首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
1. Administration of a large dose (500mg/kg body wt.) of (3)H-labelled l-ethionine to rats resulted in the incorporation of a small amount of radioactivity into the liver DNA. Considerable evidence that this radioactivity was not due to contamination of the isolated DNA with labelled protein, RNA, S-adenosyl-l-ethionine or l-ethionine was obtained. 2. After acidic hydrolysis of the DNA isolated from the livers of rats treated with labelled l-ethionine, virtually all of the radioactivity present in the DNA was found in a fraction with similar chromatographic properties to 7-ethylguanine. 3. Treatment of rats with comparable doses of l-methionine did not lead to the formation of 7-methylguanine in the liver DNA. 4. These results are discussed in relation to the induction of liver tumours by ethionine.  相似文献   

2.
The UV-spectral and chromatographic analyses of the derivatives of the two synthetic standards 7-ethylguanosine and 1,7-diethylguanosine are here reported. The derivatives obtained from the dialkyl compound exhibit a striking similarity to those found in the "pyrimidine-nucleotide-like" fraction of rat liver tRNA ethylated in vivo by ethionine. The finding of imidazole-ring-opened products in tRNA ethylation by ethionine could be significant from the point of view of chemical carcinogenesis: in fact, imidazole-ring-opening of 1,7-dialkylguanosines directly at level of RNA with consequent formation of substituted pyrimidines is a transversion, i.e. a mutagenic event which would cause a change in the expression of genetic information since a purine has been transformed into a pyrimidine.  相似文献   

3.
L-ethionine has been found to inhibit uracil tRNA methylating enzymes in vitro under conditions where methylation of other tRNA bases is unaffected. No selective inhibitor for uracil tRNA methylases has been identified previously. 15 mM L-ethionine or 30 mM D,L-ethionine caused about 40% inhibition of tRNA methylation catalyzed by enzyme extracts from E. coli B or E. coli M3S (mixtures of methylases for uracil, guanine, cytosine, and adenine) but did not inhibit the activity of preparations from an E. coli mutant that lacks uracil tRNA methylase. Analysis of the 14CH3 bases in methyl-deficient E. coli tRNA after its in vitro methylation with E. coli B3 enzymes in the presence or absence of ethionine showed that ethionine inhibited 14CH3 transfer to uracil in tRNA, but did not diminish significantly the 14CH3 transfer to other tRNA bases. Under similar conditions 0.6 mM S-adenosylethionine and 0.2 mM ethylthioadenosine inhibited the overall tRNA base methylating activity of E. coli B preparations about 50% but neither of these ethionine metabolites preferentially inhibited uracil methylation. Ethionine was not competitive with S-adenosyl methionine. Uracil methylation was not inhibited by alanine, valine, or ethionine sulfoxide. It is suggested that the thymine deficiency that we found earlier in tRNA from ethionine-treated E. coli B cells, resulted from base specific inhibition by the amino acid, ethionine, of uracil tRNA methylation in vivo.  相似文献   

4.
The mechanism of ethionine carcinogenesis and more generally the relationship between alkylation of nucleic acids by chemical carcinogens and oncogenesis still remain obscure. In the present study the rat liver tRNA ethylation by L-[ethyl-1-3H]ethionine was reinvestigated by examining in particular the highly radioactive 'pyrimidine-nucleotide-like' fraction found earlier in acid hydrolysates of hepatic tRNA from ethionine-treated rats. The following results were obtained: (1) ultraviolet-spectral and chromatographic analyses showed the presence of 1,7-diethylguanosine in this 'pyrimidine-nucleotide-like' fraction; (2) the dialkyl compound was recovered exclusively in the form of imidazole-ring-opened derivatives. When [1-14C]ethylnitrosourea was used as alkylating agent, the in vivo ethylation pattern of tRNA from various organs of rat showed an analogous radioactive 'pyrimidine-nucleotide-like' fraction as main radioactive product. On the contrary, tRNA ethylation pattern after in vitro reaction with [1-14C]ethylnitrosourea exhibited a main radioactivity peak (85% of the total radioactivity recovered) in coincidence of the chromatographic area of 1,7-diethylguanine. The 1,7-diethylguanosine moieties of tRNA were extremely labile both under physiological and alkaline conditions. The 1,7-diethylguanine-associated radioactivity was completely lost from [14C]ethyl-tRNA after only 7 h incubation at 37 degrees C and pH 7.3, while at pH 11.4 this process was preceded by the conversion of the 1,7-diethylguanosine residues into imidazole-ring-opened derivatives.  相似文献   

5.
1. The effects of safrole and isosafrole pretreatment on both N- and ring-hydroxylation of 2-acetamidofluorene were studied in male rats and hamsters. 2. Isosafrole (100mg/day per kg body wt.) pretreatment of rats for 3 days did not have any effect on urinary excretion of hydroxy metabolites of 2-acetamidofluorene. However, similar pretreatment with safrole produced increased urinary excretion of N-, 3- and 5-hydroxy derivatives. 3. Similar treatment with these two chemicals for 3 days increased ring-hydroxylation activity by rat liver microsomal material. Increases in N-hydroxylation were much less than those in ring-hydroxylation. Isosafrole was twice as effective as safrole. 4. Increases in hydroxylating activity due to safrole or isosafrole treatment were inhibited by simultaneous administration of ethionine. Similarly, ethionine inhibition was almost completely reversed by the simultaneous administration of methionine. 5. Safrole or isosafrole (0.1mm and 1mm) inhibited 7-hydroxylation activity by liver microsomal material from control rats. At 1mm these two chemicals inhibited both 5- and 7-hydroxylation activity by liver microsomal material from 3-methylcholanthrene-pretreated rats. 3-Hydroxylation activity was not inhibited by 1mm concentrations of these two chemicals. 6. A single injection of safrole (50100 or 200mg/kg body wt.) 24h before assay had no appreciable effect on either N- or ring-hydroxylation activity by hamster liver microsomal material. However, isosafrole (200mg/kg body wt.) treatment inhibited N-, 3- and 5-hydroxylation activities by hamster liver microsomal material; it had no effect on 7-hydroxylation activity.  相似文献   

6.
The relationship between the modification of tRNA and its ability to act as a substrate for homologous tRNA modification enzymes in vitro was studied. The tRNA extracted from the livers of rats was active as a substrate for in vitro methylation with extracts from normal rat liver 19 h after treatment with L-ethionine (35 mg/100 g/24 h). After 4 weeks of feeding a diet containing o.25% DL-ethionine, the tRNA was a poor substrate for methylation in vitro, even though it was deficient in methylated nucleosides. Only 18% and 7% of the available sites could be methylated after 67 h and 4 weeks, respectively, of ethionine treatment. 3-(3-amino-3-carboxypropyl)uridine, a nucleoside that is also synthesized from S-adenosylmethionine, was assayed in individual tRNAs by their reactivity with the N-hydroxysuccinimide ester of phenoxyacetic acid. The reactivity of tRNAIle, tRNAAsn, and tRNAThr was decreased by treatment with ethionine at 67 h as well as at 2 and 4 weeks, although no difference could be detected at 19 h.  相似文献   

7.
Methods were devised for the assay of tRNA methylases of rat bone. The activities of bone tRNA methylases are similar to those from other mammalian tissues. However, unlike reports on liver methylases, no inhibitors were found in the supernatant fraction from pH5 precipitate of bone extracts. The effects of vitamins A and D on the methylation of tRNA by cell-free extracts of rat bone were studied. Deficiency of either vitamin resulted in a decrease in the rate and extent of tRNA methylation, whereas the administration of vitamin A to hypovitaminotic-A rats and vitamin D to hypovitaminotic-D rats increased the rate and extent of tRNA methylation. These effects appear to be apart from changes in ribonuclease activity or in concentrations of calcium or magnesium. No evidence of inhibitors of tRNA methylases was found in bone extracts from vitamin-deficient rats nor of activators in bone extracts from deficient rats given vitamin A or D. The pattern of tRNA methylation under conditions of vitamin A or D deficiency was not changed, suggesting a generalized cellular deficiency. It was of significance to find that the specificity for methylation of specific bases in tRNA was different after the administration of vitamin A as contrasted with the effects of vitamin D. The possible significance of tRNA methylation to the biochemical action of the vitamins on bone is discussed.  相似文献   

8.
Ethylation of DNA by diethyl sulfate gave 7-ethylguanine as the major product. Dimethyl sulfate was much more reactive than diethyl sulfate in forming 7-alkylguanine. The hydrodynamic properties of DNA did not change as a direct consequence of ethylation. On incubation at 37 °C, the viscosity of ethylated DNA decreased at a rate similar to that of methylated DNA. The rate of depurination of 7-ethylguanine from ethylated DNA was the same as that of 7-methylguanine from methylated DNA. These results demonstrate that ethyl groups have identical effects as methyl groups on the secondary structure and stability of DNA.  相似文献   

9.
The nucleotide composition of 4s RNA from livers of rats fed with a diet containing 0.3% D-ethionine was found to be identical with that from untreated animals. In contrast, one single modified nucleotide was absent in 4s RNA from livers of rats fed with a 0.3% L-ethionine diet. The minor nucleo=tide was also absent in liver 4s RNA from rats fed with a 0.3% L-ethionine diet followed by ten days of normal food. It was identified after dephosphorylation by ultraviolet absorption spectra, cochromatography with authentic material and mass spectra as N(6)-dimethyladenosine. It is concluded that S-adenosylethionine, the primary product of L-ethionine in the liver, causes strong and selective inhibition of the specific RNA-methylase responsible for adenosine to N(6)-dimethyl=adenosine methylation in rat liver 4s RNA. Compared to the strong inhibition of N(6)-dimethyladenosine formation described here, L-ethionine-dependent ethylation of liver 4s RNA is far less efficient. The quantitation of l-methyladenosine, ribothymidine and 3'-terminal adenosine in this 4s RNA as well as its aminoacid acceptor activity is typical for tRNA; hence it may be concluded that N(6)-dimethyladenosine is a component of rat liver tRNA. This may demonstrate the first evidence for the existence of specifically methyl-deficient mammalian tRNA. A possible correlation between the activity of L-ethionine as a liver carcinogen and its ability to induce the formation of methyl-deficient tRNA by selectively inhibiting the synthesis of N(6)-dimethyladenosine on the tRNA level in the same organ is discussed.  相似文献   

10.
Chinese hamster ovary (CHO) cells were exposed to [3H]ethyl nitrosourea (ENU) or [3H]ethyl methanesulfonate (EMS) and the following DNA ethylation products were quantitated: 3- and 7-ethyladenine, O2-ethylcytosine, 3-, 7- and O6-ethylguanine, O2- and O4-ethyldeoxythymidine and the representative ethylated phosphodiester, deoxythymidylyl (3′–5′)ethyl-deoxythymidine. When mutations at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus induced by these same treaments were compared with the observed ethylation products, mutations were found to correlate best with 3- and O6-ethylguanine. EMS induced approximately twice as many sister-chromatid exchanges (SCEs) as ENU at doses yielding equal mutation frequencies. When SCEs were indirectly compared with DNA ethylation products, 3-ethyladenine and ethylated phosphodiesters related best to SCE formation. Because mutation and SCE induction appear, at least in part, to be related to different DNA adducts, SCE induction by simple ethylating agents may not be a quantitative indicator of potentially mutagenic DNA damage.  相似文献   

11.
1. The effects of the intramuscular administration of glycerol and dihydroxyacetone (40mmol per kg body wt.), sorbitol and glucose (20mmol per kg body wt.) or NaCl (1.5mmol per kg body wt. in 10ml of water per kg body wt.) were investigated on soluble phosphatidate phosphohydrolase and certain metabolites in rat liver. 2. The effects of ethanol and glycerol on phosphatidate phosphohydrolase were also studied in isolated perfused livers. 3. The administration of glycerol, sorbitol and dihydroxyacetone in vivo increased hepatic phosphatidate phosphohydrolase activity by 137, 63 and 32% respectively in 4h. 4. A significant positive correlation was found between the hepatic sn-glycerol 3-phosphate concentration and phosphatidate phosphohydrolase after the administration of various substrates in vivo. 5. The soluble phosphatidate phosphohydrolase activity tended to increase during perfusions of isolated rat livers without added substrates, and neither ethanol nor glycerol produced additional effects. 6. The activity of soluble phosphatidate phosphohydrolase was 2.5 times higher in the livers of hyperthyroid rats than in normal rats. This activity was not influenced by intragastric ethanol or glycerol administration, nor was the concentration of sn-glycerol 3-phosphate changed by these compounds. 7. It is concluded that the ethanol-induced increase in hepatic phosphatidate phosphohydrolase may at least in part be mediated by the hepatic concentration of metabolites, probably by the concentration of sn-glycerol 3-phosphate.  相似文献   

12.
The ethylation of rat liver DNA by a single dose of diethylnitrosamine and the stability of O6-ethylguanine in vivo were studied. Whereas the dose response relations for 7-ethylguanine, 3-ethyladenine, the pyrimidine oligonucleotide fraction containing ethylphosphotriesters and an as yet unreported Fraction X corresponded with a first-order process of formation, the results suggested a steeper dose-response relation for O6-ethylguanine formation. In the dose range 0.5–10 mg/kg diethylnitrosamine, the O6-ethylguanine/7-ethylguanine ratio increased progressively with the dose, under conditions in which the in vivo stability (removal rate) of O6-ethylguanine was not affected. This led to the hypothesis that the formation of O6-ethylguanine, but not that of the other ethylated products, was facilitated by some dose-dependent process or condition. Support for this view was obtained by the markedly enhanced O6-[14C]ethylguanine content of DNA following pretreatment of the rats with non-radioactive diethylnitrosamine which was allowed to be metabolized completely prior to the administration of a tracer dose of [14C]diethylnitrosamine. Since neither the amounts of the other ethylation products nor the stability of the labelled O6-ethylguanine were affected by the pretreatment, changes in carcinogen metabolism or excision rate could be excluded as causes of the observed increase in O6-ethylguanine content. The half-life of the condition that facilitates O6-ethylguanine formation following pretreatment, may approximate that of O6-ethylguanine itself. The nature of the facilitating process and the possible role of O6-alkylguanine in hepatocarcinogenesis are discussed.  相似文献   

13.
The alkyl products of neutral in vitro ethylation of TMV-RNA by [14C]diethyl sulfate, [14C]ethyl methanesulfonate, and [14C]ethylnitrosourea have been determined and found to differ significantly depending on the ethylating agent. Diethyl sulfate and ethyl methanesulfonate ethylate the bases of TMV-RNA in the following order: 7-ethylguanine greater than 1-ethyladenine, 3-ethylcytidine greater than 7-ethyladenine, 3-ethyladenine, O6-ethylguanosine, 3-ethylguanine. Ethyl methanesulfonate was more specific for the 7 position of guanine, and other derivatives were found in lesser amounts than with diethyl sulfate. Neither reagent caused the formation of detectable amounts (smaller than 0.26 percent) of 1-ethylguanine, 1,7-diethylguanine, N2-ethylguanine, N6-ethyladenine, N4-ethylcytidine, or 3-ethyluridine. Identified ethyl bases account for over 85% of the total radioactivity of [14C]ethyl methanesulfonate and [14C]diethyl sulfate treated TMV-RNA. Phosphate alkylation accounts for about 13 and 1%, respectively, In contrast, [14C]ethylnitrosourea-treated TMV-RNA, while reacting to a similar extent (15-70 ethyl groups/6400 nucleotides), is found to cause considerably more phosphate alkylation. Upon either U4A RNase or acid hydrolysis up to 60% of the radioactivity is found as volatile ethyl groupw in the form of [14C]ethanol, and a further 15% appears to be primarily ethyl phosphate and nucleosides with ethylated phosphate. Of the remaining radioactivity, half is found as O6-ethylguanosine, the major identified ethyl nucleoside. Other ethyl bases found in ethylnitrosourea-treated TMV-RNA are 7-ethylguanine greater than 1-ethyladenine, 3-ethyladenine, 7-ethyladenine, 3-ethylcytidine, and 3-ethylguanine. It appears that ethylnitrosourea preferentially alkylates oxygens, and that formation of phosphotriesters is by far the predominant chemical event. Since the number of ethyl groups introduced into TMV-RNA by ethylnitrosourea is similar to the number of lethal events, one may conclude that phosphate alkylation leads to loss of infectivity. None of the three ethylating agents studied are strongly mutagenic on TMV-RNA or TMV. The role of phosphate alkylation in regard to in vivo mutagenesis and oncogenesis remains to be established. At present it appears possible that the extent of this reaction may correlate better with the oncogenic effectiveness of different ethylating agents, than the extent of any base reaction. Unfractionated HeLa cell RNA is ethylated primarily in acid labile manner even by diethyl sulfate and ethyl methanesulfonate, a fact that is attributed to its high content of low molecular weight trna rich in terminal phosphates which alkylate readily.  相似文献   

14.
The mechanism of biological action of the powerful carcinogen ethionine is still unknown at the present. Here the "in vivo" tRNA ethylation after administration of radioactive ethionine to rats has been reinvestigated. In particular, the radioactive "pyrimidine nucleotides" fraction was examined: chromatographic and ultraviolet-spectral analyses indicated the presence of imidazole-ring-opened derivatives of guanosine in this fraction, the identification of which is reported in the accompanying paper. These data appear particularly interesting especially when considering the recently advanced hypothesis (6,7) of a transversion purine----pyrimidine as the initial precancerous biochemical lesion in chemical carcinogenesis.  相似文献   

15.
1. Extracts prepared from tumours of the mouse colon induced by 1,2-dimethylhydrazine were considerably more active in catalysing the methylation of tRNA than were extracts from normal colon. The enhanced activity was observed when both unfractionated ;methyl-deficient' tRNA and purified tRNA preparations from yeast and bacteria were used as substrates for methylation. 2. The methylated bases produced in these reactions were identified. There were no differences between the products of the reaction catalysed by extracts of tumour and normal colon. 3. The increased activity of tRNA methylases was not due to the presence in the extracts of stimulatory or inhibitory molecules of low molecular weight such as polyamines or S-adenosylhomocysteine. 4. Other enzymes concerned with tRNA metabolism (RNA polymerase, ATP-tRNA adenylyltransferase, aminoacyl-tRNA ligases) were also increased in activity in the tumour tissue. 5. The extent of methylation of a limiting amount of tRNA was greater when tumour extracts were compared with controls, but in no case was it possible to achieve a stoicheiometric methylation of the purified tRNA preparations used as substrates, and the tumour extracts were not able to methylate tRNA obtained from normal mouse colon. We conclude that the tumours contained greater activities of tRNA methylases but that there was no evidence for changes in the specificity of these enzymes during neoplastic growth.  相似文献   

16.
L Sun  B Singer 《Biochemistry》1975,14(8):1795-1802
The sites and extent of ethyl products of neutral ethylation of HeLa cell DNA by [14-C]diethyl sulfate, [14-C]ethyl methanesulfonate, and [14-C]ethylnitrosourea have been determined in vitro and in vivo, and found to differ significantly depending on the ethylating agents. Diethyl sulfate and ethyl methanesulfonate ethylate the bases of HeLa cell DNA in the following order: 7-ethylguanine greater than 3-ethyladenine greater than 1-ethyladenine, 7-ethyladenine greater than 3-ethylguanine, 3-ethylcytosine, O-6-ethylguanine. Ethyl bases accounted for 84-87% of the total ethyl groups associated with HeLa cell DNA. Ethylnitrosourea, in contrast, has particular affinity for the O-6 position of guanine. It ethylates the bases of HeLa cell DNA in the following order: O-6-ethylguanine, 7-ethylguanine greater than 3-ethyladenine greater than 3-ethylguanine, 3-ethylthymine greater than 1-ethyladenine, 7-ethyladenine, 3-ethylcytosine. Ethylation of the bases only accounts for 30% of the total ethylation in the case of ethylnitrosourea. The remaining 70% of the [14-C]ethyl groups, introduced in vivo and in vitro, are in the form of phosphotriesters which after perchloric acid hydrolysis are found as [14-CA1ethanol and [14-C]ethyl phosphate. In contrast, phosphotriesters amounted to only 8-20% of total ethylation in in vivo or in vitro diethyl sulfate and ethyl methanesulfonate treated HeLa cell DNA, and 25% of the total methylation in in vitro methylnitrosourea treated HeLa cell DNA. Alkylation at the N-7 and N-3 positions of purines in DNA destabilizes the glycosidic linkages. Part of 7-ethylguanine and 3-ethyladenine are found to be spontaneously released during the ethylation reaction. Incorporation of the 14-C of the alkylating agents into normal DNA bases of HeLa cells can be eliminated by performing the alkylations, in the presence of cytosine arabinoside, for 1 hr.  相似文献   

17.
Cell nuclei prepared from rat liver were alkylated in vitro with ethylnitrosourea; the nuclear DNA was found to lose O6-ethylguanine and 7-ethylguanine during a subsequent incubation at 37 degrees C. The rate of O6-ethylguanine loss is comparable to that observed in vivo, indicating that no cytoplasmic component is needed for the repair; no free O6-ethylguanine was found in the incubation medium of the ethylated nuclei. The rate of 7-ethylguanine loss is higher than the spontaneous depurination in vitro and an amount of free 7-ethylguanine equivalent to that lost by the nuclear DNA was found in the incubation medium; these results suggest that this DNA lesion is excised by a DNA glycosylase. The proteins of the chromatin prepared from the isolated nuclei induced the disappearance of O6-ethylguanine from an added ethylated DNA. No free O6-ethylguanine was released indicating that the repair is not catalyzed by a DNA glycosylase; no oligonucleotides enriched in O6-ethylguanine were released either, indicating that the disappearance of O6-ethylguanine from DNA is not the result of the cooperative action of a specific endonuclease and an exonuclease. Activities capable of removing O6-ethylguanine from DNA were found in other cell compartments; most of it, however, is in the nucleus where the main location is chromatin. A pretreatment of the rats with daily low doses of diethylnitrosamine during 3 or 4 weeks increased 2-3-times the repair activity of the chromatin proteins.  相似文献   

18.
The specific formylation of initiator methionyl-tRNA (Met-tRNA) by methionyl-tRNA formyltransferase (MTF) is important for the initiation of protein synthesis in Escherichia coli. The determinants for formylation are located in the acceptor stem and in the dihydrouridine (D) stem of the initiator tRNA (tRNAfMet). Here, we have used ethylation interference analysis to study the interactions between the Met-tRNAfMet and MTF in solution. We have identified three clusters of phosphates in the tRNA that, when ethylated, interfere with binding of MTF. Interference due to ethylation of phosphates in the acceptor stem and in the D stem is most likely due to the close proximity of the protein as seen in the crystal structure of the MTF.fMet-tRNAfMet complex. The third cluster of phosphates, whose ethylation interferes with binding of MTF, is dispersed along the anticodon stem, which is distal to the sites of tRNA protein contacts. Interestingly, these latter positions correspond to sites of increased cleavages by RNase V1 in RNA footprinting experiments. Together, these results suggest that in addition to the protein, which binds to the substrate tRNA in an induced fit mechanism, the tRNA also undergoes induced structural changes during its binding to MTF.  相似文献   

19.
The effect of carcinogens given by a single or multiple injections on the extent of (35S)methionine interaction with hepatic tRNA was studied in normal and partially hepatectomized rats. Either partial hepatectomy or administration of ethionine (100 or 330 mg/kg body weight) and dimethylnitrosamine (120 mg/kg body weight) by multiple i.p. injections inhibited the (35S)methionine-tRNA interaction, while administration of hepatocarcinogenic chemicals plus PH resulted rather in a stimulation. Methylnitrosourea enhanced the extent of interaction when administered in a single dose (100 mg per kg body weight) 18 h after partial hepatectomy.  相似文献   

20.
Each of the individual tRNAs immobilized on aminohydroxybutyl-cellulose (ABC) through their oxidized 3'-terminal binds affinitively all methylases present in the enzyme extract irrespective of whether this tRNA will be involved in the following step of methylation or not. These data allow to suggest that (a) the formation of a methylase-tRNA complex and the catalytic act of methylation are indeed autonomous processes and (b) the first step of interaction between tRNAs and tRNA methylases is rather unspecific and consists in the recognition of the whole class of tRNA molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号