首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many eukaryotic proteins are modified by N-linked glycosylation, a process in which oligosaccharides are added to asparagine residues in the sequon Asn-X-Ser/Thr. However, not all such sequons are glycosylated. For example, rabies virus glycoprotein (RGP) contains three sequons, only two of which appear to be glycosylated in virions. To examine further the signals in proteins which regulate N-linked core glycosylation, the glycosylation efficiencies of each of the three sequons in the antigenic domain of RGP were compared. For these studies, mutants were generated in which one or more sequons were deleted by site-directed mutagenesis. Core glycosylation of these mutants was studied using two independent systems: 1) in vitro translation in rabbit reticulocyte lysate supplemented with dog pancreatic microsomes, and 2) transfection into glycosylation-deficient Chinese hamster ovary cells. Parallel results were obtained with both systems, demonstrating that the sequon at Asn37 is inefficiently glycosylated, the sequons at Asn247 and Asn319 are efficiently glycosylated, and the glycosylation efficiency of each sequon is not influenced by glycosylation at other sequons in this protein. High levels of cell surface expression of RGP in Chinese hamster ovary cells are seen with any mutant containing an intact sequon at Asn247 or Asn319, whereas low levels of cell surface expression are seen when the sequon at Asn37 is present alone; deletion of all three sequons completely blocks RGP cell surface expression. Thus, although core glycosylation at Asn37 is inefficient, it is still sufficient to support a biological function, cell surface expression. Future studies using mutagenesis of this model protein and its expression in these two well defined systems will aim to begin to unravel the rules governing core glycosylation of glycoproteins.  相似文献   

2.
Site-specific N-glycan characterization of human complement factor H   总被引:1,自引:0,他引:1  
Human complement factor H (CFH) is a plasma glycoprotein involved in the regulation of the alternative pathway of the complement system. A deficiency in CFH is a cause of severe pathologies like atypical haemolytic uraemic syndrome (aHUS). CFH is a 155-kDa glycoprotein containing nine potential N-glycosylation sites. In the current study, we present a quantitative glycosylation analysis of CFH using capillary electrophoresis and a complete site-specific N-glycan characterization using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESIMS/MS). A 17.9-kDa mass decrease, observed after glycosidase treatment, indicated that N-glycosylation is the major post-translational modification of CFH. This mass difference is consistent with CFH glycosylation by diantennary disialylated glycans of 2204 Da on eight sites. CFH was not sensitive to endoglycosidase H (Endo H) deglycosylation, indicating the absence of hybrid and oligomannose structures. Quantitative analysis showed that CFH is mainly glycosylated by complex, diantennary disialylated, non-fucosylated glycans. Disialylated fucosylated and monosialylated non-fucosylated oligosaccharides were also identified. MS analysis allowed complete characterization of the protein backbone, verification of the glycosylation sites and site-specific N-glycan identification. The absence of glycosylation at Asn199 of the NGSP sequence of CFH is shown. Asn511, Asn700, Asn784, Asn804, Asn864, Asn893, Asn1011 and Asn1077 are glycosylated essentially by diantennary disialylated structures with a relative distribution varying between 45% for Asn804 and 75% for Asn864. Diantennary monosialylated glycans and triantennary trisialylated fucosylated and non-fucosylated structures have also been identified. Interestingly, the sialylation level along with the amount of triantennary structures decreases from the N- to the C-terminal side of the protein.  相似文献   

3.
Rabies virus glycoprotein is important in the biology and pathogenesis of neurotropic rabies virus infection. This transmembrane glycoprotein is the only viral protein on the surface of virus particles, is the viral attachment protein that facilitates virus uptake by the infected cell, and is the target of the host humoral immune response to infection. The extracellular domain of this glycoprotein has N- glycosylation sequons at Asn37, Asn247, and Asn319. Appropriate glycosylation of these sequons is important in the expression of the glycoprotein. Soluble forms of rabies virus glycoprotein were constructed by insertion of a stop codon just external to the transmembrane domain. Using site-directed mutagenesis and expression in transfected eukaryotic cells, it was possible to compare the effects of site-specific glycosylation on the cell-surface expression and secretion of transmembrane and soluble forms, respectively, of the same glycoprotein. These studies yielded the surprising finding that although any of the three sequons permitted cell surface expression of full-length rabies virus glycoprotein, only the N-glycan at Asn319 permitted secretion of soluble rabies virus glycoprotein. Despite its biological and medical importance, it has not yet been possible to determine the crystal structure of the full-length transmembrane form of rabies virus glycoprotein which contains heterogeneous oligosaccharides. The current studies demonstrate that a soluble form of rabies virus glycoprotein containing only one sequon at Asn319 is efficiently secreted in the presence of the N-glycan processing inhibitor 1-deoxymannojirimycin. Thus, it is possible to purify a conformationally relevant form of rabies virus glycoprotein that contains only one N-glycan with a substantial reduction in its microheterogeneity. This form of the glycoprotein may be particularly useful for future studies aimed at elucidating the three-dimensional structure of this important glycoprotein.   相似文献   

4.
N-acetylglucosaminyltransferase V (GnT-V) catalyzes the addition of a beta1,6-linked GlcNAc to the alpha1,6 mannose of the trimannosyl core to form tri- and tetraantennary N-glycans and contains six putative N-linked sites. We used mass spectrometry techniques combined with exoglycosidase digestions of recombinant human GnT-V expressed in CHO cells, to identify its N-glycan structures and their sites of expression. Release of N-glycans by PNGase F treatment, followed by analysis of the permethylated glycans using MALDI-TOF MS, indicated a range of complex glycans from bi- to tetraantennary species. Mapping of the glycosylation sites was performed by enriching for trypsin-digested glycopeptides, followed by analysis of each fraction with Q-TOF MS. Predicted tryptic glycopeptides were identified by comparisons of theoretical masses of peptides with various glycan masses to the masses of the glycopeptides determined experimentally. Of the three putative glycosylation sites in the catalytic region, peptides containing sites Asn 334, 433, and 447 were identified as being N-glycosylated. Asn 334 is glycosylated with only a biantennary structure with one or two terminating sialic acids. Sites Asn 433 and 447 both contain structures that range from biantennary with two sialic acids to tetraantennary terminating with four sialic acids. The predominant glycan species found on both of these sites is a triantennary with three sialic acids. The appearance of only biantennary glycans at site Asn 433, coupled with the appearance of more highly branched structures at Asn 334 and 447, demonstrates that biantennary acceptors present at different sites on the same protein during biosynthesis can differ in their accessibility for branching by GnT-V.  相似文献   

5.
Human protein C (hPC) is glycosylated at three Asn‐X‐Ser/Thr and one atypical Asn‐X‐Cys sequons. We have characterized the micro‐ and macro‐heterogeneity of plasma‐derived hPC and compared the glycosylation features with recombinant protein C (tg‐PC) produced in a transgenic pig bioreactor from two animals having approximately tenfold different expression levels. The N‐glycans of hPC are complex di‐ and tri‐sialylated structures, and we measured 78% site occupancy at Asn‐329 (the Asn‐X‐Cys sequon). The N‐glycans of tg‐PC are complex sialylated structures, but less branched and partially sialylated. The porcine mammary epithelial cells glycosylate the Asn‐X‐Cys sequon with a similar efficiency as human hepatocytes even at these high expression levels, and site occupancy at this sequon was not affected by expression level. A distinct bias for particular structures was present at each of the four glycosylation sites for both hPC and tg‐PC. Interestingly, glycans with GalNAc in the antennae were predominant at the Asn‐329 site. The N‐glycan structures found for tg‐PC are very similar to those reported for a recombinant Factor IX produced in transgenic pig milk, and similar to the endogenous milk protein lactoferrin, which may indicate that N‐glycan processing in the porcine mammary epithelial cells is more uniform than in other tissues.  相似文献   

6.
Human and simian immunodeficiency viruses (HIV and SIV), influenza virus, and hepatitis C virus (HCV) have heavily glycosylated, highly variable surface proteins. Here we explore N-linked glycosylation site (sequon) variation at the population level in these viruses, using a new Web-based program developed to facilitate the sequon tracking and to define patterns (www.hiv.lanl.gov). This tool allowed rapid visualization of the two distinctive patterns of sequon variation found in HIV-1, HIV-2, and SIV CPZ. The first pattern (fixed) describes readily aligned sites that are either simply present or absent. These sites tend to be occupied by high-mannose glycans. The second pattern (shifting) refers to sites embedded in regions of extreme local length variation and is characterized by shifts in terms of the relative position and local density of sequons; these sites tend to be populated by complex carbohydrates. HIV, with its extreme variation in number and precise location of sequons, does not have a net increase in the number of sites over time at the population level. Primate lentiviral lineages have host species-dependent levels of sequon shifting, with HIV-1 in humans the most extreme. HCV E1 and E2 proteins, despite evolving extremely rapidly through point mutation, show limited sequon variation, although two shifting sites were identified. Human influenza A hemagglutinin H3 HA1 is accumulating sequons over time, but this trend is not evident in any other avian or human influenza A serotypes.  相似文献   

7.
Analysis of plant purple acid phosphatases (PAPs) showed high conservation and different distribution of N-glycosylation sites. Oligosaccharide structures of Lupinus luteus acid phosphatase (Lu_AP) produced in insect cells were determined. Mutant Lu_AP and Phaseolus vulgaris (Ph_AP) phosphatases lacking possibility of N-glycosylation at highly conserved sites were generated and expressed in insect cells. A role for N-glycosylation in the stability of PAPs was indicated by unsuccessful attempts to secrete Ph_AP and Lu_AP mutants generated by replacing Asn residues of conserved glycosylation sequons by Ser residues either singly or in combination. We showed that Ph_AP belongs to the group of glycoproteins that require occupancy of all highly conserved glycosylation sites for secretion, whereas replacing of the third position of the glycosylation sequon indicated that Lu_AP may tolerate the absence of some N-glycans. However, the N-glycan located at the polypeptide C-terminus was crucial for secretion of both enzymes. PAP specific activity of glycosylation mutants successfully secreted was similar to the wild-type recombinant proteins.  相似文献   

8.
The MUC1 mucin is an important tumor-associated antigen that shows extensive glycosylation in vivo. The O-glycosylation of this molecule, which has been well characterized in many cell types and tissues, is important in conferring the unusual biochemical and biophysical properties on a mucin. N-Glycosylation is crucial to the folding, sorting, membrane trafficking, and secretion of many proteins. Here, we evaluated the N-glycosylation of MUC1 derived from two sources: endogenous MUC1 isolated from human milk and a recombinant epitope-tagged MUC1F overexpressed in Caco2 colon carcinoma cells. N-Glycans on purified MUC1F/MUC1 were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), gas chromatography-mass spectrometry (GC-MS), and CAD-ESI-MS/MS. The spectra indicate that MUC1F N-glycans have compositions consistent with high-mannose structures (Hex(5-9)HexNAc(2)) and complex/hybrid-type glycans (NeuAc(0-3)Fuc(0-3)Hex(3-8)HexNAc(3-7)). Many of the N-glycan structures are identical on MUC1F and native MUC1; however, a marked difference is seen between the N-glycans on membrane-bound and secreted forms of the native molecule.  相似文献   

9.
10.
Campylobacter jejuni is unusual among bacteria in possessing a eukaryotic-like system for N-linked protein glycosylation at Asn residues in sequons of the type Asp/Glu-Xaa-Asn-Xaa-Ser/Thr. However, little is known about the structural context of the glycosylated sequons, limiting the design of novel recombinant glycoproteins. To obtain more information on sequon structure, we have determined the crystal structure of the PEB3 (Cj0289c) dimer. PEB3 has the class II periplasmic-binding protein fold, with each monomer having two domains with a ligand-binding site containing citrate located between them, and overall resembles molybdate- and sulfate-binding proteins. The sequon around Asn90 is located within a surface-exposed loop joining two structural elements. The three key residues are well exposed on the surface; hence, they may be accessible to the PglB oligosaccharyltransferase in the folded state.  相似文献   

11.
Despite having provided the first example of a prokaryal glycoprotein, little is known of the rules governing the N-glycosylation process in Archaea. As in Eukarya and Bacteria, archaeal N-glycosylation takes place at the Asn residues of Asn-X-Ser/Thr sequons. Since not all sequons are utilized, it is clear that other factors, including the context in which a sequon exists, affect glycosylation efficiency. As yet, the contribution to N-glycosylation made by sequon-bordering residues and other related factors in Archaea remains unaddressed. In the following, the surroundings of Asn residues confirmed by experiment as modified were analyzed in an attempt to define sequence rules and requirements for archaeal N-glycosylation.  相似文献   

12.
Yeast invertase contains 14 sequons, all of which are glycosylated to varying degrees except for sequon 5 which is marginally glycosylated, if at all. This sequon overlaps with sequon 4 in a sequence consisting of Asn92-Asn93-Thr94-Ser95(Reddy et al., 1988, J. Biol. Chem., 263, 6978-6985). To determine whether glycosylation at Asn93is sterically hindered by the oligosaccharide on Asn92, the latter amino acid was converted to a glutamine residue by site-directed mutagenesis of the SUC2 gene in a plasmid vector which was expressed in Saccharomyces cerevisiae. A glycopeptide encompassing sequons 3 through 6 was purified from a tryptic digest of the mutagenized invertase and sequenced by Edman degradation, which revealed that Asn93 of sequon 5 contained very little, if any, carbohydrate, despite the elimination of sequon 4. When Ser and Thr were inverted to yield Asn-Asn-Ser-Thr carbohydrate was associated primarily with the second sequon, in agreement with numerous studies indicating that Asn-X-Thr is preferred to Asn-X-Ser as an oligosaccharide acceptor. However, when the invertase overlapping sequons were converted to Asn-Asn-Ser-Ser, both sequons were clearly glycosylated, with the latter sequon predominating. These findings rule out steric hindrance as a factor involved in preventing the glycosylation of sequon 5 in invertase. Comparable results were obtained using an in vitro system with sequon-containing tri- and tetrapeptides acceptors, in addition to larger oligosaccharide acceptors.  相似文献   

13.
The recombinant plasminogen activator (rDSPA1) from the vampirebat Desmodus rotundus is a promising new thrombolytic agentthat exhibits a superior pharmacological profile if comparedto tissue-type plasminogen activator (t-PA) or streptokinase.In the present study the structures of the carbohydrate moietiesat the two N-glycosylation sites (Asn-117, Asn-362) of rDSPAIexpressed in Chinese hamster ovary cells were determined. N-Linkedglycans were enzymatically released from isolated tryptic glycopeptidesby peptide-N4-(N-acetyl-ß-glucosaminyl)asparagineamidase F digestion and separated by two-dimensional HPLC. Oligosaccharidestructures were characterized by analysis of carbohydrate compositionand linkage, by mass spectrometry, and by sequence analysisin which the fiuorescently labeled glycans were cleaved withan array of specific exoglycosidases. More than 30 differentoligosaccharides were identified. The results revealed thatAsn-117 carried a mixture of one high-mannose structure (17%of site-specific glycosylation), three hybrid glycans (26%)and predominantly biantennary complex N-glycans (54%). Glycosylationsite Asn-362 was found to comprise complex glycans with biantennary(50%), 2,4- and 2,6-branched triantennary (21%, 11%), and tetraantennarystructures (10%), which were fucosylated at the innermost residueof N-acetylglucosamine. Mainly neutral and monosialylated glycans,and smaller quantities of disialylated glycans, were detectedat both glycosylation sites. Sialic acid was 2-3 linked to galactoseexclusively. As shown in this study the N-glycans attached toAsn-117 of rDSPA1 are more processed during biosynthesis thanthe high-mannose structures linked to Asn-117 of t-PA, to whichthe polypeptide backbone of rDSPA1 is structurally closely related. bat plasminogen activator oligosaccharide analysis rDSPA1 recombinant glycoprotein site-specific N-glycosylation  相似文献   

14.
Prostate-specific antigen (PSA) is a glycoprotein secreted by prostate epithelial cells. PSA is currently used as a marker of prostate carcinoma because high levels of PSA are indicative of a tumor situation. However, PSA tests still suffer from a lack of specificity to distinguish between benign prostate hyperplasia and prostate cancer. To determine whether PSA glycosylation could provide a means of differentiating between PSA from normal and tumor origins, N-glycan characterization of PSA from seminal fluid and prostate cancer cells (LNCaP cell line) by sequencing analysis and mass spectrometry was carried out. Glycans from normal PSA (that correspond to low and high pI PSA fractions) were sialylated biantennary complex structures, half of them being disialylated in the low pI PSA fraction and mostly monosialylated in the high pI PSA. PSA from LNCaP cells was purified to homogeneity, and its glycan analysis showed a significantly different pattern, especially in the outer ends of the biantennary complex structures. In contrast to normal PSA glycans, which were sialylated, LNCaP PSA oligosaccharides were all neutral and contained a higher fucose content. In 10-15% of the structures fucose was linked alpha1-2 to galactose, forming the H2 epitope absent in normal PSA. GalNAc was increased in LNCaP glycans to 65%, whereas in normal PSA it was only present in 25% of the structures. These carbohydrate differences allow a distinction to be made between PSA from normal and tumor origins and suggest a valuable biochemical tool for diagnosis and follow-up purposes.  相似文献   

15.
Human alpha1-microglobulin (alpha1-m; also called protein HC), a glycoprotein belonging to the lipocalin superfamily, was isolated by sequential anion-exchange chromatography and gel filtration from the urine of hemodialized patients and from amniotic fluid collected in the week 16-18 of pregnancy. The carbohydrate chains of the protein purified from the two sources, which are organized in two Asn-linked and one Thr-linked oligosaccharides, were structurally characterized using matrix-assisted laser desorption ionization and electrospray mass spectrometry. The glycans attached to Thr5 are differently truncated NeuHexHexNAc sequences, and O-glycosylation in the amniotic fluid protein is only partial. Asn96 has both diantennary and triantennary structures attached in the case of urinary alpha1-m and only diantennary glycans in the amniotic fluid protein. The main carbohydrate units attached to Asn17 are in both proteins monosialylated and disialylated diantennary glycans. The position of the oligosaccharide chains in a three-dimensional model of the protein, produced using the automated Swiss-Model service, is also discussed.  相似文献   

16.
Many viruses are known to undergo rapid evolutionary changes under selective pressures. The HIV-1 envelope glycoprotein 120 (gp120) shows extreme selection for NXS/T sequons, the potential sites of N-glycosylation. Although the average number of sequons in gp120 appears to be relatively stable in the recent past, even slight changes in the distribution of sequons may potentially play crucial roles in protein interaction and viral infection. This study tracked the prevalence and distribution of NXS/T sequons in gp120 over a period of 29 years (from 1981 to 2009). The gp120 showed location specific distribution of sequons with higher density in the outer domain of the molecule. The NXT sequon density decreased in the outer domain (despite the increase in the sequon specific amino acid threonine), but increased in the inner domain. By contrast, the NXS sequon density increased specifically in the outer domain. Related changes were also seen in the distribution probabilities of sequons in two domains. The results indicate that the gp120, chiefly in subtype B, is redistributing NXS/T sequons within the molecule with specific selection for NXS sequons. The subtle evolution of sequons in gp120 may have implications in viral resistance and infection.  相似文献   

17.
Human alpha‐1‐antitrypsin (A1AT) is a protease inhibitor that is involved in the protection of lungs from neutrophil elastase enzyme that drastically modifies tissue functioning. The glycoprotein consists of 394 amino acids and is N‐glycosylated at Asn‐46, Asn‐83, and Asn‐247. A1AT deficiency is currently treated with A1AT that is purified from human serum. In view of therapeutic applications, rA1AT was produced using a novel human neuronal cell line (AGE1.HN®) and we investigated the N‐glycosylation pattern as well as the in vitro anti‐inflammatory activity of the recombinant glycoprotein. rA1AT (300 mg/L) was biologically active as analyzed using elastase assay. The N‐glycan pool, released by PNGase F digestion, was characterized using 2D‐HPLC, MALDI‐TOF mass spectrometry, and by exoglycosidase digestions. A total of 28 N‐glycan structures were identified, ranging from diantennary to tetraantennary complex‐type N‐glycans. Most of the N‐glycans were found to be (α1–6) core‐fucosylated and part of them contain the Lewis X epitope. The two major compounds are a monosialylated diantennary difucosylated glycan and a disialylated diantennary core‐fucosylated glycan, representing 25% and 18% of the total N‐glycan pool, respectively. Analysis of the site‐specificity revealed that Asn‐247 was mainly occupied by diantennary N‐glycans whereas Asn‐46 was occupied by di‐, and triantennary N‐glycans. Asn‐83 was exclusively occupied by sialylated tri‐ and tetraantennary N‐glycans. Next, we evaluated the anti‐inflammatory activity of rA1AT using A1AT purified from human serum as a reference. rA1AT was found to inhibit the production of TNF‐α in neutrophils and monocytes as commercial A1AT does. Biotechnol. Bioeng. 2011;108:2118–2128. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
Factor VII (FVII) is a vitamin K-dependent glycoprotein which, in its activated form (FVIIa), participates in the coagulation process by activating factor X and factor IX. FVII is secreted as single peptide chain of 406 residues. Plasma-derived FVII undergoes many post-translational modifications such as γ-carboxylation, N- and O-glycosylation, β-hydroxylation. Despite glycosylation of recombinant FVIIa has been fully characterized, nothing is reported on the N- and O-glycans of plasma-derived FVII (pd-FVII) and on their structural heterogeneity at each glycosylation site. N- and O-glycosylation sites and site specific heterogeneity of pd-FVII were studied by various complementary qualitative and quantitative techniques. A MALDI-MS analysis of the native protein indicated that FVII is a 50.1 kDa glycoprotein modified on two sites by diantennary, disialylated non-fucosylated (A2S2) glycans. LC–ESIMS/MS analysis revealed that both light chain and heavy chain were N-glycosylated mainly by A2S2 but also by triantennary sialylated glycans. Nevertheless, lower amounts of triantennary structures were found on Asn322 compared to Asn145. Moreover, the triantennary glycans were shown to be fucosylated. In parallel, quantitative analysis of the isolated glycans by capillary electrophoresis indicated that the diantennary structures represented about 50% of the total glycan content. Glycan sequencing using different glycanases led to the identification of triantennary difucosylated structures. Last, MS and MS/MS analysis revealed that FVII is O-glycosylated on the light chain at position Ser60 and Ser52 which are modified by oligosaccharide structures such as fucose and Glc(Xyl)0–1–2, respectively. These latter three O-glycans coexist in equal amounts in plasma-derived FVII.  相似文献   

19.
The N-glycans present on the total mixture of serum glycoproteins (serum N-glycome) were analyzed in 24 subjects with congenital disorder of glycosylation type I (CDG-I) and 7 healthy, age-matched individuals. No new N-glycan structures were observed in the sera of CDG-I patients as compared with normal sera. However, we observed in all subtypes a significantly increased degree of core alpha-1,6-fucosylation of the biantennary glycans as compared to normal, as well as a significant decrease in the amount of triantennary glycans. These serum N-glycome changes appear to be a milder manifestation of some of the changes observed in adult liver cirrhosis patients, which is compatible with the reported steatosis and fibrosis in CDG-I patients. In the CDG-Ia subgroup, the extent of the serum N-glycome changes correlates with the aberration of the serum transferrin isoelectric focusing pattern, which measures the severity of the lack of entire N-glycan chains (primary consequence of CDG-I) in the liver and is the standard diagnostic test for this category of inherited diseases.  相似文献   

20.
N-glycans play an essential role in biological process and are associated with age, gender, and body mass parameters in Caucasian populations, whereas no study has been reported in Chinese populations. To investigate the correlation between N-glycan structures and metabolic syndrome (MetS) components, we conducted a population-based study in 212 Chinese Han individuals. The replication study was performed on 520 unrelated individuals from a Croatian island Kor?ula. The most prominent observation was the consistent positive correlations between different forms of triantennary glycans and negative correlations between glycans containing core-fucose with MetS components including BMI, SBP, DBP, and fasting plasma glucose (FPG) simultaneously. Significant differences in a number of N-glycan traits were also detected between normal and abnormal groups of BMI, BP, and FPG, respectively. In the multivariate analysis, the level of monosialylated glycans (structure loadings = -0.776) was the most correlated with the MetS related risk factors, especially with SBP (structure loadings = 0.907). Results presented here are showing that variations in the composition of the N-glycome in human plasma could represent the alternations of human metabolism and could be potential biomarkers of MetS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号