首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
肌肉(骨骼肌)组织对脂肪酸的利用水平是影响机体能量稳态的关键因素.肌肉摄取的长链脂肪酸(long chain fatty acids,LCFAs)主要依赖细胞膜载体蛋白协助的跨膜转运过程.近年来,一系列与脂肪酸转运相关的膜蛋白被相继克隆鉴定,其中在肌肉中大量表达的有脂肪酸转运蛋白-1(fatty acid transport protein-1,FATP-1)、膜脂肪酸结合蛋白(plasma membrane fatty acid binding protein,FABPpm)、脂肪酸转位酶(fatty acid translocase,FAT/CD36)和小窝蛋白-1(caveolin-1).研究上述肌肉脂肪酸转运膜蛋白的结构功能、调控机制及相互关系,可能为肥胖等脂类代谢紊乱疾病的诊治提供新的手段.  相似文献   

2.
Evidence is accumulating that cellular lipid binding proteins are playing central roles in cellular lipid uptake and metabolism. Membrane-associated fatty acid-binding proteins putatively function in protein-mediated transmembrane transport of fatty acids, likely coexisting with passive diffusional uptake. The intracellular trafficking of fatty acids, bile acids, and other lipid ligands, may involve their interaction with specific membrane or protein targets, which are unique properties of some but not of all cytoplasmic lipid binding proteins. Recent studies indicate that these proteins not only facilitate but also regulate cellular lipid utilization. For instance, muscle fatty acid uptake is subject to short-term regulation by translocation of fatty acid translocase (FAT)/CD36 from intracellular storage sites to the plasma membrane, and liver-type cytoplasmic fatty acid-binding protein (L-FABPc) functions in long-term, ligand-induced regulation of gene expression by directly interacting with nuclear receptors. Therefore, the properties of the lipid-protein complex, rather than those of the lipid ligand itself, determine the fate of the ligand in the cell. Finally, there are an increasing number of reports that deficiencies or altered functioning of both membrane-associated and cytoplasmic lipid binding proteins are associated with disease states, such as obesity, diabetes and atherosclerosis. In conclusion, because of their central role in the regulation of lipid metabolism, cellular lipid binding proteins are promising targets for the treatment of diseases resulting from or characterised by disturbances in lipid metabolism, such as atherosclerosis, hyperlipidemia, and insulin resistance.  相似文献   

3.
The transmembrane protein CD36 has been identified in isolated cell studies as a putative transporter of long chain fatty acids. In humans, an association between CD36 deficiency and defective myocardial uptake of the fatty acid analog 15-(p-iodophenyl)-3-(R, S)-methyl pentadecanoic acid (BMIPP) has been reported. To determine whether this association represents a causal link and to assess the physiological role of CD36, we compared tissue uptake and metabolism of two iodinated fatty acid analogs BMIPP and 15-(p-iodophenyl) pentadecanoic acid (IPPA) in CD36 null and wild type mice. We also investigated the uptake and lipid incorporation of palmitate by adipocytes isolated from both groups. Compared with wild type, uptake of BMIPP and IPPA was reduced in heart (50-80%), skeletal muscle (40-75%), and adipose tissues (60-70%) of null mice. The reduction was associated with a 50-68% decrease in label incorporation into triglycerides and in 2-3-fold accumulation of label in diglycerides. Identical results were obtained from studies of [(3)H]palmitate uptake in isolated adipocytes. The block in diglyceride to triglyceride conversion could not be explained by changes in specific activities of the key enzymes long chain acyl-CoA synthetase and diacylglycerol acyltransferase, which were similar in tissues from wild type and null mice. It is concluded that CD36 facilitates a large fraction of fatty acid uptake by heart, skeletal muscle, and adipose tissues and that CD36 deficiency in humans is the cause of the reported defect in myocardial BMIPP uptake. In CD36-expressing tissues, uptake regulates fatty acid esterification at the level of diacylglycerol acyltransferase by determining fatty acyl-CoA supply. The membrane transport step may represent an important control site for fatty acid metabolism in vivo.  相似文献   

4.
Cellular long-chain fatty acid uptake is believed to occur largely by protein-mediated transmembrane transport of fatty acids, and also by passive diffusional uptake. It is postulated that the membrane proteins function in trapping of fatty acids from extracellular sources, whereafter their transmembrane translocation occurs by passive diffusion through the lipid bilayer. The key membrane-associated proteins involved are plasma membrane fatty acid-binding protein (FABP(pm)) and fatty acid translocase (FAT/CD36). Their plasma membrane contents are positively correlated with rates of fatty acid uptake. In studies with heart and skeletal muscle we observed that FAT/CD36 is regulated acutely, in that both contraction and insulin can translocate FAT/CD36 from an intracellular depot to the sarcolemma, thereby increasing the rate of fatty acid uptake. In addition, from studies with obese Zucker rats, an established rodent model of obesity and insulin resistance, evidence has been obtained that in heart, muscle and adipose tissue FAT/CD36 is permanently relocated from an intracellular pool to the plasma membrane, resulting in increased fatty acid uptake rates in this condition. These combined observations indicate that protein-mediated fatty acid uptake is a key step in cellular fatty acid utilization, and suggest that malfunctioning of the uptake process could be a critical factor in the pathogenesis of insulin resistance.  相似文献   

5.
Understanding the molecular regulatory mechanisms controlling for myocardial lipid metabolism is of critical importance for the development of new therapeutic strategies for heart diseases. The role of PPARγ and thiazolidinediones in regulation of myocardial lipid metabolism is controversial. The aim of our study was to assess the role of PPARγ on myocardial lipid metabolism and function and differentiate local/from systemic actions of PPARs agonists using cardiomyocyte-specific PPARγ -knockout (CM-PGKO) mice. To this aim, the effect of PPARγ, PPARγ/PPARα and PPARα agonists on cardiac function, intra-myocyte lipid accumulation and myocardial expression profile of genes and proteins, affecting lipid oxidation, uptake, synthesis, and storage (CD36, CPT1MIIA, AOX, FAS, SREBP1-c and ADPR) was evaluated in cardiomyocyte-specific PPARγ-knockout (CM-PGKO) and littermate control mice undergoing standard and high fat diet (HFD). At baseline, protein levels and mRNA expression of genes involved in lipid uptake, oxidation, synthesis, and accumulation of CM-PGKO mice were not significantly different from those of their littermate controls. At baseline, no difference in myocardial lipid content was found between CM-PGKO and littermate controls. In standard condition, pioglitazone and rosiglitazone do not affect myocardial metabolism while, fenofibrate treatment significantly increased CD36 and CPT1MIIA gene expression. In both CM-PGKO and control mice submitted to HFD, six weeks of treatment with rosiglitazone, fenofibrate and pioglitazone lowered myocardial lipid accumulation shifting myocardial substrate utilization towards greater contribution of glucose. In conclusion, at baseline, PPARγ does not play a crucial role in regulating cardiac metabolism in mice, probably due to its low myocardial expression. PPARs agonists, indirectly protect myocardium from lipotoxic damage likely reducing fatty acids delivery to the heart through the actions on adipose tissue. Nevertheless a direct non-PPARγ mediated mechanism of PPARγ agonist could not be ruled out.  相似文献   

6.
The fatty acid transporter and scavenger receptor CD36 is increasingly being implicated in the pathogenesis of insulin resistance and its progression towards type 2 diabetes and associated cardiovascular complications. The redistribution of CD36 from intracellular stores to the plasma membrane is one of the earliest changes occurring in the heart during diet induced obesity and insulin resistance. This elicits an increased rate of fatty acid uptake and enhanced incorporation into triacylglycerol stores and lipid intermediates to subsequently interfere with insulin-induced GLUT4 recruitment (i.e., insulin resistance). In the present paper we discuss the potential of CD36 to serve as a target to rectify abnormal myocardial fatty acid uptake rates in cardiac lipotoxic diseases. Two approaches are described: (i) immunochemical inhibition of CD36 present at the sarcolemma and (ii) interference with the subcellular recycling of CD36. Using in vitro model systems of high-fat diet induced insulin resistance, the results indicate the feasibility of using CD36 as a target for adaptation of cardiac metabolic substrate utilization. In conclusion, CD36 deserves further attention as a promising therapeutic target to redirect fatty acid fluxes in the body.  相似文献   

7.
Myocardial uptake of long-chain fatty acids largely occurs by facilitated diffusion, involving primarily the membrane-associated protein CD36. Other putative fatty acid transporters, such as FABPpm, FATP1 and FATP4, also play a role, but their quantitative contribution is much smaller or their involvement is rather permissive. Besides its sarcolemmal localization, CD36 is also present in intracellular compartments (endosomes). CD36 cycles between both pools via vesicle-mediated trafficking, and the relative distribution between endosomes versus sarcolemma determines the rate of cardiac fatty acid uptake. A net translocation of CD36 to the sarcolemma is induced by various stimuli, in particular hormones like insulin and myocyte contractions, so as to allow a proper coordination of the rate of fatty acid uptake with rapid fluctuations in myocardial energy needs. Furthermore, changes in cardiac fatty acid utilization that occur in both acute and chronic cardiac disease appear to be accompanied by concomitant changes in the sarcolemmal presence of CD36. Studies in various animal and cell models suggest that interventions aimed at modulating the sarcolemmal presence or functioning of CD36 hold promise as therapy to rectify aberrant rates of fatty acid uptake in order to fight cardiac metabolic remodeling and restore proper contractile function. In this review we discuss our current knowledge about the role of CD36 in cardiac fatty acid uptake and metabolism in health and disease with focus on the regulation of the subcellular trafficking of CD36 and its selective modulation as therapeutic approach for cardiac disease. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.  相似文献   

8.
Cardiovascular disease is the primary cause of death in obesity and type-2 diabetes mellitus (T2DM). Alterations in substrate metabolism are believed to be involved in the development of both cardiac dysfunction and insulin resistance in these conditions. Under physiological circumstances the heart utilizes predominantly long-chain fatty acids (LCFAs) (60–70%), with the remainder covered by carbohydrates, i.e., glucose (20%) and lactate (10%). The cellular uptake of both LCFA and glucose is regulated by the sarcolemmal amount of specific transport proteins, i.e., fatty acid translocase (FAT)/CD36 and GLUT4, respectively. These transport proteins are not only present at the sarcolemma, but also in intracellular storage compartments. Both an increased workload and the hormone insulin induce translocation of FAT/CD36 and GLUT4 to the sarcolemma. In this review, recent findings on the insulin and contraction signalling pathways involved in substrate uptake and utilization by cardiac myocytes under physiological conditions are discussed. New insights in alterations in substrate uptake and utilization during insulin resistance and its progression towards T2DM suggest a pivotal role for substrate transporters. During the development of obesity towards T2DM alterations in cardiac lipid homeostasis were found to precede alterations in glucose homeostasis. In the early stages of T2DM, relocation of FAT/CD36 to the sarcolemma is associated with the myocardial accumulation of triacylglycerols (TAGs) eventually leading to an impaired insulin-stimulated GLUT4-translocation. These novel insights may result in new strategies for the prevention of development of cardiac dysfunction and insulin resistance in obesity and T2DM.  相似文献   

9.
Mitochondrial oxidation of fatty acids accounts for the majority of cardiac ATP production in the heart. Fatty acid utilization by cardiac mitochondria is controlled at the level of fatty acid uptake, lipid synthesis, mobilization and mitochondrial import and oxidation. Consequently defective mitochondrial function appears to be central to the development of heart failure. Cardiolipin is a key mitochondrial phospholipid required for the activity of the electron transport chain. In heart failure, loss of cardiolipin and tetralinoleoylcardiolipin helps to fuel the generation of excessive reactive oxygen species that are a by-product of inefficient mitochondrial electron transport chain complexes I and III. In this vicious cycle, reactive oxygen species generate lipid peroxides and may, in turn, cause oxidation of cardiolipin catalyzed by cytochrome c leading to cardiomyocyte apoptosis. Hence, preservation of cardiolipin and mitochondrial function may be keys to the prevention of heart failure development. In this review, we summarize cardiac energy metabolism and the important role that fatty acid uptake and metabolism play in this process and how defects in these result in heart failure. We highlight the key role that cardiolipin and sirtuins play in cardiac mitochondrial β-oxidation. In addition, we review the potential of pharmacological modulation of cardiolipin through the polyphenolic molecule resveratrol as a sirtuin-activator in attenuating mitochondrial dysfunction. Finally, we provide novel experimental evidence that resveratrol treatment increases cardiolipin in isolated H9c2 cardiac myocytes and tetralinoleoylcardiolipin in the heart of the spontaneously hypertensive rat and hypothesize that this leads to improvement in mitochondrial function. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.  相似文献   

10.
Caveolin-1 and CD36 are plasma membrane fatty acid binding proteins that participate in adipocyte fatty acid uptake and metabolism. Both are associated with cholesterol-enriched caveolae/lipid rafts in the plasma membrane that are important for long chain fatty acid uptake. Depletion of plasma membrane cholesterol reversibly inhibited oleate uptake by adipocytes without altering the amount or the cell surface distribution of either caveolin-1 or CD36. Cholesterol levels thus regulate fatty acid uptake by adipocytes via a pathway that does not involve altered cell surface localization of caveolin-1 or CD36.  相似文献   

11.
This article first presents an overview of published literature documenting the role of the scavenger receptor CD36 in activation of brain microglia with reference to brain pathologies such as Alzheimer's and malaria. Second, the possibility that CD36 may play a role in brain FA metabolism is discussed. Long-chain polyunsaturated fatty acids (PUFAs) are important for brain function and are mostly derived from the plasma. Based on its role in facilitating FA uptake in several tissues and cell types, CD36 expressed on microvascular endothelial cells in the brain may facilitate local uptake of PUFAs. Alternatively, CD36 may influence brain FA supply indirectly via impacting utilization of dietary FA or their metabolism in tissues such as the liver. We examined the possibility that CD36 expression impacts brain function by evaluating the behavior of CD36 null mice using a battery of standard tests. Our data indicate that CD36 deficient mice have normal patterns of activity, anxiety and exploration of novel environments. However they appear to have a significant impairment in learning ability. These findings could provide a new perspective regarding the regulation of brain lipid metabolism.  相似文献   

12.
Long chain fatty acid uptake across the plasma membrane occurs, in part, via a protein-mediated process involving a number of fatty acid binding proteins known as fatty acid transporters. A critical step in furthering the understandings of fatty acid transport was the discovery that giant vesicles, prepared from tissues such as muscle and heart, provided a suitable system for measuring fatty acid uptake. These vesicles are large (10–15 m diameter), are oriented fully right side out, and contain cytosolic FABP in the lumen, which acts as a fatty acid sink, while none of the fatty acid taken up is metabolized or associated with the plasma membrane. The key fatty acid transporters FAT/CD36 and FABPpm are expressed in muscle and heart and their plasma membrane content is positively correlated with rates of fatty acid transport. These transporters are regulated acutely (within minutes) and chronically (days). For instance, both muscle contraction and insulin can translocate FAT/CD36 from an intracellular pool to the plasma membrane, thereby increasing fatty acid transport. With obesity, fatty acid transport is increased along with a concomitant increase in plasmalemmal FAT/CD36 (heart, muscle) and FABPpm (heart only), but without change in the expression of these transporters. This latter observation suggests that some of the fatty acid transporters are permanently relocated to the plasma membrane. In other studies it also appears that fatty acid transport rates are altered in a reciprocal manner to glucose transport. Since disorders in lipid metabolism appear to be an important factor contributing to the etiology of a number of common human diseases such as diabetes and obesity, our evidence that protein-mediated fatty acid transport is a key step in lipid metabolism allows the speculation that malfunctioning of the fatty acid transport process could be a common critical factor in the pathogenesis of these diseases.  相似文献   

13.
The heart balances uptake, metabolism and oxidation of fatty acids (FAs) to maintain ATP production, membrane biosynthesis and lipid signaling. Under conditions where FA uptake outpaces FA oxidation and FA sequestration as triacylglycerols in lipid droplets, toxic FA metabolites such as ceramides, diacylglycerols, long-chain acyl-CoAs, and acylcarnitines can accumulate in cardiomyocytes and cause cardiomyopathy. Moreover, studies using mutant mice have shown that dysregulation of enzymes involved in triacylglycerol, phospholipid, and sphingolipid metabolism in the heart can lead to the excess deposition of toxic lipid species that adversely affect cardiomyocyte function. This review summarizes our current understanding of lipid uptake, metabolism and signaling pathways that have been implicated in the development of lipotoxic cardiomyopathy under conditions including obesity, diabetes, aging, and myocardial ischemia–reperfusion. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.  相似文献   

14.
Because of the importance of long-chain fatty acids (LCFAs) as a myocardial energy substrate, myocardial LCFA metabolism has been of particular interest for the understanding of cardiac pathophysiology. Recently, by using radiolabeled LCFA analogues, myocardial LCFA metabolism has been clinically evaluated, which revealed a total defect of myocardial LCFA accumulation in a small number of subjects. The mechanism for the cellular LCFA uptake process is still disputable, but recent results suggest that fatty acid translocase (FAT)/CD36 is a transporter in the heart. In the present study, we analyzed mutations and protein expression of the FAT/CD36 gene in 47 patients who showed total lack of the accumulation of a radiolabeled LCFA analogue in the heart. All the patients carried two mutations in the FAT/CD36 gene, and expression of the FAT/CD36 protein was not detected on either platelet or monocyte membranes. Our results showed the link between mutations of the FAT/CD36 gene and a defect in the accumulation of LCFAs in the human heart.  相似文献   

15.
16.
17.
脂质代谢是机体的重要代谢过程,其紊乱会导致众多疾病的发生。人类白细胞分化抗原36(cluster of differentiation 36,CD36)是一种在单核细胞、巨噬细胞、平滑肌细胞以及脂肪细胞高度表达的清道夫受体,是识别氧化低密度脂蛋白及长链脂肪酸的主要受体和转运蛋白,在脂质代谢过程中发挥着重要作用。本文综述了CD36基因及蛋白的结构和生理功能,阐述了清道夫受体CD36在脂质代谢过程中发挥的作用,并系统地总结了其级联AMPK、mTOR和MAPK信号通路参与脂质代谢过程的分子机制,为相关生物学研究提供了理论基础。  相似文献   

18.
The increase in the prevalence of human obesity highlights the need to identify molecular and cellular mechanisms involved in control of feeding and energy balance. Oleoylethanolamide (OEA), an endogenous lipid produced primarily in the small intestine, has been identified to play an important role in the regulation of animal food intake and body weight. Previous studies indicated that OEA activates peroxisome proliferator-activated receptor-alpha, which is required to mediate the effects of appetite suppression, reduces blood lipid levels, and enhances peripheral fatty acid catabolism. However, the effect of OEA on enterocyte function is unclear. In this study, we have examined the effect of OEA on intestinal fatty acid uptake and FAT/CD36 expression in vivo and in vitro. We intraperitoneally administered OEA to rats and examined FAT/CD36 mRNA level and fatty acid uptake in enterocytes isolated from the proximal small intestine, as well as in adipocytes. Our results indicate that OEA treatment significantly increased FAT/CD36 mRNA expression in intestinal mucosa and isolated jejunal enterocytes. In addition, we also found that OEA treatment significantly increases fatty acid uptake in isolated enterocytes in vitro. These results suggest that in addition to appetite regulation, OEA may regulate body weight by altered peripheral lipid metabolism, including increased lipolysis in adipocytes and enhanced fatty acid uptake in enterocytes, both in conjunction with increased expression of FAT/CD36. This study may have important implications in understanding the mechanism of OEA in the regulation of fatty acid absorption in human physiological and pathophysiological conditions.  相似文献   

19.
SR-B1 belongs to the class B scavenger receptor, or CD36 super family. SR-B1 and CD36 share an affinity for a wide array of ligands. Although they exhibit similar ligand binding specificity, SR-B1 and CD36 have some very specific lipid transport functions. Whereas SR-B1 primarily facilitates the selective delivery of cholesteryl esters (CEs) and cholesterol from HDL particles to the liver and non-placental steroidogenic tissues, as well as participating in cholesterol efflux from cells, CD36 primarily mediates the uptake of long-chain fatty acids in high fatty acid-requiring organs such as the heart, skeletal muscle and adipose tissue. However, CD36 also mediates cholesterol efflux and facilitates selective lipoprotein-CE delivery, although less efficiently than SR-B1. Interestingly, the ability or efficiency of SR-B1 to mediate fatty acid uptake has not been reported. In this paper, using overexpression and siRNA-mediated knockdown of SR-B1, we show that SR-B1 possesses the ability to facilitate fatty acid uptake. Moreover, this function is not blocked by BLT-1, a specific chemical inhibitor of HDL-CE uptake activity of SR-B1, nor by sulfo-N-succinimidyl oleate, which inhibits fatty acid uptake by CD36. Attenuated fatty acid uptake was also observed in primary adipocytes isolated from SR-B1 knockout mice. In conclusion, facilitation of fatty acid uptake is an additional function that is mediated by SR-B1.  相似文献   

20.
CD36 is a multifunctional immuno-metabolic receptor with many ligands. One of its physiological functions in the heart is the high-affinity uptake of long-chain fatty acids (FAs) from albumin and triglyceride rich lipoproteins. CD36 deletion markedly reduces myocardial FA uptake in rodents and humans. The protein is expressed on endothelial cells and cardiomyocytes and at both sites is likely to contribute to FA uptake by the myocardium. CD36 also transduces intracellular signaling events that influence how the FA is utilized and mediate metabolic effects of FA in the heart. CD36 transduced signaling regulates AMPK activation in a way that adjusts oxidation to FA uptake. It also impacts remodeling of myocardial phospholipids and eicosanoid production, effects exerted via influencing intracellular calcium (iCa2 +) and the activation of phospholipases. Under excessive FA supply CD36 contributes to lipid accumulation, inflammation and dysfunction. However, it is also important for myocardial repair after injury via its contribution to immune cell clearance of apoptotic cells. This review describes recent progress regarding the multiple actions of CD36 in the heart and highlights those areas requiring future investigation. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号