首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A method was developed for determining the duration of the mammalian cell cycle and each of its major phases, mitosis, G1, DNA synthetic period, and G2. Mitotic time was determined by assessment of the mitotic index at intervals after cells collected in mitosis and stored at 4 °C were reincubated at 37 °C. The duration of the three remaining phases was derived from a graphic representation of the uptake of 3H-thymidine by a synchronous population of cells grown directly in scintillation vials. The scintillation counting method for determination of these parameters is advantageous over methods using autoradiography in that the investigator's bias in scoring cells is eliminated. Complex mathematical interpretations are unnecessary, and the data obtained from the scintillation counter are readily processed. Results from scintillation counting and autoradiographic methods are shown to be comparable.  相似文献   

2.
In plants of Silene coeli-rosa, induced to flower by 7 LD, synchronisation of cell division in 20 per cent or more of the cells in the shoot apical dome was found on the 8th and 9th days after the beginning of induction, during the plastochron before sepal initiation. Synchronisation was inferred from the changes in the proportions of cells with the 2C and 4C amounts of DNA, and changes in mitotic index and labelling index. From the peaks of mitotic index a cell cycle of 10 h was measured for the synchronised cells, half that of cells in the apices of uninduced plants in short days. The faster cell cycle and synchronisation in the induced plants was associated with a shortening, of both G1 and G2, suggesting two control points, while S and M remained unchanged. These results are compared with those from other plants in which synchronisation occurs at the beginning rather than the end of evocation.Abbreviations LD long day(s) - SD short day(s) - S DNA synthesis phase of cell cycle - G1 pre-S interphase - G2 post-S interphase - M mitosis  相似文献   

3.
Chinese hamster ovary cells were synchronized by mitotic selection and used to study the relation of poly(adenosine diphosphate ribose) synthesis to DNA synthesis and the different phases of the cell cycle. DNA synthesis was measured in cells rendered permeable to exogenously supplied nucleotides. Poly(ADPR) synthesis was also measured in permeable cells in the presence of both minimum and maximum DNA damage. The maximum DNA damage was produced by treating the cells with saturating concentrations of DNase. As anticipated, the DNA synthesis complex showed its maximum activity during S phase and showed 4–5-fold less activity during the other phases of the cell cycle. The basal level of poly(ADPR) synthesis was elevated during G1, fell to its lowest level during S phase, then increased during G2 and rose to its highest level during G1. The DNase responsive activity of poly(ADPR) synthesis was relatively constant thru the cell cycle but showed a peak at the end of S phase; then the activity decreased during the subsequent G2-M period.  相似文献   

4.
PHA-stimulated leucocytes treated with cytosine arabinoside showed a changed uptake of [3H]thymidine, a lowered mitotic index and chromosome damage. Combined autoradiography and Feulgen microdensitometry demonstrated inhibition of DNA synthesis. Cells in the S period of the cell cycle were arrested in their progress, and cells newly entering S accumulated at the beginning of this period. At stronger concentrations these effects on the cell cycle were complicated by the cytotoxic effect of cytosine arabinoside. The inhibition of DNA synthesis is considered in the light of the chromosomal damage and megaloblastic changes caused by cytosine arabinoside, and is compared to the different pattern of DNA arrest found in megaloblastic anaemia.  相似文献   

5.
Hepatocytes, isolated from adult (250-350 g) rats, attached and survived well in primary culture on highly diluted (less than 1 microgram/cm2) collagen gel in a synthetic medium without serum or hormones. About 20% of the cells "spontaneously" entered S phase during the first 4 days of culturing, and mitoses were easily demonstrated at the near physiological concentration (1.25 mM) of Ca++ prevailing in the medium. Cultures given 9 nM epidermal growth factor (EGF) and 20 nM insulin 20 h after inoculation showed vigorous DNA synthesis and mitotic activity. Autoradiography of such cells exposed to [3H]thymidine allowed the determination of the following cell cycle parameters: Lag period from EGF/insulin stimulation till onset of increased DNA synthesis, 17 h; rate of entry into S phase (kG1/S), 0.028/h; duration of S phase, 8.4 h; duration of G2 phase, 2.7 h. The peak DNA synthesis (pulse labelling index, 24%) and peak mitotic activity (mitotic index, 1.7%) occurred 35 and 43 h, respectively, after the stimulation with EGF/insulin. These values are comparable to those reported during the in vivo compensatory hyperplasia following partial hepatectomy of adult rats. A marked variation of the intranuclear [3H]thymidine pulse labelling pattern was noted: During the first 1.5 h of the S phase, the labelling was extranucleolar and during the last 1.5 h chiefly nucleolar. The cells survived well in the absence of glucocorticoid, whose effect on cell cycle parameters therefore could be studied. Dexamethasone (25-250 nM) did not appreciably affect the durations of S phase and G2 phase or the pattern of preferential extranucleolar and nucleolar DNA synthesis within the S phase.  相似文献   

6.
Undernutrition during suckling was induced in newborn rats by increasing the litter size to sixteen pups to be fed by one mother. Animals reared in litters of eight served as controls. Undernourished animals showed retarded body and testicular growth during a suckling period of 22 days. Sequential morphogenesis of the testis was not altered up to 15 days of age. However, certain morphological alterations in Sertoli cells and Leydig cells were observed from 15 days onwards. Cell generation cycle of spermatogonial germ cells and supporting cells (future Sertoli cells) on day 9 showed marked prolongation of DNA synthetic phase (S), unaltered post-DNA synthetic phase (G2) and total cycle (Tc) and shortening of the pre-DNA synthetic phase (G1) indicating a depression in DNA synthesis in undernutrition.  相似文献   

7.
EGF induces cell cycle arrest of A431 human epidermoid carcinoma cells   总被引:4,自引:0,他引:4  
The human carcinoma cell line A431 is unusual in that physiologic concentrations of epidermal growth factor (EGF) inhibit proliferation. In the presence of 5-10 nM EGF proliferation of A431 cells is abruptly and markedly decreased compared to the untreated control cultures, with little loss of cell viability over a 4-day period. This study was initiated to examine how EGF affects the progression of A431 cells through the cell cycle. Flow cytometric analysis of DNA in EGF-treated cells reveals a marked change in the cell cycle distribution. The percentage of cells in late S/G2 increases and early S phase is nearly depleted. Since addition of the mitotic inhibitor vinblastine causes accumulation of cells in mitosis and prevents reentry of cells into G1, it is possible to distinguish between slow progression through G1 and G2 and blocks in those phases. When control cells, not treated with EGF, are exposed to vinblastine, the cells accumulate mitotic figures, as expected, and show progression into S, thus diminishing the number of cells in G1. In contrast, no mitotic figures are found among the EGF-treated cells in the presence or absence of vinblastine, and progression from G1 into S is not observed, as the number of cells in G1 remains constant. These results suggest that there are two EGF-induced blocks in cell cycle transversal; one is in late S and/or G2, blocking entry into mitosis, and the other is in G1, blocking entry into S phase. After 24 hours of EGF treatment, DNA synthesis is reduced to less than 10% compared to untreated controls as measured by the incorporation of [3H]thymidine or BrdU. In contrast, protein synthesis is inhibited by about twofold. Although inhibition of protein synthesis is less extensive, it occurs 6 hours prior to an equivalent inhibition of DNA synthesis. The rapid decrease in protein synthesis may result in the subsequent cell cycle arrest which occurs several hours later.  相似文献   

8.
Upon DNA damage, cell cycle progression is temporally blocked to avoid propagation of mutations. While transformed cells largely maintain the competence to recover from a cell cycle arrest, untransformed cells past the G1/S transition lose mitotic inducers, and thus the ability to resume cell division. This permanent cell cycle exit depends on p21, p53, and APC/CCdh1. However, when and how permanent cell cycle exit occurs remains unclear. Here, we have investigated the cell cycle response to DNA damage in single cells that express Cyclin B1 fused to eYFP at the endogenous locus. We find that upon DNA damage Cyclin B1-eYFP continues to accumulate up to a threshold level, which is reached only in G2 phase. Above this threshold, a p21 and p53-dependent nuclear translocation required for APC/CCdh1-mediated Cyclin B1-eYFP degradation is initiated. Thus, cell cycle exit is decoupled from activation of the DNA damage response in a manner that correlates to Cyclin B1 levels, suggesting that G2 activities directly feed into the decision for cell cycle exit. Once Cyclin B1-eYFP nuclear translocation occurs, checkpoint inhibition can no longer promote mitotic entry or re-expression of mitotic inducers, suggesting that nuclear translocation of Cyclin B1 marks the restriction point for permanent cell cycle exit in G2 phase.  相似文献   

9.
The number of dividing and DNA-synthesizing cells in excised pea roots can be regulated by eliminating the carbohydrate normally supplied in the culture medium. When the excised roots were allowed to remain for 24 hr in a medium lacking carbohydrate, the number of mitotic figures and tritiated thymidine (H3-T) labeled cells was reduced almost to zero. After an additional 24 hr in the incomplete culture medium, 15% of the interphase cells were H3-T labeled, the percentage of the cells that were dividing never exceeded 1.4, and 30% of these were H3-T labeled. When the roots remained in the deficient medium for 72 hr, neither cell division nor cells synthesizing DNA were observed. Upon addition of 2% sucrose, cell division and DNA synthesis were resumed in the roots that were maintained for 24 or 72 hr without an exogenous carbohydrate supply. It has been hypothesized that some proliferative systems consist of two cellular subpopulations which selectively stop or remain in either the pre-DNA synthetic (G1) or post-DNA synthetic (G2) periods of the mitotic cycle. The addition of sucrose, H3-T, and 5-aminouracil to the medium, after the roots had been maintained for 24 hr without a carbohydrate, indicated that most of the proliferative cells in the roots had accumulated in either G1, a quasi-G1 condition, i.e., DNA synthesis stopped sometime before completion, or G2 periods of interphase; the majority, however, were in G1 or quasi-G1 conditions. The results suggested that DNA synthesis (S period) and mitosis or the onset of these processes have the highest metabolic requirements in the mitotic cycle and that G1 and G2 were the most probable states for proliferative cells in a meristem with a low metabolic level.  相似文献   

10.
Near-ultraviolet and visible radiations increased the duration of the mitotic cycle in excised pea root meristems primarily by lengthening the duration of the pre-DNA synthetic period (G1). All radiations tested shortened the duration of the post-DNA synthetic period (G2). The most pronounced effects were exhibited by green radiation, which lengthened the duration of the cell cycle, G1, DNA synthesis (S), and mitosis (M), and shortened the duration of G2. Progression of cells arrested by starvation in G1 and G2 into DNA synthesis and mitosis was also affected by light treatments. Green radiation appeared to arrest a group of cells in DNA synthesis as well as in G1 and G2. Meristems receiving green and near-ultraviolet radiations exhibited the most rapid progression of G1 cells through S and G2.  相似文献   

11.
Flow cytometric bivariate analysis was used to investigate the expression of PCNA, p120 and p145 during the cell cycle of a mammalian cell line (CHO-K1). Initially, aliquots of cells in exponential and plateau (G0) phase were analyzed for proliferation associated antigen expression. Expression of PCNA and p145 during G0 was markedly depressed (less than 12% positive) while 54% of the G0 cells stained positive for p120. The fluorescent intensity (mean channel fluorescence) of these G0 positive p120 cells, however, was only slightly above the mean channel fluorescence (MCF) of cells stained with a negative isotype control. In asynchronous cultures, all three antigens were expressed in greater than 70% of the cells, with PCNA staining being greater than 95%. Cells were then synchronized using mitotic selection (mitotic index of 97%) and antigen levels were measured as cells progressed synchronously through the cell cycle. From DNA analysis histograms, it appeared that the degree of synchrony was approximately 90% throughout the remainder of the cell cycle. The bivariate DNA/PCNA, DNA/p120, and DNA/p145 histograms for mitotic cells indicated that both p120 and p145 expression were elevated (percent positive and MCF) while PCNA levels were near controls (MCF). In early G1, all three markers were depressed (less than 12% positive); however PCNA levels rose precipitously in mid-G1 (greater than 50% positive). In late G1 to early S, p145 levels increased concomitantly with increases in p120. All three antigens were elevated throughout S phase and began to decline as cells moved from G2/M to G1 of the next cell cycle with p145 expression decreasing first. This report indicates that all three proliferation associated antigens studied are differentially expressed in the cell cycle and therefore may be useful in detecting and assessing the proliferation state.  相似文献   

12.
Summary As an approach for a better understanding of the mode of action of rotenone on mammalian cells we have studied the proliferation properties, metabolism and basic cell composition of Ehrlich ascites tumour cells cultured in vitro in the presence of 2,5 µM rotenone and after removal of the inhibitor.Experiments on asynchronous cells showed a rapid cessation of cell division accompanied by increased glycolytic rate, reduced oxygen consumption, moderate increase in DNA content and a fair increase in protein and RNA content of the cultures. DNA histograms obtained by flow-cytometry revealed an accumulation of cells in the G2 and M phase of the cell cycle. Electron micrographs taken after a 24 h treatment of cells illustrated the formation of giant mitochondria and fragmented nuclei.In order to elucidate the dual effect of rotenone — inhibition of mitochondrial energy metabolism and of mitotic processes — the influence on cells of rotenone at different stages of the cell cycle was tested using Ehrlich ascites tumour cells enriched in G1, S and G2 by centrifugal elutriation. DNA histograms and [3H]thymidine labelling index curves of cells from the different fractions cultured in the presence of 2,5 AM rotenone indicated that in addition to the observed accumulation in G2 and mitotic arrest of cells, the cell cycle progression is delayed in G1 phase. This may be explained by an effect of the inhibitor on the respiratory chain. S phase cells seemed to continue the cycle for several hours at a rate comparable to that of controls.Recultivation experiments on rotenone-treated asynchronous cells in inhibitor-free medium confirmed that some cells reinitiate DNA synthesis without preceeding cell division.Thus it must be concluded that cells at all stages of the cycle are affected by rotenone, but the impairment of cellular metabolism becomes manifest and lethal as soon as the acute block at mitosis is abolished and cells reenter the cycle.Abbreviations EAT cells Ehrlich ascites tumour cells - Hanks' solution Hanks' balanced salt solution - Hepes 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid  相似文献   

13.
Variation of Interferon Production During the Cell Cycle   总被引:1,自引:0,他引:1       下载免费PDF全文
The capacity of cells to produce interferon has been found to depend on the phase in the cell cycle at which virus infection took place. Monolayer cultures of L cells were synchronized by the double thymidine-block method. Such synchronously growing cultures were used to study the ability of cells to produce interferon when they were infected with ultraviolet-inactivated Newcastle disease virus (UV-NDV) at different phases of the cell cycle. In all instances, interferon was detected early and reached a maximum at about 16 hr after infection. However, the levels of interferon found in medium of cultures infected at early post-deoxyribonucleic acid (DNA) synthetic (G2) and to some extent at late G2 phases of the cell cycle were comparatively lower than those found in cultures infected at the early DNA synthetic (S) phase. There appeared also in these infected growing cultures a transient period when interferon production was apparently delayed. This period corresponded interestingly with the time of mitotic burst. Infection of thymidine- or 1-beta-d-arabino-furanosylcytosine-inhibited cultures with UV-NDV also led to similar interferon response as that observed in growing cultures infected at early S. However, no transient delay of interferon production was demonstrated in these cultures.  相似文献   

14.
The mammary cancer cell line CAMA-1 synchronized at the G1/S boundary by thymidine block or at the G1/M boundary by nocodazole was used to evaluate 1) the sensitivity of a specific cell cycle phase or phases to 17 beta-estradiol (E2), 2) the effect of E2 on cell cycle kinetics, and 3) the resultant E2 effect on cell proliferation. In synchronized G1/S cells, E2-induced 3H-thymidine uptake, which indicated a newly formed S population, was observed only when E2 was added during, but not after, thymidine synchronization. Synchronized G2/M cells, enriched by Percoll gradient centrifugation to approximately 90% mitotic cells, responded to E2 added immediately following selection; the total E2-treated population traversed the cycle faster and reached S phase approximately 4 hr earlier than cells not exposed to E2. When E2 was added during the last hour of synchronization (ie, at late G2 or G2/M), or for 1 hr during mitotic cell enrichment, a mixed response occurred: a small portion had an accelerated G1 exit, while the majority of cells behaved the same as controls not incubated with E2. When E2 addition was delayed until 2 hr, 7 hr, or 12 hr following cell selection, to allow many early G1 phase cells to miss E2 exposure, the response to E2 was again mixed. When E2 was added during the 16 hr of nocodazole synchronization, when cells were largely at S or possibly at early G2, it inhibited entry into S phase. The E2-induced increase or decrease of S phase cells in the nocodazole experiments also showed corresponding changes in mitotic index and cell number. These results showed that the early G1 phase and possibly the G2/M phase are sensitive to E2 stimulation, late G1, G1/S, or G2 are refractory; the E2 stimualtion of cell proliferation is due primarily to an increased proportion of G1 cells that traverse the cell cycle and a shortened G1 period, E2 does not facilitate faster cell division; and estrogen-induced cell proliferation or G1/S transition occurs only when very early G1 phase cells are exposed to estrogen. These results are consistent with the constant transition probability hypothesis, that is, E2 alters the probability of cells entering into DNA synthesis without significantly affecting the duration of other cell cycle phases. Results from this study provide new information for further studies aimed at elucidating E2-modulated G1 events related to tumor growth.  相似文献   

15.
The DNA cleavage produced by 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) in mammalian cells is putatively mediated by topoisomerase II. We found that in synchronized HeLa cells the frequency of such cleavage was 4-15-fold greater in mitosis than in S while the DNA of G1 and G2 cells exhibited an intermediate susceptibility to cleavage. The hypersensitivity of mitotic DNA to m-AMSA-induced cleavage was acquired relatively abruptly in late G2 and was lost similarly abruptly in early G1. The susceptibility of mitotic cells to m-AMSA-induced DNA cleavage was not clearly paralleled by an increase in topoisomerase II activity (decatenation of kinetoplast DNA) in 350 mM NaCl extracts from mitotic cells compared to similar extracts from cells in G1, S, or G2. Furthermore, equal amounts of decatenating activity from cells in mitosis and S produced equal amounts of m-AMSA-induced cleavage of simian virus 40 (SV40) DNA; i.e., the interaction between m-AMSA and extractable enzyme was similar in mitosis and S. The DNA of mitotic cells was also hypersensitive to cleavage by 4'-demethylepipodophyllotoxin 4-(4,6-O-ethylidene-beta-D-glucopyranoside) (etoposide), a drug that produces topoisomerase II mediated DNA cleavage without binding to DNA. Thus, alterations in the drug-chromatin interaction during the cell cycle seem an unlikely explanation for results in whole cells. Cell cycle stage dependent fluctuations in m-AMSA-induced DNA cleavage may result from fluctuations in the structure of chromatin per se that occur during the cell cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
At different time intervals after injection of Bleomycin (BLM) th effect on several kinetic parameters of the hairless mouse epidermis stimulated to proliferate by previous adhesive tape stripping was measured. Micro-flow fluorometry was used to determine the relative number of cells in the various phases of the cell cycle (G1, S and G2). Tritiated thymidine was used to determine labelling indices and grain counts. Colcemid was used to observe the mitotic rate. An initial decrease followed by a subsequent significant increase compared to the non-BLM-treated controls was observed in all parameters studied except the mitotic rate, which remained lower than in the control animals during all 48 hours. The transit time of the cells through the S-phase was initially slightly prolonged, but thereafter it seemed to be shorter than that of the controls. BLM seems to provoke a partial blocking of cells in the G1 phase. When the block is released, a greater number of cells pass through the S phase in partial synchrony at a higher than normal speed. BLM induced a low mitotic rate which remained below the level of that of the normal animals after stripping, even though there obviously was a considerably higher influx of cells from the S phase to the G2 phase. This resulted in a subsequent accumulation of cells in the G2-phase. Thus, BLM has also a blocking effect on the G2-M boundary of the cell cycle. This inhibitory effect of BLM on the mitotic rate was shown to be independent of the effect of BLM on the DNA synthesis. BLM therefore seems to have complex influence on epidermal cell kinetics in vivo. Cells in G1-phase are partially and transiently blocked, but this block is soon released. These cells thereafter pass through the S-phase and pile up in the G2-phase, because BLM also blocks the passage of cells from the G2-phase to mitosis. The overall reduction in cell proliferation seen after BLM in vivo seems mainly to be due to the effect on the G2-M boundray of the cell cycle.  相似文献   

17.
The fidelity of DNA replication in eukaryotic cells requires a balanced dNTP supply in the S phase. During the cell cycle progression, the production of dTTP is highly regulated to coordinate with DNA replication. Intracellular thymidine is salvaged to dTTP by cytosolic thymidine kinase (TK1) and thymidylate kinase (TMPK), both of which expression increase in the G1/S transition and diminish in the mitotic phase via proteolytic destruction. Anaphase promoting complex/cyclosome (APC/C)-mediated ubiquitination targets TK1 and TMPK to undergo proteasomal degradation in mitosis, by which dTTP pool is minimized in the early G1 phase of the next cell cycle. In this review, we will focus on regulation of TK1 in the post-S phase and the importance of mitotic proteolysis in controlling dNTP balance, replication stress and genomic stability. Finally, we discuss how thymidine pool and oligomeric forms of TK1 can affect mitotic control of dTTP. This article is for the special issue of IMB 20th anniversary.  相似文献   

18.
ABSTRACT. Eukaryotic mitotic cell cycles have been extensively studied in yeasts and vertebrate cells but little is known about cell cycle mechanisms in early branches of the eukaryotic lineage. Trichomonas vaginalis represents one of the earliest branching eukaryotic lineages available for study. In contrast with most yeasts and vertebrate cells, the T. vaginalis G2 period was prolonged, comprising 50 to 58% of the cell population. Hydroxyurea, aphidicolin, and excess thymidine, all of which arrest yeasts and vertebrate cells at the G1/S phase boundary, had no effect on the T. vaginalis cell cycle, probably due to the known absence of synthetic pathways. The antimicrotubule mitotic inhibitors, colchicine and nocodazole, induced G2 phase synchrony. Metronidazole, a therapeutic reagent, also caused G2 phase arrest. These observations suggest that T. vaginalis is similar to yeasts and vertebrate cells in G2 and M phases, but the parasite's G1/S phase transition is distinctive. The results also suggest potentially therapeutic, anti-trichomonad activity of microtubule inhibitors such as nocodazole. The cultured parasite may prove useful as a model for the mitotic cell cycle in the absence of G1/S phase transitional activities universal in yeasts and vertebrate cells.  相似文献   

19.
H Iba  A Fukuda    Y Okada 《Journal of bacteriology》1977,129(3):1192-1197
The pattern of chromosome replication in the Caulobacter crescentus cell cycle was studied by examining the rate of deoxyribonucleic acid (DNA) synthesis during synchronous growth in a fast-growth nutrient broth. As reported previously for the cell cycle in a slow-growth minimal medium (Degnen and Newton, 1972), the Caulobacter cell cycle (at the fastest available growth rate) in nutrient broth consisted of three distinct periods in terms of DNA synthetic activity. The swarmer-cell cycle consisted of a presynthetic period (G1), synthetic period (S), and postsynthetic period (G2) of 30, 50, and 35 min, respectively, whereas the stalked-cell cycle consisted of S and G2 periods of 50 and 35 min, respectively. Synchronously growing cells in the nutrient broth were stained to visualize nuclear bodies. Two nuclear bodies could be discerned in both swarmer and stalked cells, and four could be discerned in predivisional cells. DNA content per cell was determined chemically and found to be about the same in swarmer and stalked cells; it was equivalent to roughly twice the value expected from the kinetic complexity reported previously (Wood et al., 1976) for Caulobacter DNA.  相似文献   

20.
Mild abrasion of rat tracheal epithelium results in irreversible damage to the superficial cells and stimulates the viable basal cells to participate in a nearly synchronous wave of DNA synthesis and mitosis. For the growth population as a whole, DNA synthesis started at 14 hr after injury and persisted for 16 hr. The duration of S in individual cells was determined autoradiographically by identifying the time at which a second pulse of DNA precursor (14C-TdR) was no longer incorporated by cells labelled with 3H-TdR at the onset of S. S was found to be 8–9 hr long. It was also determined that cells entering S at later times synthesized DNA for the same 8–9 hr period. TG2 was calculated to be 21/2–31/2 hr by subtraction of Ts and 1/2TM from the period from onset of DNA synthesis to metaphase. By making a second denuding lesion adjacent to the first injury, the cells were stimulated through at least another period of S. At the peak of the second wave of DNA synthesis (50 hr after injury) 14C-TdR was present in the same cells which had incorporated 3H-TdR administered at the mid-point of the preceding synthetic phase. The 28-hr interval between these two peaks of synthesis is the measure of cell cycle duration for these regenerating tracheal epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号