首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The administration of delta-9-tetrahydrocannabinol (delta 9-THC, 0.078-5.0 mg/kg, i.v.) to rats anesthetized with pentobarbital caused as much as a 50% decrease in mean arterial blood pressure, heart rate and respiratory rate in a dose-dependent manner. Delta-9(11)-tetrahydrocannabinol (delta 9(11)-THC) was approximately 8-fold less potent than delta 9-THC in its hypotensive effect and had smaller effects on heart and respiratory rates that were not dose-related at doses below 5 mg/kg. Alternate injections of epinephrine (2 micrograms/kg) with vehicle and increasing cannabinoid doses (1.25-5.0 mg/kg) indicated a potentiation of both the duration of the pressor effect and the magnitude of the reflex bradycardic effect of epinephrine by both delta 9- and delta 9(11)-THC. Epinephrine also produced arrhythmias in rats receiving cannabinoids, but not in rats receiving alternate injections of vehicle. It is concluded that both cannabinoids have adverse effects on the cardiovascular system and adverse interactions with epinephrine in rats anesthetized with pentobarbital.  相似文献   

2.
Female rats were injected intraperitoneally with 10 mg/kg of unlabelled delta-9-tetrahydrocannabinol (Δ9-THC) and their locomotor activity was recorded every 15 minutes for 12 hours. The maximum depressant effect was observed between the first and fourth hour and had completely disappeared by the eighth hour of treatment. In parallel experiments rats were injected with 10 mg/kg of 3H-delta-9-THC and decapitated either one, four or twelve hours later. The concentrations of unchanged delta-9-THC and metabolites in brain subcellular fractions were determined using thin layer chromatographic methods. There were no substantial differences in the relative specific activities of delta-9-THC or 11-OH-delta-9-THC between all fractions except cytosol, indicating no preferential site of accumulation. However, when the synaptosomal fraction was osmotically shocked, the concentration of delta-9-THC in nerve-ending membranes was markedly higher than that in vesicles or soluble fraction. Our results in vivo showed a marked decline, over twelve hours, in the relative specific activities of delta-9-THC and 11-OH-delta-9-THC with a concomitant increase in the concentration of highly polar, non-extractable metabolites in all subfractions. It is suggested that the diminution of the depressant effect on motor activity may be related to the formation of highly polar, pharmacologically inactive metabolites of delta-9-THC and/or 11-OH-delta-9-THC inside the brain which do not easily migrate out of the cells.  相似文献   

3.
The development of tolerance to delta-9-tetrahydrocannabinol (Δ-9-THC) was investigated by measuring respiration in brain tissue after acute or chronic administration. Mice were given either single or seven daily repeated intraperitoneal injections of 50 mg/Kg of delta-9-tetrahydrocannabinol (Δ-9-THC) or control vehicle. The final injection for all drug treated animals included radiolabeled 3H-Δ-9-THC. The mice were sacrificed at 1 hour, 2 hours, 4 hours, 24 hours, and 7 days after the final injection. Δ-9-THC depressed respiration, but after repeated injections was significantly less effective in this regard, indicating acquisition of tolerance to Δ-9-THC. Because the concentration of radiolabeled cannabinoids in brain tissue from each group is not appreciably different, a cellular as opposed to distributional mode of tolerance is suggested.  相似文献   

4.
Delta-9-tetrahydrocannabinol (THC) was administered by gastric intubation to pregnant rats to study the effects of dose-level and dosing regimen on plasma concentration in dams and fetuses. Two multiple-dose groups were administered either 15 or 50 mg/kg of delta-9-THC once daily during the last two weeks of gestation. Two acute groups were administered the same dose as above but only once on the last day of gestation. Sixty min after receiving the last dose all dams and their fetuses were sacrificed by decapitation, blood collected, centrifuged and plasma removed. Quantitative measurement of delta-9-THC in plasma was carried out using GS/MS. Among the dams, plasma concentrations covaried with dose and multiple dosing produced higher concentrations than acute, especially at the high dose. Among the fetuses, plasma concentrations were approximately 10% of those found in the dams. The fetuses from the high, multiple-dose dams similarly yielded significantly higher concentrations. These findings are discussed with respect to other studies of the placental transfer of delta-9-THC and effects of postnatal developmental.  相似文献   

5.
Marijuana (Cannabis sativa L.) was sampled at nine progressive growth stages in Riley County, Kansas, and analyzed for four major cannabinoids: cannabidiol (CBD), della-8-tetrahydrocannabinol (delta-8-THC), delta-9-tetrahydrocannabinol (delta-9-THC), and cannabinol (CBN). Seasonal fluctuation in cannabinoids were related to stage of plant development. Cannabinoids were lowest in seedlings, highest prior to flowering and at an intermediate level thereafter until physiological maturity. Cannabinoids were highest in flowers and progressively lower in leaves, petioles, stems, seeds, and roots. Cannabinoid content of male and female flowers was not significantly different. Cannabidiol occurred in the highest concentrations (0.01 to 0.94% of dry matter) in all plant parts; delta-9-THC, the next highest (0.0001 to 0.06%) in the study over time. Cannabidiol content of leaf tissue of plants sampled from ten locations at flowering, ranged from 0.12 to 1.7%; delta-9-THC, from 0.01 to 0.49%. Some variation was attributed to environmental factors. Results indicate transformation of CBD to delta-9-THC to CBN. Environmental stress apparently increased delta-9-THC concentration, and bivalent ions: Mg, Mn, and Fe of leaf tissue could have regulated enzyme systems responsible for cannabinoid synthesis.  相似文献   

6.
There is no shift of emission maximum (F470nm) of bovine serum albumin (BSA)-l-anilino-8-naphthatene sulphonic acid (ANS) complex in the pesence of delta-9-tetrahydrocannabinol (delta-9-THC) alone and cannabidiol (CBD) or cannabinol (CBN) in the presence and absence of delta-9-THC. Delta-9-THC (1.66–13.33 M) and CBD at higher concentrations (13.33–20.0 M) produce a concentration-dependent significant quenching of fluorescence of BSA-ANS complex, but CBN (l.66–20.0 M) as well as CBD at lower concentrations (1.66–6.66 M) fails to produce any significant change in Iluorescence intensity under similar conditions. Furthermore, neither CBD nor CBN is able to affect the delta-9-THC-induced quenching of fluorescence intensity of BSA-ANS complex. These results indicate that the binding of cannabinoids to the ANS binding sites of BSA molecule are in the order detta-9-THC > CBr3 > CBN, and CBD or CBN does not have any influence on the binding of delta-9-THC to BSA molecules under these conditions.  相似文献   

7.
Jean Costentin 《PSN》2004,2(2):14-23
Among all the drugs of abuse cannabis is the only one containing an active principle that can be stored in the body for several weeks, delta-9-Tetrahydrocannabinol (Δ9-THC). It induces both psychic and physical dependency, which are masked because the disappearance of Δ9-THC from plasma corresponds to its storage in lipids, especially in cerebral lipids. In the brain Δ9-THC mimics, in a non regulated, diffuse and intense manner, the neuromodulation which endocannabinoids (anandamide, 2-arachidonyl-glycerol, etc.) physiologically und subtly exert through the stimulation of specific receptors, the so-called CBl receptors. These receptors have an influence on a great variety of psychological functions. For instance, at the hippocampal level receptor reserve is high, and it allows the development of a maximal response even though only a low proportion of these receptors are stimulated. This occurs even for low doses of Δ9-THC. The desensitization / down regulation of these receptors has no functional consequences since they always remain numerous enough to ensure the function. Thus the Δ9-THC-induced cognitive disturbances persist as long as cannabis use persists. On other systems, without CBl receptor reserve, the long lasting use of Δ9-THC induces a desensitisation / down regulation of CBl receptors, leading to a tolerance to its effects.  相似文献   

8.
Administration of delta-9-tetrahydrocannabinol (delta 9-THC) to pro-oestrous rats (5 mg/kg and 10 mg/kg, i.p. for 10 days) decreased the hypothalamic LH-RH content. Serum prolactin levels were reduced but serum LH and FSH and pituitary hormone content were similar to values in dioestrous rats. It is suggested that delta 9-THC acts primarily on the hypothalamus.  相似文献   

9.
The anticonvulsant activity of cannabidiol and cannabinol   总被引:7,自引:0,他引:7  
R Karler  W Cely  S A Turkanis 《Life sciences》1973,13(11):1527-1531
The anticonvulsant activity of delta-9-tetrahydrocannabinol was compared with that of two other naturally occurring cannabinoids, cannabidiol and cannabinol, in a maximal electroshock test in mice. The drugs were administered as an emulsion of sesame seed oil, Tween 80 and saline to mice i.p. The results indicate that all three cannabinoids are effective anticonvulsants. The time for peak effect is about 2 hr. In terms of relative potencies, cannabidiol and delta-9-THC are similar but both of them are more active than cannabinol.  相似文献   

10.
It has been demonstrated that delta-9-THC does not affect the specific binding of 3H-IQNB, 3H-DAGO and 3H-dihydroalprenolol, decreases the level of specific binding 3H-LSD and 3H-spiperone, a 2-3-fold increase in the total and nonspecific binding being observed in this case, and also increases the microviscosity of the rat obtain membranes and disrupts lipid-protein interactions. Increasing the microviscosity of membranes by other method (lipid peroxidation) differently affects the binding of radioactively labeled ligands with the membranes from rat brain.  相似文献   

11.
Neutron diffraction measurements have been utilized to study the effects of delta 9-tetrahydrocannabinol (delta 9-THC) and delta 8-tetrahydrocannabinol (delta 8-THC) incorporated in phospholipid membranes of dipalmitoylphosphatidylcholine (DPPC). Low-angle diffraction indicated that these cannabinoids induce increases in interlamellar spacing similar to those produced by cholesterol. Wide-angle diffraction indicated significant differences in how the intralamellar structure is affected by the inclusion of either cannabinoids or cholesterol. Similar weight percentages of cholesterol and cannabinoids in membranes yielded different thermal analysis profiles but the profiles for membranes with either delta 8 or delta 9-THC were similar. Since the neutron diffraction results for inclusions of delta 8 and delta 9-THC were also similar, this suggests that the difference in psychoactivity of delta 8 and delta 9-THC is probably due to interactions with membrane proteins rather than with phospholipids.  相似文献   

12.
C-14-labeled delta-9-tetrahydrocannabinol (delta-9-THC) was administered in spiked cigarettes to nine experienced marijuana smokers. Blood samples obtained by repeated venipuncture showed that the subjects' subjective estimates of being “high” appeared to parallel the blood concentration of THC metabolites at least as closely as the blood concentration of THC itself. After 30 minutes, subjective effects declined less rapidly than either THC or its metabolites.Substantial inter-individual consistency in THC concentrations was found, suggesting that administration of THC in cigarettes under standardized smoking conditions can produce reliable blood concentrations of THC.A second session was run with the same subjects, this time omitting venipuncture, and using unlabeled THC. Significant differences between the effects of initial doses of THC under stress and no-stress conditions appeared in the detailed subjective effects inventories provided by subjects.  相似文献   

13.
Jean Costentin 《PSN》2004,2(3):20-28
After delta-9-tetrahydrocannabinol (Δ9-THC) has supported the anandamidergic tone, thereby increasing its anxiolytic and antidepressant effects, it loses its efficacy in this respect. Anxious and/or depressive troubles which could have prompted the abuse of cannabis then reappear more intensely. They peak when consumption is completely stopped. Cannabis consumption may contribute to polydrug abuse. Its association with tobacco makes it more difficult to give up both substances of abuse. Cannabis use encourages the consumption of alcohol and this association is especially deleterious as regards car accidents. Δ9-THC sensitises cannabis abusers to perceive the appetitive effects of heroin in a more acute manner. Cannabis consumption also makes withdrawal symptoms associated with heroin abuse more severe. Cannabis appears to be able to reveal schizophrenia in patients bearing a neurobiological vulnerability substratum to this disease. It seems especially appreciated by people suffering of negative symptoms of schizophrenia, which could prompt them to abuse cannabis, and then triggering the positive symptoms of the disease. These positive symptoms are particularly resistant to treatment with antipsychotic medication when cannabis abuse is continued. All this recent data necessitates extreme care with this drug of abuse, whose dangerous effects are becoming more and more known.  相似文献   

14.
Twenty male Sprague-Dawley rats were trained to discriminate 3.0 mg/kg delta-9-tetrahydrocannabinol (THC) from its vehicle. Following acquisition of this discrimination animals were tested for generalization to 3.0 mg/kg diazepam. Thirteen animals showed a generalization from THC to diazepam, whereas the remaining seven animals did not. The generalization curve for diazepam was dose-dependent from 0.1 to 10.0 mg/kg in the first group; the latter group showed no generalization from THC at any dose of diazepam in this range. No differences were found between these groups in the generalization curve for THC. The benzodiazepine antagonist Ro 15-1788 (2.0 mg/kg) antagonized the generalization to diazepam in the group that discriminated diazepam as THC. In contrast, Ro 15-1788 increased THC lever responding of 10 mg/kg diazepam in the group which did not generalize from THC. Ro 15-1788 did not alter the discriminability of THC in either group. THC also showed partial generalization to pentobarbital (1 to 10 mg/kg). The generalization was again complete in one subgroup and absent in another, but there was only a 43 percent overlap between the subgroups found with testing for generalization to diazepam. The percent THC lever responding with 3.0 mg/kg pentobarbital was increased by Ro 15-1788 in the group which generalized to diazepam, but not the other group. These data suggest that the discriminative stimulus properties of THC may have some commonality with the effects of diazepam in a subpopulation of rats trained to discriminate THC. These THC-like effects of diazepam are probably mediated by benzodiazepine receptors since they are antagonized by a specific benzodiazepine receptor antagonist.  相似文献   

15.
Cannabis use is associated with psychosis, particularly in those with expression of, or vulnerability for, psychotic illness. The biological underpinnings of these differential associations, however, remain largely unknown. We used Positron Emission Tomography and 18F-fallypride to test the hypothesis that genetic risk for psychosis is expressed by differential induction of dopamine release by Δ9-THC (delta-9-tetrahydrocannabinol, the main psychoactive ingredient of cannabis). In a single dynamic PET scanning session, striatal dopamine release after pulmonary administration of Δ9-THC was measured in 9 healthy cannabis users (average risk psychotic disorder), 8 patients with psychotic disorder (high risk psychotic disorder) and 7 un-related first-degree relatives (intermediate risk psychotic disorder). PET data were analyzed applying the linear extension of the simplified reference region model (LSRRM), which accounts for time-dependent changes in 18F-fallypride displacement. Voxel-based statistical maps, representing specific D2/3 binding changes, were computed to localize areas with increased ligand displacement after Δ9-THC administration, reflecting dopamine release. While Δ9-THC was not associated with dopamine release in the control group, significant ligand displacement induced by Δ9-THC in striatal subregions, indicative of dopamine release, was detected in both patients and relatives. This was most pronounced in caudate nucleus. This is the first study to demonstrate differential sensitivity to Δ9-THC in terms of increased endogenous dopamine release in individuals at risk for psychosis.  相似文献   

16.
Although cannabinoid-induced behavioral sensitization and cross-sensitization with opiates has been recently demonstrated, no information is available on the associated state and responsiveness of dopamine (DA) transmission in the nucleus accumbens (NAc) shell and core. In this study we investigate by means of dual probe microdialysis, the effect of exposure to a sensitizing regimen of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and morphine on the extracellular concentrations of DA under basal conditions and after challenge with Delta(9)-THC and morphine in the NAc shell and core. Different groups of male Sprague-Dawley rats were administered twice daily for 3 days with increasing doses of Delta(9)-THC (2, 4, and 8 mg/kg i.p.), morphine (10, 20, and 40 mg/kg s.c.), and vehicle. After 14-20 days from the last injection, the animals were implanted with two microdialysis probes, one aimed at the NAc shell and the other at the core. The following day animals pre-treated with Delta(9)-THC and vehicle controls were challenged with 150 microg/kg i.v. of Delta(9)-THC or 0.5 mg/kg i.v. of morphine. Animals pre-treated with morphine and their vehicle controls were administered with 150 microg/kg i.v. of Delta(9)-THC. Rats pre-exposed to Delta(9)-THC showed behavioral sensitization associated with a reduced stimulation of DA transmission in the NAc shell and an increased stimulation in the NAc core in response to Delta(9)-THC challenge. Pre-exposure to Delta(9)-THC induced behavioral sensitization to morphine also, but only a reduced stimulation of DA transmission in the NAc shell was observed. Animals pre-treated with morphine showed behavioral sensitization and differential changes of DA in the NAc shell and core in response to Delta(9)-THC challenge with a decreased response in the shell and an increased response in the core. The results show that Delta(9)-THC-induced behavioral sensitization is associated with changes in the responsiveness of DA transmission in the NAc subdivisions that are similar to those observed in the sensitization induced by other drugs of abuse.  相似文献   

17.
The effects of delta9-tetrahydrocannabinol (delta9-THC) on action potentials were examined during intrasomatic recordings from the isolated buccal and parieto-visceral ganglia of Aplysia californica. When added to the saline solution bathing the preparation, the compound (in concentrations 10(-4) - 10(-5) M) caused a reduction in spike overshoot (15-20% of total amplitude) and increased the lability of responses to electrical stimulation. The somatic membrane appeared to be more affected than the axonal membrane. Diffusion barriers in the ganglion probably account for the high degree of variability in drug response, such that both of the characteristic changes were observed in only about 30% of the tests. This is the first report to describe effects of delta9-THC on invertebrate neurones. The results indicate that delta9-THC causes a depression in nerve cell excitability, and these data are consistent with reported effects of THC compounds in mammals.  相似文献   

18.
Methamphetamine (METH) is a potent psychostimulant with neurotoxic properties. Heavy use increases the activation of neuronal nitric oxide synthase (nNOS), production of peroxynitrites, microglia stimulation, and induces hyperthermia and anorectic effects. Most METH recreational users also consume cannabis. Preclinical studies have shown that natural (Δ9-tetrahydrocannabinol, Δ9-THC) and synthetic cannabinoid CB1 and CB2 receptor agonists exert neuroprotective effects on different models of cerebral damage. Here, we investigated the neuroprotective effect of Δ9-THC on METH-induced neurotoxicity by examining its ability to reduce astrocyte activation and nNOS overexpression in selected brain areas. Rats exposed to a METH neurotoxic regimen (4×10 mg/kg, 2 hours apart) were pre- or post-treated with Δ9-THC (1 or 3 mg/kg) and sacrificed 3 days after the last METH administration. Semi-quantitative immunohistochemistry was performed using antibodies against nNOS and Glial Fibrillary Acidic Protein (GFAP). Results showed that, as compared to corresponding controls (i) METH-induced nNOS overexpression in the caudate-putamen (CPu) was significantly attenuated by pre- and post-treatment with both doses of Δ9-THC (−19% and −28% for 1 mg/kg pre- and post-treated animals; −25% and −21% for 3 mg/kg pre- and post-treated animals); (ii) METH-induced GFAP-immunoreactivity (IR) was significantly reduced in the CPu by post-treatment with 1 mg/kg Δ9-THC1 (−50%) and by pre-treatment with 3 mg/kg Δ9-THC (−53%); (iii) METH-induced GFAP-IR was significantly decreased in the prefrontal cortex (PFC) by pre- and post-treatment with both doses of Δ9-THC (−34% and −47% for 1 mg/kg pre- and post-treated animals; −37% and −29% for 3 mg/kg pre- and post-treated animals). The cannabinoid CB1 receptor antagonist SR141716A attenuated METH-induced nNOS overexpression in the CPu, but failed to counteract the Δ9-THC-mediated reduction of METH-induced GFAP-IR both in the PFC and CPu. Our results indicate that Δ9-THC reduces METH-induced brain damage via inhibition of nNOS expression and astrocyte activation through CB1-dependent and independent mechanisms, respectively.  相似文献   

19.
Delta(9)-tetrahydrocannabinol (Delta(9)-THC), a primary psychoactive constituent of cannabis, has been reported to act as a neuroprotectant via the cannabinoid CB(1) receptor. In this study, Delta(9)-THC significantly decreased the infarct volume in a 4 h mouse middle cerebral artery occlusion mouse model. The neuroprotective effect of Delta(9)-THC was completely abolished by SR141716, cannabinoid CB(1) receptor antagonist, and by warming the animals to 31 degrees C. Delta(9)-THC significantly decreased the rectal temperature, and the hypothermic effect was also inhibited by SR141716 and by warming to 31 degrees C. At 24 h after cerebral ischemia, Delta(9)-THC significantly increased the expression level of CB(1) receptor in both the striatum and cortex, but not in the hypothalamus. Warming to 31 degrees C during 4 h cerebral ischemia did not increase the expression of CB(1) receptor at the striatum and cortex in MCA-occluded mice. These results show that the neuroprotective effect of Delta(9)-THC is mediated by a temperature-dependent mechanism via the CB(1) receptor. In addition, warming to 31 degrees C might attenuate both the neuroprotective and hypothermic effects of Delta(9)-THC through inhibiting the increase in CB(1) receptor in both the striatum and cortex but not in the hypothalamus, which may suggest a new thermoregulation mechanism of Delta(9)-THC.  相似文献   

20.
R Collu 《Life sciences》1976,18(2):223-230
The daily intraventricular administration of Δ9-tetrahydrocannabinol (Δ9-THC) in microgram amounts for a week to prepuberal and adult rats had definite endocrine effects. Prostate weights were reduced and plasma and pituitary levels of growth hormone (GH) were increased in prepuberal rats. Pituitary levels of prolactin (PRL) were increased both in prepuberal and in adult animals while pituitary and adrenal weights and plasma corticosterone (B) levels were increased in adult rats. On the other hand, brain weights were significantly reduced by Δ9-THC in prepuberal and significantly increased in adult animals. No changes in brain levels of noradrenaline (NA), dopamine (DA) or serotonin (5-HT) were found in treated animals. These results indicate that Δ9-THC may modify some endocrine functions when injected directly into the brain in microgram amounts. They show on the other hand that young and adult animals may respond differently to the chronic administration of the psychoactive drug, although the difference may be due to a biphasic effect of different doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号