首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.

Background and Aims

Natural selection and genetic drift are important evolutionary forces in determining genetic and phenotypic differentiation in plant populations. The extent to which these two distinct evolutionary forces affect locally adaptive quantitative traits has been well studied in common plant and animal species. However, we know less about how quantitative traits respond to selection pressures and drift in endangered species that have small population sizes and fragmented distributions. To address this question, this study assessed the relative strengths of selection and genetic drift in shaping population differentiation of phenotypic traits in Psilopeganum sinense, a naturally rare and recently endangered plant species.

Methods

Population differentiation at five quantitative traits (QST) obtained from a common garden experiment was compared with differentiation at putatively neutral microsatellite markers (FST) in seven populations of P. sinense. QST estimates were derived using a Bayesian hierarchical variance component method.

Key Results

Trait-specific QST values were equal to or lower than FST. Neutral genetic diversity was not correlated with quantitative genetic variation within the populations of P. sinense.

Conclusions

Despite the prevalent empirical evidence for QST > FST, the results instead suggest a definitive role of stabilizing selection and drift leading to phenotypic differentiation among small populations. Three traits exhibited a significantly lower QST relative to FST, suggesting that populations of P. sinense might have experienced stabilizing selection for the same optimal phenotypes despite large geographical distances between populations and habitat fragmentation. For the other two traits, QST estimates were of the same magnitude as FST, indicating that divergence in these traits could have been achieved by genetic drift alone. The lack of correlation between molecular marker and quantitative genetic variation suggests that sophisticated considerations are required for the inference of conservation measures of P. sinense from neutral genetic markers.  相似文献   

2.

Background

For Chagas disease, the most serious infectious disease in the Americas, effective disease control depends on elimination of vectors through spraying with insecticides. Molecular genetic research can help vector control programs by identifying and characterizing vector populations and then developing effective intervention strategies.

Methods and Findings

The population genetic structure of Triatoma infestans (Hemiptera: Reduviidae), the main vector of Chagas disease in Bolivia, was investigated using a hierarchical sampling strategy. A total of 230 adults and nymphs from 23 localities throughout the department of Chuquisaca in Southern Bolivia were analyzed at ten microsatellite loci. Population structure, estimated using analysis of molecular variance (AMOVA) to estimate FST (infinite alleles model) and RST (stepwise mutation model), was significant between western and eastern regions within Chuquisaca and between insects collected in domestic and peri-domestic habitats. Genetic differentiation at three different hierarchical geographic levels was significant, even in the case of adjacent households within a single locality (R ST = 0.14, F ST = 0.07). On the largest geographic scale, among five communities up to 100 km apart, R ST = 0.12 and F ST = 0.06. Cluster analysis combined with assignment tests identified five clusters within the five communities.

Conclusions

Some houses are colonized by insects from several genetic clusters after spraying, whereas other households are colonized predominately by insects from a single cluster. Significant population structure, measured by both R ST and F ST, supports the hypothesis of poor dispersal ability and/or reduced migration of T. infestans. The high degree of genetic structure at small geographic scales, inferences from cluster analysis and assignment tests, and demographic data suggest reinfesting vectors are coming from nearby and from recrudescence (hatching of eggs that were laid before insecticide spraying). Suggestions for using these results in vector control strategies are made.  相似文献   

3.

Background

A large single nucleotide polymorphism (SNP) dataset was used to analyze genome-wide diversity in a diverse collection of watermelon cultivars representing globally cultivated, watermelon genetic diversity. The marker density required for conducting successful association mapping depends on the extent of linkage disequilibrium (LD) within a population. Use of genotyping by sequencing reveals large numbers of SNPs that in turn generate opportunities in genome-wide association mapping and marker-assisted selection, even in crops such as watermelon for which few genomic resources are available. In this paper, we used genome-wide genetic diversity to study LD, selective sweeps, and pairwise FST distributions among worldwide cultivated watermelons to track signals of domestication.

Results

We examined 183 Citrullus lanatus var. lanatus accessions representing domesticated watermelon and generated a set of 11,485 SNP markers using genotyping by sequencing. With a diverse panel of worldwide cultivated watermelons, we identified a set of 5,254 SNPs with a minor allele frequency of ≥ 0.05, distributed across the genome. All ancestries were traced to Africa and an admixture of various ancestries constituted secondary gene pools across various continents. A sliding window analysis using pairwise FST values was used to resolve selective sweeps. We identified strong selection on chromosomes 3 and 9 that might have contributed to the domestication process. Pairwise analysis of adjacent SNPs within a chromosome as well as within a haplotype allowed us to estimate genome-wide LD decay. LD was also detected within individual genes on various chromosomes. Principal component and ancestry analyses were used to account for population structure in a genome-wide association study. We further mapped important genes for soluble solid content using a mixed linear model.

Conclusions

Information concerning the SNP resources, population structure, and LD developed in this study will help in identifying agronomically important candidate genes from the genomic regions underlying selection and for mapping quantitative trait loci using a genome-wide association study in sweet watermelon.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-767) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Cavitation resistance to water stress-induced embolism determines plant survival during drought. This adaptive trait has been described as highly variable in a wide range of tree species, but little is known about the extent of genetic and phenotypic variability within species. This information is essential to our understanding of the evolutionary forces that have shaped this trait, and for evaluation of its inclusion in breeding programs.

Methodology

We assessed cavitation resistance (P 50), growth and carbon isotope composition in six Pinus pinaster populations in a provenance and progeny trial. We estimated the heritability of cavitation resistance and compared the distribution of neutral markers (F ST) and quantitative genetic differentiation (Q ST), for retrospective identification of the evolutionary forces acting on these traits.

Results/Discussion

In contrast to growth and carbon isotope composition, no population differentiation was found for cavitation resistance. Heritability was higher than for the other traits, with a low additive genetic variance (h2 ns = 0.43±0.18, CVA = 4.4%). Q ST was significantly lower than F ST, indicating uniform selection for P 50, rather than genetic drift. Putative mechanisms underlying QSTST are discussed.  相似文献   

5.

Background

The selection of variable sites for inclusion in genomic analyses can influence results, especially when exemplar populations are used to determine polymorphic sites. We tested the impact of ascertainment bias on the inference of population genetic parameters using empirical and simulated data representing the three major continental groups of cattle: European, African, and Indian. We simulated data under three demographic models. Each simulated data set was subjected to three ascertainment schemes: (I) random selection; (II) geographically biased selection; and (III) selection biased toward loci polymorphic in multiple groups. Empirical data comprised samples of 25 individuals representing each continental group. These cattle were genotyped for 47,506 loci from the bovine 50 K SNP panel. We compared the inference of population histories for the empirical and simulated data sets across different ascertainment conditions using FST and principal components analysis (PCA).

Results

Bias toward shared polymorphism across continental groups is apparent in the empirical SNP data. Bias toward uneven levels of within-group polymorphism decreases estimates of FST between groups. Subpopulation-biased selection of SNPs changes the weighting of principal component axes and can affect inferences about proportions of admixture and population histories using PCA. PCA-based inferences of population relationships are largely congruent across types of ascertainment bias, even when ascertainment bias is strong.

Conclusions

Analyses of ascertainment bias in genomic data have largely been conducted on human data. As genomic analyses are being applied to non-model organisms, and across taxa with deeper divergences, care must be taken to consider the potential for bias in ascertainment of variation to affect inferences. Estimates of FST, time of separation, and population divergence as estimated by principal components analysis can be misleading if this bias is not taken into account.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1469-5) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background and Aims

Although it is well known that fire acts as a selective pressure shaping plant phenotypes, there are no quantitative estimates of the heritability of any trait related to plant persistence under recurrent fires, such as serotiny. In this study, the heritability of serotiny in Pinus halepensis is calculated, and an evaluation is made as to whether fire has left a selection signature on the level of serotiny among populations by comparing the genetic divergence of serotiny with the expected divergence of neutral molecular markers (QSTFST comparison).

Methods

A common garden of P. halepensis was used, located in inland Spain and composed of 145 open-pollinated families from 29 provenances covering the entire natural range of P. halepensis in the Iberian Peninsula and Balearic Islands. Narrow-sense heritability (h2) and quantitative genetic differentiation among populations for serotiny (QST) were estimated by means of an ‘animal model’ fitted by Bayesian inference. In order to determine whether genetic differentiation for serotiny is the result of differential natural selection, QST estimates for serotiny were compared with FST estimates obtained from allozyme data. Finally, a test was made of whether levels of serotiny in the different provenances were related to different fire regimes, using summer rainfall as a proxy for fire regime in each provenance.

Key Results

Serotiny showed a significant narrow-sense heritability (h2) of 0·20 (credible interval 0·09–0·40). Quantitative genetic differentiation among provenances for serotiny (QST = 0·44) was significantly higher than expected under a neutral process (FST = 0·12), suggesting adaptive differentiation. A significant negative relationship was found between the serotiny level of trees in the common garden and summer rainfall of their provenance sites.

Conclusions

Serotiny is a heritable trait in P. halepensis, and selection acts on it, giving rise to contrasting serotiny levels among populations depending on the fire regime, and supporting the role of fire in generating genetic divergence for adaptive traits.  相似文献   

7.

Background

The origin of extraordinarily rich biodiversity in tropical forests is often attributed to evolution under stable climatic conditions over a long period or to climatic fluctuations during the recent Quaternary period. Here, we test these two hypotheses using Dracaena cambodiana, a plant species distributed in paleotropical forests.

Methods

We analyzed nucleotide sequence data of two chloroplast DNA (cpDNA: atpB-rbcL and trnD-trnT) regions and genotype data of six nuclear microsatellites from 15 populations (140 and 363 individuals, respectively) distributed in Indochina Peninsular and Hainan Island to infer the patterns of genetic diversity and phylogeographic structure. The population bottleneck and genetic drift were estimated based upon nuclear microsatellites data using the software programs BOTTLENECK and 2MOD. The lineage divergence times and past population dynamics based on cpDNA data were estimated using coalescent-based isolation-with-migration (IMa) and BEAST software programs.

Results

A significant phylogeographic structure (N ST = 0.876, G ST = 0.796, F ST-SSR = 0.329, R ST = 0.449; N ST>G ST, R ST>F ST-SSR, P<0.05) and genetic differentiation among populations were detected. Bottleneck analyses and Bayesian skyline plot suggested recent population reduction. The cpDNA haplotype network revealed the ancestral populations from the southern Indochina region expanded to northward. The most recent ancestor divergence time of D. cambodiana dated back to the Tertiary era and rapid diversification of terminal lineages corresponded to the Quaternary period.

Conclusions

The results indicated that the present distribution of genetic diversity in D. cambodiana was an outcome of Tertiary dispersal and rapid divergence during the Quaternary period under limited gene flow influenced by the uplift of Himalayan-Tibetan Plateau and Quaternary climatic fluctuations respectively. Evolutionary processes, such as extinction-recolonization during the Pleistocene may have contributed to the fast diversification in D. cambodiana.  相似文献   

8.

Introduction

The importance of Plasmodium vivax in malaria elimination is increasingly being recognized, yet little is known about its population size and population genetic structure in the South Pacific, an area that is the focus of intensified malaria control.

Methods

We have genotyped 13 microsatellite markers in 295 P. vivax isolates from four geographically distinct sites in Papua New Guinea (PNG) and one site from Solomon Islands, representing different transmission intensities.

Results

Diversity was very high with expected heterozygosity values ranging from 0.62 to 0.98 for the different markers. Effective population size was high (12′872 to 19′533 per site). In PNG population structuring was limited with moderate levels of genetic differentiation. F ST values (adjusted for high diversity of markers) were 0.14–0.15. Slightly higher levels were observed between PNG populations and Solomon Islands (F ST = 0.16).

Conclusions

Low levels of population structure despite geographical barriers to transmission are in sharp contrast to results from regions of low P. vivax endemicity. Prior to intensification of malaria control programs in the study area, parasite diversity and effective population size remained high.  相似文献   

9.

Background

Although the negative effects of roads on the genetics of animal populations have been extensively reported, the question of whether roads reduce gene flow in volant, urban bird populations has so far not been addressed. In this study, we assess whether highways decreased gene flow and genetic variation in a small passerine bird, the tree sparrow (Passer montanus).

Methodology

We assessed genetic differences among tree sparrows (Passer montanus) sampled at 19 sites within Beijing Municipality, China, using 7 DNA microsatellites as genetic markers.

Results

AMOVA showed that genetic variation between sites, between urban and rural populations, and between opposite sides of the same highway, were very weak. Mantel tests on all samples, and on urban samples only, indicated that the age and number of highways, and the number of ordinary roads, were uncorrelated with genetic differences (F ST) among tree sparrows from different urban sites. Birds sampled at urban sites had similar levels of genetic diversity to those at rural sites. There was, however, evidence of some weak genetic structure between urban sites. Firstly, there were significant genetic differences (F ST) between birds from opposite sides of the same highway, but no significant F ST values between those from sites that were not separated by highways. Secondly, birds from eleven urban sites had loci that significantly deviated from the Hardy–Weinberg equilibrium but no such deviation was found in birds from rural sites.

Conclusion

We cannot, therefore, conclusively reject the hypothesis that highways have no effect on the gene flow of tree sparrow populations. Furthermore, since the significance of these results may increase with time, we suggested that research on the influence of highways on gene flow in urban bird populations needs to be conducted over several decades.  相似文献   

10.
Ma Y  Yang M  Fan Y  Wu J  Ma Y  Xu J 《PloS one》2011,6(7):e22219

Background

Anopheles sinensis is a competent malaria vector in China. An understanding of vector population structure is important to the vector-based malaria control programs. However, there is no adequate data of A. sinensis population genetics available yet.

Methodology/Principal Findings

This study used 5 microsatellite loci to estimate population genetic diversity, genetic differentiation and demographic history of A. sinensis from 14 representative localities in China. All 5 microsatellite loci were highly polymorphic across populations, with high allelic richness and heterozygosity. Hardy–Weinberg disequilibrium was found in 12 populations associated with heterozygote deficits, which was likely caused by the presence of null allele and the Wahlund effect. Bayesian clustering analysis revealed two gene pools, grouping samples into two population clusters; one includes six and the other includes eight populations. Out of 14 samples, six samples were mixed with individuals from both gene pools, indicating the coexistence of two genetic units in the areas sampled. The overall differentiation between two genetic pools was moderate (F ST = 0.156). Pairwise differentiation between populations were lower within clusters (F ST = 0.008–0.028 in cluster I and F ST = 0.004–0.048 in cluster II) than between clusters (F ST = 0.120–0.201). A reduced gene flow (Nm = 1–1.7) was detected between clusters. No evidence of isolation by distance was detected among populations neither within nor between the two clusters. There are differences in effective population size (Ne = 14.3-infinite) across sampled populations.

Conclusions/Significance

Two genetic pools with moderate genetic differentiation were identified in the A. sinensis populations in China. The population divergence was not correlated with geographic distance or barrier in the range. Variable effective population size and other demographic effects of historical population perturbations could be the factors affecting the population differentiation. The structured populations may limit the migration of genes under pressures/selections, such as insecticides and immune genes against malaria.  相似文献   

11.

Background

Natural selection has molded evolution across all taxa. At an arguable date of around 330,000 years ago there were already at least two different types of cattle that became ancestors of nearly all modern cattle, the Bos taurus taurus more adapted to temperate climates and the tropically adapted Bos taurus indicus. After domestication, human selection exponentially intensified these differences. To better understand the genetic differences between these subspecies and detect genomic regions potentially under divergent selection, animals from the International Bovine HapMap Experiment were genotyped for over 770,000 SNP across the genome and compared using smoothed FST. The taurine sample was represented by ten breeds and the contrasting zebu cohort by three breeds.

Results

Each cattle group evidenced similar numbers of polymorphic markers well distributed across the genome. Principal components analyses and unsupervised clustering confirmed the well-characterized main division of domestic cattle. The top 1% smoothed FST, potentially associated to positive selection, contained 48 genomic regions across 17 chromosomes. Nearly half of the top FST signals (n = 22) were previously detected using a lower density SNP assay. Amongst the strongest signals were the BTA7:~50 Mb and BTA14:~25 Mb; both regions harboring candidate genes and different patterns of linkage disequilibrium that potentially represent intrinsic differences between cattle types. The bottom 1% of the smoothed FST values, potentially associated to balancing selection, included 24 regions across 13 chromosomes. These regions often overlap with copy number variants, including the highly variable region at BTA23:~24 Mb that harbors a large number of MHC genes. Under these regions, 318 unique Ensembl genes are annotated with a significant overrepresentation of immune related pathways.

Conclusions

Genomic regions that are potentially linked to purifying or balancing selection processes in domestic cattle were identified. These regions are of particular interest to understand the natural and human selective pressures to which these subspecies were exposed to and how the genetic background of these populations evolved in response to environmental challenges and human manipulation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-876) contains supplementary material, which is available to authorized users.  相似文献   

12.

Background

Genome-wide data provide a powerful tool for inferring patterns of genetic variation and structure of human populations.

Principal Findings

In this study, we analysed almost 250,000 SNPs from a total of 945 samples from Eastern and Western Finland, Sweden, Northern Germany and Great Britain complemented with HapMap data. Small but statistically significant differences were observed between the European populations (FST = 0.0040, p<10−4), also between Eastern and Western Finland (FST = 0.0032, p<10−3). The latter indicated the existence of a relatively strong autosomal substructure within the country, similar to that observed earlier with smaller numbers of markers. The Germans and British were less differentiated than the Swedes, Western Finns and especially the Eastern Finns who also showed other signs of genetic drift. This is likely caused by the later founding of the northern populations, together with subsequent founder and bottleneck effects, and a smaller population size. Furthermore, our data suggest a small eastern contribution among the Finns, consistent with the historical and linguistic background of the population.

Significance

Our results warn against a priori assumptions of homogeneity among Finns and other seemingly isolated populations. Thus, in association studies in such populations, additional caution for population structure may be necessary. Our results illustrate that population history is often important for patterns of genetic variation, and that the analysis of hundreds of thousands of SNPs provides high resolution also for population genetics.  相似文献   

13.

Background and Aims

Few phylogeographic studies have been undertaken of species confined to narrow, linear coastal systems where past sea level and geomorphological changes may have had a profound effect on species population sizes and distributions. In this study, a phylogeographic analysis was conducted of Eucalyptus gomphocephala (tuart), a tree species restricted to a 400 × 10 km band of coastal sand-plain in south west Australia. Here, there is little known about the response of coastal vegetation to glacial/interglacial climate change, and a test was made as to whether this species was likely to have persisted widely through the Last Glacial Maximum (LGM), or conforms to a post-LGM dispersal model of recovery from few refugia.

Methods

The genetic structure over the entire range of tuart was assessed using seven nuclear (21 populations; n = 595) and four chloroplast (24 populations; n = 238) microsatellite markers designed for eucalypt species. Correlative palaeodistribution modelling was also conducted based on five climatic variables, within two LGM models.

Key Results

The chloroplast markers generated six haplotypes, which were strongly geographically structured (GST = 0·86 and RST = 0·75). Nuclear microsatellite diversity was high (overall mean HE 0·75) and uniformly distributed (FST = 0·05), with a strong pattern of isolation by distance (r2 = 0·362, P = 0·001). Distribution models of E. gomphocephala during the LGM showed a wide distribution that extended at least 30 km westward from the current distribution to the palaeo-coastline.

Conclusions

The chloroplast and nuclear data suggest wide persistence of E. gomphocephala during the LGM. Palaeodistribution modelling supports the conclusions drawn from genetic data and indicates a widespread westward shift of E. gomphocephala onto the exposed continental shelf during the LGM. This study highlights the importance of the inclusion of complementary, non-genetic data (information on geomorphology and palaeoclimate) to interpret phylogeographic patterns.  相似文献   

14.

Background

Artificial selection for economically important traits in cattle is expected to have left distinctive selection signatures on the genome. Access to high-density genotypes facilitates the accurate identification of genomic regions that have undergone positive selection. These findings help to better elucidate the mechanisms of selection and to identify candidate genes of interest to breeding programs.

Results

Information on 705 243 autosomal single nucleotide polymorphisms (SNPs) in 3122 dairy and beef male animals from seven cattle breeds (Angus, Belgian Blue, Charolais, Hereford, Holstein-Friesian, Limousin and Simmental) were used to detect selection signatures by applying two complementary methods, integrated haplotype score (iHS) and global fixation index (FST). To control for false positive results, we used false discovery rate (FDR) adjustment to calculate adjusted iHS within each breed and the genome-wide significance level was about 0.003. Using the iHS method, 83, 92, 91, 101, 85, 101 and 86 significant genomic regions were detected for Angus, Belgian Blue, Charolais, Hereford, Holstein-Friesian, Limousin and Simmental cattle, respectively. None of these regions was common to all seven breeds. Using the FST approach, 704 individual SNPs were detected across breeds. Annotation of the regions of the genome that showed selection signatures revealed several interesting candidate genes i.e. DGAT1, ABCG2, MSTN, CAPN3, FABP3, CHCHD7, PLAG1, JAZF1, PRKG2, ACTC1, TBC1D1, GHR, BMP2, TSG1, LYN, KIT and MC1R that play a role in milk production, reproduction, body size, muscle formation or coat color. Fifty-seven common candidate genes were found by both the iHS and global FST methods across the seven breeds. Moreover, many novel genomic regions and genes were detected within the regions that showed selection signatures; for some candidate genes, signatures of positive selection exist in the human genome. Multilevel bioinformatic analyses of the detected candidate genes suggested that the PPAR pathway may have been subjected to positive selection.

Conclusions

This study provides a high-resolution bovine genomic map of positive selection signatures that are either specific to one breed or common to a subset of the seven breeds analyzed. Our results will contribute to the detection of functional candidate genes that have undergone positive selection in future studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0127-3) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background

The scalloped hammerhead shark, Sphyrna lewini, is a large endangered predator with a circumglobal distribution, observed in the open ocean but linked ontogenetically to coastal embayments for parturition and juvenile development. A previous survey of maternal (mtDNA) markers demonstrated strong genetic partitioning overall (global ΦST = 0.749) and significant population separations across oceans and between discontinuous continental coastlines.

Methodology/Principal Findings

We surveyed the same global range with increased sample coverage (N = 403) and 13 microsatellite loci to assess the male contribution to dispersal and population structure. Biparentally inherited microsatellites reveal low or absent genetic structure across ocean basins and global genetic differentiation (F ST = 0.035) over an order of magnitude lower than the corresponding measures for maternal mtDNA lineages (ΦST = 0.749). Nuclear allelic richness and heterozygosity are high throughout the Indo-Pacific, while genetic structure is low. In contrast, allelic diversity is low while population structure is higher for populations at the ends of the range in the West Atlantic and East Pacific.

Conclusions/Significance

These data are consistent with the proposed Indo-Pacific center of origin for S. lewini, and indicate that females are philopatric or adhere to coastal habitats while males facilitate gene flow across oceanic expanses. This study includes the largest sampling effort and the most molecular loci ever used to survey the complete range of a large oceanic predator, and findings emphasize the importance of incorporating mixed-marker analysis into stock assessments of threatened and endangered shark species.  相似文献   

16.

Background

Acholeplasma oculi belongs to the Acholeplasmataceae family, comprising the genera Acholeplasma and ‘Candidatus Phytoplasma’. Acholeplasmas are ubiquitous saprophytic bacteria. Several isolates are derived from plants or animals, whereas phytoplasmas are characterised as intracellular parasitic pathogens of plant phloem and depend on insect vectors for their spread. The complete genome sequences for eight strains of this family have been resolved so far, all of which were determined depending on clone-based sequencing.

Results

The A. oculi strain 19L chromosome was sequenced using two independent approaches. The first approach comprised sequencing by synthesis (Illumina) in combination with Sanger sequencing, while single molecule real time sequencing (PacBio) was used in the second. The genome was determined to be 1,587,120 bp in size. Sequencing by synthesis resulted in six large genome fragments, while the single molecule real time sequencing approach yielded one circular chromosome sequence. High-quality sequences were obtained by both strategies differing in six positions, which are interpreted as reliable variations present in the culture population. Our genome analysis revealed 1,471 protein-coding genes and highlighted the absence of the F1FO-type Na+ ATPase system and GroEL/ES chaperone. Comparison of the four available Acholeplasma sequences revealed a core-genome encoding 703 proteins and a pan-genome of 2,867 proteins.

Conclusions

The application of two state-of-the-art sequencing technologies highlights the potential of single molecule real time sequencing for complete genome determination. Comparative genome analyses revealed that the process of losing particular basic genetic features during genome reduction occurs in both genera, as indicated for several phytoplasma strains and at least A. oculi. The loss of the F1FO-type Na+ ATPase system may separate Acholeplasmataceae from other Mollicutes, while the loss of those genes encoding the chaperone GroEL/ES is not a rare exception in this bacterial class.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-931) contains supplementary material, which is available to authorized users.  相似文献   

17.

Background and Aims

It is widely accepted that hydraulic failure due to xylem embolism is a key factor contributing to drought-induced mortality in trees. In the present study, an attempt is made to disentangle phenotypic plasticity from genetic variation in hydraulic traits across the entire distribution area of a tree species to detect adaptation to local environments.

Methods

A series of traits related to hydraulics (vulnerability to cavitation and hydraulic conductivity in branches), growth performance and leaf mass per area were assessed in eight Pinus canariensis populations growing in two common gardens under contrasting environments. In addition, the neutral genetic variability (FST) and the genetic differentiation of phenotypic variation (QST) were compared in order to identify the evolutionary forces acting on these traits.

Key Results

The variability for hydraulic traits was largely due to phenotypic plasticity. Nevertheless, the vulnerability to cavitation displayed a significant genetic variability (approx. 5 % of the explained variation), and a significant genetic × environment interaction (between 5 and 19 % of the explained variation). The strong correlation between vulnerability to cavitation and survival in the xeric common garden (r = –0·81; P < 0·05) suggests a role for the former in the adaptation to xeric environments. Populations from drier sites and higher temperature seasonality were less vulnerable to cavitation than those growing at mesic sites. No trade-off between xylem safety and efficiency was detected. QST of parameters of the vulnerability curve (0·365 for P50 and the slope of the vulnerability curve and 0·452 for P88) differed substantially from FST (0·091), indicating divergent selection. In contrast, genetic drift alone was found to be sufficient to explain patterns of differentiation for xylem efficiency and growth.

Conclusions

The ability of P. canariensis to inhabit a wide range of ecosystems seemed to be associated with high phenotypic plasticity and some degree of local adaptations of xylem and leaf traits. Resistance to cavitation conferred adaptive potential for this species to adapt successfully to xeric conditions.  相似文献   

18.

Background and Aims

Plants show patterns of spatial genetic differentiation reflecting gene flow mediated by pollen and seed dispersal and genotype × environment interactions. If patterns of genetic structure are determined largely by gene flow then they may be useful in predicting the likelihood of inbreeding or outbreeding depression but should be less useful if there is strong site-specific selection. For many Australian plants little is known about either their population genetics or the effects on mating systems of variation in pollen transfer distances. Experimental pollinations were used to compare the reproductive success of bird-adapted Grevillea mucronulata plants mated with individuals from a range of spatial scales. A hierarchical survey of microsatellite DNA variation was also conducted to describe the scale of population differentiation for neutral markers.

Methods

The effects of four pollen treatments on reproductive performance were compared. These treatments were characterized by transfer of pollen from (a) neighbouring adults; (b) an adjacent cluster of adults (30–50 m distant); (c) a distant cluster (>5 km distant); and (d) open pollination. Sets of 17·9 ± 3·3 leaves from each of 15 clusters of plants were genotyped and spatial autocorrelation and F statistics were used to describe patterns of genetic structure.

Key Results

Grevillea mucronulata displayed evidence of both inbreeding and outbreeding depression, with ‘intermediate’ pollen producing consistently superior outcomes for most aspects of fitness including seed set, seed size, germination and seedling growth. Significant genotypic structuring was detected within clusters (spatial autocorrelation) and among adjacent clusters and clusters separated by >5 km distance (FST = 0·07 and 0·10).

Conclusions

The superior outcome of intermediate pollen transfer and genetic differentiation of adjacent clusters suggests that G. mucronulata selection disfavours matings among closely and distantly related neighbours. Moreover, the performance of open-pollinated seedlings was poor, implying that current mating patterns are suboptimal.  相似文献   

19.

Background

The Qinghai-Tibetan Plateau (QTP) is one of the most extensive habitats for alpine plants in the world. Climatic oscillations during the Quaternary ice age had a dramatic effect on species ranges on the QTP and the adjacent areas. However, how the distribution ranges of aquatic plant species shifted on the QTP in response to Quaternary climatic changes remains almost unknown.

Methodology and Principal Findings

We studied the phylogeography and demographic history of the widespread aquatic herb Hippuris vulgaris from the QTP and adjacent areas. Our sampling included 385 individuals from 47 natural populations of H. vulgaris. Using sequences from four chloroplast DNA (cpDNA) non-coding regions, we distinguished eight different cpDNA haplotypes. From the cpDNA variation in H. vulgaris, we found a very high level of population differentiation (G ST = 0.819) but the phylogeographical structure remained obscure (N ST = 0.853>G ST = 0.819, P>0.05). Phylogenetic analyses revealed two main cpDNA haplotype lineages. The split between these two haplotype groups can be dated back to the mid-to-late Pleistocene (ca. 0.480 Myr). Mismatch distribution analyses showed that each of these had experienced a recent range expansion. These two expansions (ca. 0.12 and 0.17 Myr) might have begun from the different refugees before the Last Glacial Maximum (LGM).

Conclusions/Significance

This study initiates a research on the phylogeography of aquatic herbs in the QTP and for the first time sheds light on the response of an alpine aquatic seed plant species in the QTP to Quaternary climate oscillations.  相似文献   

20.

Background and Aims

Allozyme and reproductive data sets for the Canarian flora are updated in order to assess how the present levels and structuring of genetic variation have been influenced by the abiotic island traits and by phylogenetically determined biotic traits of the corresponding taxa; and in order to suggest conservation guidelines.

Methods

Kruskal–Wallis tests are conducted to assess the relationships of 27 variables with genetic diversity (estimated by A, P, Ho and He) and structuring (GST) of 123 taxa representing 309 populations and 16 families. Multiple linear regression analyses (MLRAs) are carried out to determine the relative influence of the less correlated significant abiotic and biotic factors on the genetic diversity levels.

Key Results and Conclusions

The interactions between biotic features of the colonizing taxa and the abiotic island features drive plant diversification in the Canarian flora. However, the lower weight of closeness to the mainland than of (respectively) high basic chromosome number, partial or total self-incompatibility and polyploidy in the MLRAs indicates substantial phylogenetic constraint; the importance of a high chromosome number is feasibly due to the generation of a larger number of linkage groups, which increase gametic and genotypic diversity. Genetic structure is also more influenced by biotic factors (long-range seed dispersal, basic chromosome number and partial or total self-incompatibility) than by distance to the mainland. Conservation-wise, genetic structure estimates (FST/GST) only reflect endangerment under intensive population sampling designs, and neutral genetic variation levels do not directly relate to threat status or to small population sizes. Habitat protection is emphasized, but the results suggest the need for urgent implementation of elementary reproductive studies in all cases, and for ex situ conservation measures for the most endangered taxa, even without prior studies. In non-endangered endemics, multidisciplinary research is needed before suggesting case-specific conservation strategies. The molecular information relevant for conservation should be conserved in a standardized format to facilitate further insight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号