22.2 +/- 3.54 mU/g; CER + raxofelast = 9.07 +/- 2.05 mU/g, p < 0.01), increased glutathione levels (GSH) (CER + DMSO = 5.21 +/- 1.79 micromol/g; CER + raxofelast = 15.71 +/- 2.14 micronol/g; p < 0.001), and reduced acinar cell damage evaluated by means of histology and serum levels of both amylase (CER + DMSO = 4063 +/- 707.9 U/l; CER + raxofelast = 1198 +/- 214.4 U/l; p < 0.001), and lipase (CER + DMSO = 1654 +/- 330 U/l; CER + raxofelast = 386 +/- 118.2 U/l; p < 0.001), Furthermore, raxofelast reduced pancreatic NF-kappaB activation and the TNF-alpha mRNA levels and tissue content of mature protein in the pancreas. Indeed, lipid peroxidation inhibition might be considered a potential therapeutic approach to prevent the severe damage in acute pancreatitis.  相似文献   

2.
The protein tyrosine phosphatases (PTPs) SHP-1, SHP-2 and PTP1B are overexpressed early on during the development of cerulein -induced acute pancreatitis (AP) in rats, and their levels can be modulated by some species of mitogen-activated protein kinases (MAPKs), the intracellular levels of cAMP and by general leukocyte infiltration, the latter at least for SHP-2 and PTP1B. In this study we show that cerulein treatment activates extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) but not p38 MAPK during the early phase of cerulein-induced AP (2 h after the first injection of cerulein). Therefore, by using the MAPK inhibitors SP600125 (a specific JNK inhibitor) and PD98059 (a specific ERK inhibitor), we have unmasked the particular MAPK that underlies the modulation of the expression levels of these PTPs. JNK would act by preventing SHP-1 protein expression from increasing beyond a certain level. ERK 1/2 was the main MAPK involved in the increase in SHP-2 protein expression due to cerulein. JNK negatively modulated the SH2-domain containing PTPs. Both MAPKs played a role in the increase in PTP1B protein expression due to cerulein. Finally, by using the white blood cell inhibitors vinblastine sulfate, gadolinium chloride and FK506 (tacrolimus), we show that the macrophage activity or T-lymphocytes does not modulate the expression of any of the PTPs, although neutrophil infiltration was found to be a regulator of SHP-2 and PTP1B protein expression due to cerulein.  相似文献   

3.
4.
Interleukin-1beta (IL-1beta) has been shown to induce the expression of intercellular adhesion molecule-1 (ICAM-1) on airway epithelial cells and contributes to inflammatory responses. However, the mechanisms regulating ICAM-1 expression by IL-1beta in human A549 cells was not completely understood. Here, the roles of mitogen-activated protein kinases (MAPKs) and NF-kappaB pathways for IL-1beta-induced ICAM-1 expression were investigated in A549 cells. IL-1beta induced expression of ICAM-1 protein and mRNA in a time- and concentration-dependent manner. The IL-1beta induction of ICAM-1 mRNA and protein were partially inhibited by U0126 and PD98059 (specific inhibitors of MEK1/2) and SP600125 [a specific inhibitor of c-Jun-N-terminal kinase (JNK)]. U0126 was more potent than other inhibitors to attenuate IL-1beta-induced ICAM-1 expression. Consistently, IL-1beta stimulated phosphorylation of p42/p44 MAPK and JNK which was attenuated by pretreatment with U0126 or SP600125, respectively. Moreover, transfection with dominant negative mutants of MEK1/2 (MEK K97R) or ERK2 (ERK2 K52R) also attenuated IL-1beta-induced ICAM-1 expression. The combination of PD98059 and SP600125 displayed an additive effect on IL-1beta-induced ICAM-1 gene expression. IL-1beta-induced ICAM-1 expression was almost completely blocked by a specific NF-kappaB inhibitor helenalin. Consistently, IL-1beta stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha which was blocked by helenalin, U0126, or SP600125. Taken together, these results suggest that activation of p42/p44 MAPK and JNK cascades, at least in part, mediated through NF-kappaB pathway is essential for IL-1beta-induced ICAM-1 gene expression in A549 cells. These results provide new insight into the mechanisms of IL-1beta action that cytokines may promote inflammatory responses in the airway disease.  相似文献   

5.
6.
Treatment with 1-4 microM As(2)O(3) slightly induced apoptosis in U-937 human promonocitic leukemia cells. This effect was potentiated by co-treatment with MEK/ERK (PD98059, U0126) and JNK (SP600125, AS601245) inhibitors, but not with p38 (SB203580, SB220025) inhibitors. However, no potentiation was obtained using lonidamine, doxorubicin, or cisplatin instead of As(2)O(3). Apoptosis potentiation by mitogen-activated protein kinase (MAPK) inhibitors involved both the intrinsic and extrinsic executionary pathways, as demonstrated by Bax activation and cytochrome c release from mitochondria, and by caspase-8 activation and Bid cleavage, respectively; and the activation of both pathways was prevented by Bcl-2 over-expression. Treatment with MEK/ERK and JNK inhibitors, but not with p38 inhibitors, caused intracellular glutathione (GSH) depletion, which was differentially regulated. Thus, while it was prevented by N-acetyl-L-cysteine (NAC) in the case of U0126, it behaved as a NAC-insensitive process, regulated at the level of DL-buthionine-(S,R)-sulfoximine (BSO)-sensitive enzyme activity, in the case of SP600125. The MEK/ERK inhibitor also potentiated apoptosis and decreased GSH content in As(2)O(3)-treated NB4 human acute promyelocytic leukemia (APL) cells, but none of these effects were produced by the JNK inhibitor. MEK/ERK and JNK inhibitors did not apparently affect As(2)O(3) transport activity, as measured by intracellular arsenic accumulation. SP600126 greatly induced reactive oxygen species (ROS) accumulation, while BSO and U0126 had little or null effects. These results, which indicate that glutathione is a target of MAP kinases in myeloid leukemia cells, might be exploited to improve the antitumor properties of As(2)O(3), and provide a rationale for the use of kinase inhibitors as therapeutic agents.  相似文献   

7.
Platelet-derived growth factor (PDGF) is a critical regulator of proliferation and migration for mesenchymal type cells. In this study, we examined the role of mitogen-activated protein (MAP) kinases in the PDGF-BB-induced proliferation and migration of human adipose tissue-derived mesenchymal stem cells (hATSCs). The PDGF-induced proliferation was prevented by a pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor, SP600125. However, it was not prevented by a pretreatment with a p38 MAP kinase inhibitor, SB202190, and a specific inhibitor of the upstream kinase of extracellular signal-regulated kinase (ERK1/2), U0126. Treatment with PDGF induced the activation of JNK and ERK in hATSCs, and pretreatment with SP600125 specifically inhibited the PDGF-induced activation of JNK. Treatment with PDGF induced the cell cycle transition from the G0/G1 phase to the S phase, the elevated expression of cyclin D1, and the phosphorylation of Rb, which were prevented by a pretreatment with SP600125. In addition, the PDGF-induced migration of hATSCs was completely blocked by a pretreatment with SP600125, but not with U0126 and SB202190. These results suggest that JNK protein kinase plays a key role in the PDGF-induced proliferation and migration of mesenchymal stem cells.  相似文献   

8.
9.
Increased lipid peroxidation, enhanced nuclear factor kappa-B (NF- &#115 B) activation and augmented tumor necrosis factor- &#102 (TNF- &#102 ) production have been implicated in cerulein-induced pancreatitis. We investigated whether lipid peroxidation inhibition might reduce NF- &#115 B activation and the inflammatory response in cerulein-induced pancreatitis. Male Sprague-Dawley rats of 230-250 g body weight received administration of cerulein (80 &#119 g/kg s.c. for each of four injections at hourly intervals). A control group received four s.c. injections of 0.9% saline at hourly intervals. Animals were randomized to receive either raxofelast, an inhibitor of lipid peroxidation (20 mg/kg i.p. administered with the first cerulein injection) or its vehicle (1 ml/kg of a 10% DMSO/NaCl solution). All these rats were sacrificed 2 h after the last injection of either cerulein or its vehicle. Raxofelast administration (20 mg/kg i.p. with the first cerulein) significantly reduced malondialdehyde (MDA) levels, an index of lipid peroxidation (CER+DMSO=3.075 &#45 0.54 &#119 mol/g; CER+raxofelast= 0.693 &#45 0.18 &#119 mol/g; p <0.001 ), decreased myeloperoxidase (MPO) activity ( CER+DMSO=22.2 &#45 3.54 mU/g; CER+raxofelast=9.07 &#45 2.05 mU/g; p <0.01 ), increased glutathione levels (GSH) (CER+DMSO= 5.21 &#45 1.79 &#119 mol/g; CER+raxofelast=15.71 &#45 2.14 &#119 mol/g; p <0.001 ), and reduced acinar cell damage evaluated by means of histology and serum levels of both amylase ( CER+DMSO=4063 &#45 707.9 U/l; CER+raxofelast=1198 &#45 214.4 U/l; p <0.001 ), and lipase (CER+DMSO=1654 &#45 330 U/l; CER+raxofelast= 386 &#45 118.2 U/l; p <0.001 ), Furthermore, raxofelast reduced pancreatic NF- &#115 B activation and the TNF- &#102 mRNA levels and tissue content of mature protein in the pancreas. Indeed, lipid peroxidation inhibition might be considered a potential therapeutic approach to prevent the severe damage in acute pancreatitis.  相似文献   

10.
目的:研究L-精氨酸和雨蛙素分别诱导SD大鼠急性胰腺炎(AP)模型的差异,为进一步研究急性胰腺炎提供可靠模型。方法:L-精氨酸采用3次腹腔注射,间隔1 h,雨蛙素采用7次腹腔注射,间隔1 h诱导急性胰腺炎模型。碘-淀粉比色法检测血清淀粉酶水平,血清脂肪酶测定试剂盒检测脂肪酶活性,胰腺组织切片观察组织的破坏情况,TUNEL法检测腺泡细胞凋亡。结果:①L-精氨酸诱导的大鼠模型血清淀粉酶和脂肪酶水平在诱导成功后6 h即显著升高,蛙皮素诱导的大鼠模型在12 h显著升高,与正常对照组比较均有统计学差异(P<0.05),提示急性胰腺炎建模成功。②L-精氨酸诱导的模型中胰腺组织结构破坏,有大片出血坏死灶、大量炎细胞浸润;而蛙皮素诱导的模型组织腺泡、间质水肿,炎性细胞浸润,少量散在出血坏死灶,血管变化常不明显,渗液清亮。结论:L-精氨酸和雨蛙素均能诱导SD大鼠急性胰腺炎模型,L-精氨酸诱导重症急性胰腺炎,雨蛙素诱导轻型急性胰腺炎,是研究急性胰腺炎的良好模型。  相似文献   

11.
During acute pancreatitis, protease-activated receptor 2 (PAR2) can be activated by interstitially released trypsin. In the mild form of pancreatitis, PAR2 activation exerts local protection against intrapancreatic damage, whereas, in the severe form of pancreatitis, PAR2 activation mediates some systemic complications. This study aimed to identify the molecular mechanisms of PAR2-mediated protective effects against intrapancreatic damage. A mild form of acute pancreatitis was induced by an intraperitoneal injection of caerulein (40 microg/kg) in rats. Effects of PAR2 activation on intrapancreatic damage and on mitogen-activated protein (MAP) kinase signaling were assessed. Caerulein treatment activated extracellular signal-regulated kinase (ERK) and c-Jun NH(2)-terminal kinase (JNK) within 15 min and maintained phosphorylation of ERK and JNK for 2 h in the rat pancreas. Although PAR2 activation by the pretreatment with PAR2-activating peptide (AP) itself increased ERK phosphorylation in rat pancreas, the same treatment remarkably decreased caerulein-induced activation of ERK and JNK principally by accelerating their dephosphorylation. Inhibition of ERK and JNK phosphorylation by the pretreatment with MAP/ERK kinase (MEK) or JNK inhibitors decreased caerulein-induced pancreatic damage that was similar to the effect induced by PAR2-AP. Notably, in caerulein-treated rats, PAR2-AP cotreatment highly increased the expression of a group of MAP kinase phosphatases (MKPs) that deactivate ERK and JNK. The above results imply that downregulation of MAP kinase signaling by MKP induction is a key mechanism involved in the protective effects of PAR2 activation on caerulein-induced intrapancreatic damage.  相似文献   

12.
Activation of nuclear factor kappaB (NF-kappaB) and caspases may greatly amplify inflammation and cell damage in addition to that directly exerted by free radicals. Since reactive oxygen species (ROS) are involved in acute pancreatitis, we studied whether the administration of chondroitin-4-sulphate (C4S), in addition to its antioxidant activity, was able to modulate NF-kappaB and caspase activation in an experimental model of caerulein-induced acute pancreatitis in mice. Hyperstimulating doses of caerulein (50 microg/ kg), five injections per mouse given at hourly intervals produced the following: high serum lipase and amylase activity; lipid peroxidation, evaluated by 8-isoprostane concentrations; loss of antioxidant defenses such as glutathione reductase (GR) activity; NF-kappaB activation and loss of cytoplasmic IkappaBalpha protein; increases in tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), caspase-3, and caspase-7 gene expression and their related protein; accumulation and activation of neutrophils in the damaged tissue, evaluated by elastase (ELA) determination; and pancreatic injury, evaluated by histologic analysis. Pretreatment of mice with different doses of C4S, given 1 hr before caerulein injections and 1 and 2 hrs after the last caerulein injection, reduced lipid peroxidation, inhibited NF-kappaB translocation and cytoplasmic IkappaBalpha protein loss, decreased TNF-alpha, IL-6, and caspase gene expression and their related protein levels, limited endogenous antioxidant depletion, and reduced tissue neutrophils accumulation and tissue damage. Since molecules with antioxidant activity can block NF-kappaB and apoptosis activation, we suggest that C4S administration is able to block NF-kappaB and caspase activation by reducing the oxidative burst.  相似文献   

13.
Fulminant hepatic failure (FHF) is a dramatic clinical syndrome characterized by massive hepatocyte apoptosis and very high mortality. The c-Jun-N-terminal kinase (JNK) pathway is an important stress-responsive kinase activated by several forms of liver injury. The aim of this study is to assess the role of JNK during D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced liver injury, an experimental model of FHF, using SP600125, a small molecule JNK-specific inhibitor. Mice were given an intraperitoneal dose of GalN (800 microg/g body weight)/LPS (100 ng/g body weight) with and without subcutaneous SP600125 (50 mg/kg body weight) treatment (at 6 and 2 h before and 2 h after GalN/LPS administration). GalN/LPS treatment induced sustained JNK activation. Administration of SP600125 diminished JNK activity, suppressed lethality and the elevation of both serum alanine aminotransferase and aspartate aminotransferase, but had no effect on serum tumor necrosis factor-alpha, and reduced hepatocyte apoptosis after GalN/LPS administration. In support of the role of JNK in promoting the mitochondria-mediated apoptosis pathway, SP600125 prevented cytochrome c release, caspase-9 and caspase-3 activity. Moreover, SP600125 downregulated the mRNA and protein expression of Bad in the early periods following GalN/LPS injection and prevented Bid cleavage in the late periods. These results confirm the role of JNK as a critical apoptotic mediator in GalN/LPS-induced FHF. SP600125 has the potential to protect FHF by downregulating Bad and inhibiting Bid cleavage.  相似文献   

14.
15.
Tumor necrosis factor-alpha (TNF-alpha) stimulates expression of endothelial cell (EC) genes that may promote atherosclerosis in part by an activation of mitogen-activated protein (MAP) kinases. Ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]-one), a selenoorganic compound, is effective for acute ischemic stroke; however, its effect on EC has not yet been elucidated. We examined the effect of ebselen on TNF-alpha-induced MAP kinase activation and adhesion molecule expression in cultured human umbilical vein endothelial cells (HUVEC). Extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 were rapidly and significantly activated by TNF-alpha in HUVEC. TNF-alpha-induced JNK activation was inhibited by ebselen, whereas ERK1/2 and p38 were not affected. Apoptosis signal-regulated kinase 1 (ASK1) was suggested to be involved in TNF-alpha-induced JNK activation because transfection of kinase-inactive ASK1 inhibited TNF-alpha-induced JNK activation. Ebselen inhibited TNF-alpha-induced TNF receptor-associated factor 2 (TRAF2)-ASK1 complex formation and phosphorylation of stress-activated protein kinase ERK kinase 1 (SEK1), which is an upstream signaling molecule of JNK. Finally, TNF-alpha-induced activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) activation and resultant intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions were inhibited by ebselen. Specific inhibitors for JNK and NF-kappaB also inhibited TNF-alpha-induced ICAM-1 and VCAM-1 expressions in HUVEC. These findings suggest that ebselen prevents TNF-alpha-induced EC activation through the inhibition of TRAF2-ASK1-SEK1 signaling pathway, which leads to JNK activation. Inhibition of JNK by ebselen may imply its usefulness for the prevention of atherosclerosis relevant to EC activation.  相似文献   

16.
Interleukin-6 (IL-6) exerts a wide spectrum of regulatory activities during immune and inflammatory responses. The aim of this study was to investigate the role of endogenous IL-6 in the inflammatory response associated with acute pancreatitis. Acute pancreatitis was induced by hourly (x5) i.p. injections of cerulein (50 microg/kg, suspended in saline solution) in IL-6 deficient mice (IL-6-KO) and wild-type (IL-6WT) littermates. IL-6KO mice exhibited a more severe tissue injury and a higher rate of mortality and when compared to IL-6WT mice. Acute pancreatitis was characterized by edema, neutrophil infiltration, tissue hemorrhage and cell necrosis, upregulation of P-selectin and intercellular adhesion molecule-1 (ICAM-1), as well as increases in the serum levels of amylase and lipase. The degree of oxidative and nitrosative tissue damage was significantly greater in IL-6KO mice than in wild-type littermates, as indicated by higher tissue levels of malondialdehyde and nitrosylated proteins. Plasma levels of the inflammatory cytokines tumour necrosis factor-alpha and interleukin-1beta were also greatly enhanced in IL-6KO mice when compared to wild-type mice. These events were correlated with an increase in the staining (immunoreactivity) for poly (ADP-ribose) polymerase (PARP) in the pancreas of cerulein-treated IL-6WT. The staining for PARP was more pronounced in IL-6KO mice subjected to acute pancreatitis than in the corresponding WT mice. These data demonstrate that endogenous IL-6 exerts an anti-inflammatory role during acute pancreatitis, possibly by regulating the expression of adhesion molecules, the subsequent adhesion and activation of neutrophils and finally the generation of cytokine and reactive oxygen or nitrogen species.  相似文献   

17.
Hepatocyte growth factor (HGF) influences several components of the angiogenic response, including endothelial cell migration. While recent studies indicate a crucial role of HGF in brain angiogenesis, the signaling pathways that regulate brain endothelial cell migration by HGF remain uncharacterized. Herein, we report that HGF stimulated human brain microvascular endothelial cell (HBMEC) migration in a dose- and time-dependent manner. Challenge of HBMECs with HGF activated the c-jun amino-terminal kinase (JNK), increased phosphorylation of the proline-rich tyrosine kinase 2 (Pyk-2) at Tyr(402) and activated c-Src. Inhibition of JNK by SP600125 or expression of a dominant negative JNK1 construct abrogated the migratory response of HBMECs to HGF. Treatment of HBMECs with the Src inhibitor PP2 markedly decreased HGF-stimulated JNK activation and migration to HGF. Moreover, expression of a mutant Pyk-2 construct prevented HGF-induced Pyk-2 phosphorylation at Tyr(402) and stimulation of HBMEC migration. Next, we examined activation of the extracellular signal regulated kinase (ERK) pathway. Stimulation of HBMECs by HGF led to rapid activation of ERK1/2, phosphorylation of Raf-1 at Ser(338) and Tyr(340/341) and MEK1/2 at Ser(222). Moreover, inhibition of ERK activation by UO126 and PD98059 markedly decreased HGF-stimulated HBMEC migration. HGF also activated AKT, while inhibition of AKT by LY294002 induced a modest decrease of HGF-induced HBMEC migration. These results highlight a model whereby JNK and ERK play a critical role in regulation of brain endothelial cell migration by HGF.  相似文献   

18.
Aquaporin-1 (AQP1) is a water channel that is induced by hypertonicity. The present study was undertaken to clarify the osmoregulation mechanism of AQP1 in renal medullary cells. In cultured mouse medullary (mIMCD-3) cells, AQP1 expression was significantly induced by hypertonic treatment with impermeable solutes, whereas urea had no effect on AQP1 expression. This result indicates the requirement of a hypertonic gradient. Hypertonicity activated ERK, p38 kinase, and JNK in mIMCD-3 cells. Furthermore, all three MAPKs were phosphorylated by the upstream activation of MEK1/2, MKK3/6, and MKK4, respectively. The treatments with MEK inhibitor U0126, p38 kinase inhibitor SB203580, and JNK inhibitor SP600125 significantly attenuated hypertonicity-induced AQP1 expression in mIMCD-3 cells. In addition, hypertonicity-induced AQP1 expression was significantly reduced by both the dominant-negative mutants of JNK1- and JNK2-expressing mIMCD-3 cells. NaCl-inducible activity of AQP1 promoter, which contains a hypertonicity response element, was attenuated in the presence of U0126, SB203580, and SP600125 in a dose-dependent manner and was also significantly reduced by the dominant-negative mutants of JNK1 and JNK2. These data demonstrate that the activation of ERK, p38 kinase, and JNK pathways and the hypertonicity response element in the AQP1 promoter are involved in hypertonicity-induced AQP1 expression in mIMCD-3 cells.  相似文献   

19.
Treatment of pancreatic acinar cells by hydrogen sulphide has been shown to induce apoptosis. However, a potential role of mitogen-activated protein kinases (MAPKs) in this apoptotic pathway remains unknown. The present study examined the role of MAPKs in H2S-induced apoptosis in mouse pancreatic acinar cells. Pancreatic acinar cells were treated with 10 μM NaHS (a donor of H2S) for 3 hrs. For the evaluation of the role of MAPKs, PD98059, SP600125 and SB203580 were used as MAPKs inhibitors for ERK1/2, JNK1/2 and p38 MAPK, respectively. We observed activation of ERK1/2, JNK1/2 and p38 when pancreatic acini were exposed to H2S. Moreover, H2S-induced ERK1/2, JNK1/2 and p38 activation were blocked by pre-treatment with their corresponding inhibitor in a dose-dependent manner. H2S-induced apoptosis led to an increase in caspase 3 activity and this activity was attenuated when caspase 3 inhibitor were used. Also, the cleavage of caspase 3 correlated with that of poly-(ADP-ribose)-polymerase (PARP) cleavage. H2S treatment induced the release of cytochrome c , smac from mitochondria into the cytoplasm, translocation of Bax into mitochondria and decreased the protein level of Bcl-2. Inhibition of ERK1/2 using PD98059 caused further enhancement of apoptosis as evidenced by annexin V staining, while SP600125 and SB203580 abrogated H2S-induced apoptosis. Taken together, the data suggest that activation of ERKs promotes cell survival, whereas activation of JNKs and p38 MAP kinase leads to H2S-induced apoptosis.  相似文献   

20.
To investigate whether the mitochondrial apoptotic pathway mediates myocardial cell injuries in rats under brain death (BD), and observe the effects and mechanisms of the c‐Jun N‐terminal kinase (JNK) inhibitor SP600125 on cell death in the heart. Forty healthy male Sprague‐Dawley (SD) rats were randomized into four groups: sham group (dural external catheter with no BD); BD group (maintain the induced BD state for 6 hrs); BD + SP600125 group (intraperitoneal injection of SP600125 10 mg/kg 1 hr before inducing BD, and maintain BD for 6 hrs); and BD + Dimethyl Sulphoxide (DMSO) group (intraperitoneal injection of DMSO 1 hr before inducing BD, and maintain BD for 6 hrs). Real‐time quantitative PCR was used to evaluate mRNA levels of Cyt‐c and caspase‐3. Western blot analysis was performed to examine the levels of mitochondrial apoptosis‐related proteins p‐JNK, Bcl‐2, Bax, Cyt‐c and Caspase‐3. TUNEL assay was employed to evaluate myocardial apoptosis. Compared with the sham group, the BD group exhibited increased mitochondrial apoptosis‐related gene expression, accompanied by the elevation of p‐JNK expression and myocardial apoptosis. As the vehicle control, DMSO had no treatment effects. The BD + SP600125 group had decreased p‐JNK expression, and reduced mitochondrial apoptosis‐related gene expression. Furthermore, the apoptosis rate of myocardial cells was reduced. The JNK inhibitor SP600125 could protect myocardial cells under BD through the inhibition of mitochondrial apoptosis‐related pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号