首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two opposing niche processes have been shown to shape the relationship between ecological traits and species distribution patterns: habitat filtering and competitive exclusion. Habitat filtering is expected to select for similar traits among coexisting species that share similar habitat conditions, whereas competitive exclusion is expected to limit the ecological similarity of coexisting species leading to trait differentiation. Here, we explore how functional traits vary among 19 understory palm species that differ in their distribution across a gradient of soil resource availability in lower montane forest in western Panama. We found evidence that habitat filtering influences species distribution patterns and shifts community-wide and intraspecific trait values. Differences in trait values among sites were more strongly related to soil nutrient availability than to variation in light or rainfall. Soil nutrient availability explained a significant amount of variation in site mean trait values for 4 of 15 functional traits. Site mean values of leaf nitrogen and phosphorus increased 37 and 64%, respectively, leaf carbon:nitrogen decreased 38%, and specific leaf area increased 29% with increasing soil nutrient availability. For Geonoma cuneata, the only species occurring at all sites, leaf phosphorus increased 34% and nitrogen:phosphorus decreased 42% with increasing soil nutrients. In addition to among-site variation, most morphological and leaf nutrient traits differed among coexisting species within sites, suggesting these traits may be important for niche differentiation. Hence, a combination of habitat filtering due to turnover in species composition and intraspecific variation along a soil nutrient gradient and site-specific niche differentiation among co-occurring species influences understory palm community structure in this lower montane forest.  相似文献   

2.
Phenotypic evolution in sympatric species can be strongly impacted by species interactions, either mutualistic or antagonistic. Heterospecific reproductive behaviours between sympatric species have been shown to favour phenotypic divergence of traits used as sexual cues. Those traits may also be involved in local adaptation or in other types of species interactions and, as a result, undergo complex evolutions across sympatric species. Here we focus on mimicry and study how reproductive interference may impair phenotypic convergence between species with various levels of defence. We use a deterministic model assuming two sympatric species where individuals can display two different warning colour patterns. This eco-evolutionary model explores how ecological interactions shape phenotypic evolution within sympatric species. We investigate the effect of 1) the opposing density-dependent selections exerted on colour patterns by predation and reproductive behaviour and 2) the impact of relative species and phenotype abundances on the fitness costs faced by each individual depending on their species and phenotype. Our model shows that reproductive interference may limit the convergent effect of mimetic interactions and may promote phenotypic divergence between Müllerian mimics. The divergent and convergent evolution of traits also strongly depends on the relative species and phenotype abundances and levels of trophic competition, highlighting how the eco-evolutionary feedbacks between phenotypic evolution and species abundances may result in strikingly different evolutionary routes.  相似文献   

3.
The process of ecological speciation drives the evolution of locally adapted and reproductively isolated populations in response to divergent natural selection. In Southern Mexico, several lineages of the freshwater fish species of the genus Poecilia have independently colonized toxic, hydrogen sulfide-rich springs. Even though ecological speciation processes are increasingly well understood in this system, aligning the taxonomy of these fish with evolutionary processes has lagged behind. While some sulfide spring populations are classified as ecotypes of Poecilia mexicana, others, like P. sulphuraria, have been described as highly endemic species. Our study particularly focused on elucidating the taxonomy of the long described sulfide spring endemic, Poecilia thermalis Steindachner 1863, and investigates if similar evolutionary patterns of phenotypic trait divergence and reproductive isolation are present as observed in other sulfidic species of Poecilia. We applied a geometric morphometric approach to assess body shape similarity to other sulfidic and non-sulfidic fish of the genus Poecilia. We also conducted phylogenetic and population genetic analyses to establish the phylogenetic relationships of P. thermalis and used a population genetic approach to determine levels of gene flow among Poecilia from sulfidic and non-sulfidic sites. Our results indicate that P. thermalis'' body shape has evolved in convergence with other sulfide spring populations in the genus. Phylogenetic analyses placed P. thermalis as most closely related to one population of P. sulphuraria, and population genetic analyses demonstrated that P. thermalis is genetically isolated from both P. mexicana ecotypes and P. sulphuraria. Based on these findings, we make taxonomic recommendations for P. thermalis. Overall, our study verifies the role of hydrogen sulfide as a main factor shaping convergent, phenotypic evolution and the emergence of reproductive isolation between Poecilia populations residing in adjacent sulfidic and non-sulfidic environments.  相似文献   

4.
A classic community assembly hypothesis is that all guilds must be represented before additional species from any given guild enter the community. We conceptually extend this hypothesis to continuous functional traits, refine the hypothesis with an eco-evolutionary model of interaction network community assembly, and compare the resultant continuous trait assembly rule to empirical data. Our extension of the “guild assembly rule” to continuous functional traits was rejected, in part, because the eco-evolutionary model predicted trait assembly to be characterized by the expansion of trait space and trait/species sorting within trait space. Hence, the guild rule may not be broadly applicable. A “revised” assembly rule did, however, emerge from the eco-evolutionary model: as communities assemble, the range in trait values will increase to a maximum and then remain relatively constant irrespective of further changes in species richness. This rule makes the corollary prediction that the trait range will, on average, be a saturating function of species richness. To determine if the assembly rule is at work in natural communities, we compared this corollary prediction to empirical data. Consistent with our assembly rule, trait “space” (broadly defined) commonly saturates with species richness. Our assembly rule may thus represent a general constraint placed on community assembly. In addition, taxonomic scale similarly influences the predicted and empirically observed relationship between trait “space” and richness. Empirical support for the model’s predictions suggests that studying continuous functional traits in the context of eco-evolutionary models is a powerful approach for elucidating general processes of community assembly.  相似文献   

5.
Trait variation in plant communities is thought to be constrained by two opposing community assembly processes operating at discrete spatial scales: habitat filtering and limiting similarity between coexisting species. Filtering processes cause convergence in ecological strategy as species are excluded from unsuitable sites, whilst limiting similarity leads to the divergence of trait values between co‐occurring species in order to alleviate competition for finite resources. Levels of alpha (within‐site) and beta (among‐site) trait variation can be indicative of the strength of these community assembly processes. We used trait‐gradient analysis to explicitly compare evidence of community assembly patterns in lianas (woody vines) and trees. These two growth forms exhibit striking differences in carbon capture and regeneration strategies, yet trait‐based mechanisms that maintain their coexistence remain understudied. Using data for four functional traits – leaf mass per area, leaf nitrogen content (Nmass), leaf area and seed mass – we partitioned interspecific trait variation in lianas and trees into alpha and beta components. Our three key findings were: 1) lianas and trees exhibit divergent patterns of trait‐based habitat filtering, due to differences in the relationship between leaf size and the other three traits examined (LMA, Nmass and seed mass), 2) on average, liana species possess smaller seeds, lower LMA and higher Nmass than do trees, but there was no clear difference in leaf area between the two growth forms, and 3) soil fertility was correlated with trait variation (leaf area, seed mass) at the site‐level in trees, but not in lianas. These results provide evidence that dominant growth forms can be filtered into the same habitat on the basis of different combinations of traits. Our findings have important implications for community assembly and co‐existence theory and for more pragmatic matters such as using trait‐based principles to inform community restoration.  相似文献   

6.
Divergence of genital traits among lineages has the potential to serve as a reproductive isolating barrier when copulation, insemination, and fertilization are inhibited by incompatibilities between female and male genitalia. Despite widespread evidence for genital trait diversity among closely related lineages and coevolution of female and male genitalia within lineages, few studies have investigated genital evolution during the early stages of speciation. We quantified genital variation in replicated population pairs of Poecilia mexicana with ongoing ecological speciation between sulfidic (H2S containing) and nearby nonsulfidic habitats. These analyses revealed rapid and correlated divergence of female and male genitalia across evolutionarily independent population pairs exposed to divergent selection regimes. Both sexes exhibited convergent evolution of genital traits among populations inhabiting similar habitat types. Our results demonstrate that genital evolution can occur during the early stages of speciation‐with‐gene‐flow, potentially as a result of variation in the intensity of sexual conflict among populations. Our results suggest genitalia may contribute to early stages of divergence and challenge the generality of previously suggested mechanisms of genital evolution in poeciliids.  相似文献   

7.
Congeneric species may coexist at fine spatial scales through niche differentiation, however, the magnitude to which the effects of functional traits and phylogenetic relatedness contribute to their distribution along elevational gradients remains understudied. To test the hypothesis that trait and elevational range overlap can affect local speciesʼ coexistence, we first compared phylogenetic relatedness and trait (including morphological traits and leaf elements) divergence among closely related species of Rhododendron L. on Yulong Mountain, China. We then assessed relationships between the overlap of multiple functional traits and the degree of elevational range overlap among species pairs in a phylogenetic context. We found that phylogeny was a good predictor for most functional traits, where closely related species showed higher trait similarity and occupied different elevational niches at our study site. Species pairs of R. subgen. Hymenanthes (Blume) K. Koch showed low elevational range overlap and some species pairs of R. subgen. Rhododendron showed obvious niche differentiation. Trait divergence is greater for species in R. subgen. Rhododendron, and it plays an important role between species pairs with low elevational range overlap. Trait convergent selection takes place between co-occurring closely related species that have high elevational range overlap, which share more functional trait space due to environmental filtering or ecological adaptation in more extreme habitats. Our results highlight the importance of evolutionary history and trait selection for species coexistence at fine ecological scales along environmental gradients.  相似文献   

8.
Variation in pigmentation traits is an effective window to evolutionary processes due to their importance for survival and reproduction. In particular, one of the leading hypotheses for the maintenance of conspicuous pigmentation in natural populations is its signaling function in mate choice. Here, we demonstrate the occurrence of melanism in poeciliid fishes of the genus Poecilia that inhabits toxic, hydrogen sulfide springs in southern Mexico and the absence of melanism from closely related populations in reference habitats lacking hydrogen sulfide. Assays of female mate preference in both habitat types were used to examine whether divergence in female preference for melanism contributes to its maintenance in hydrogen sulfide springs. We found significant variation in female preferences for melanistic males. Specifically, melanistic females from the toxic spring exhibited a significant preference for melanistic males, while non‐melanistic females from the same population exhibited no preference. Females from the non‐sulfidic reference population discriminated strongly against melanistic males. Preferences of melanistic females appear to be a significant force in the maintenance of melanism in sulfidic habitats and suggest a change in preference as the divergence from non‐sulfidic ancestors. Potential polymorphism in preference within the hydrogen sulfide spring indicates that preference for melanistic males may not be environmentally controlled. Thus, a change in preference following divergence can promote the maintenance of variation in pigmentation within populations and between divergent habitats.  相似文献   

9.
I present a model of stochastic community dynamics in which death occurs randomly in the community, propagules disperse randomly from a regional pool, and recruitment of new individuals of a species is proportional to the species local abundance multiplied by its local competitive ability. The competitive ability of a species is assumed to be determined by a function of one trait of the species, and I call this function the environmental filtering function. I show that information on local species abundances in a network of plots, together with trait data for each species, enables the inference of both the immigration rate and the environmental filtering function in each plot. I further study how the diversity patterns produced by this model deviate from the neutral predictions, and how this deviation depends on the characteristics of the environmental filtering function. I show that this inference framework is more powerful at detecting trait-based environmental filtering than existing statistical approaches based on trait distributions, and discuss how the predictions of this model could be used to assess environmental heterogeneity in a plot, to detect functionally meaningful trade-offs among species traits, and to test the assumption that there exists a simple relationship between species traits and local competitive ability.  相似文献   

10.
One of the key hypothesized drivers of gradients in species richness is environmental filtering, where environmental stress limits which species from a larger species pool gain membership in a local community owing to their traits. Whereas most studies focus on small‐scale variation in functional traits along environmental gradient, the effect of large‐scale environmental filtering is less well understood. Furthermore, it has been rarely tested whether the factors that constrain the niche space limit the total number of coexisting species. We assessed the role of environmental filtering in shaping tree assemblages across North America north of Mexico by testing the hypothesis that colder, drier, or seasonal environments (stressful conditions for most plants) constrain tree trait diversity and thereby limit species richness. We assessed geographic patterns in trait filtering and their relationships to species richness pattern using a comprehensive set of tree range maps. We focused on four key plant functional traits reflecting major life history axes (maximum height, specific leaf area, seed mass, and wood density) and four climatic variables (annual mean and seasonality of temperature and precipitation). We tested for significant spatial shifts in trait means and variances using a null model approach. While we found significant shifts in mean species’ trait values at most grid cells, trait variances at most grid cells did not deviate from the null expectation. Measures of environmental harshness (cold, dry, seasonal climates) and lower species richness were weakly associated with a reduction in variance of seed mass and specific leaf area. The pattern in variance of height and wood density was, however, opposite. These findings do not support the hypothesis that more stressful conditions universally limit species and trait diversity in North America. Environmental filtering does, however, structure assemblage composition, by selecting for certain optimum trait values under a given set of conditions.  相似文献   

11.
Sympatric divergence in traits affecting species recognition can result from selection against cross‐species mating (reproductive character displacement, RCD) or interspecific aggression (agonistic character displacement, ACD). When the same traits are used for species recognition in both contexts, empirically disentangling the relative contributions of RCD and ACD to observed character shifts may be impossible. Here, we develop a theoretical framework for partitioning the effects of these processes. We show that when both mate and competitor recognition depend on the same trait, RCD sets the pace of character shifts. Moreover, RCD can cause divergence in competitor recognition, but ACD cannot cause divergence in mate recognition. This asymmetry arises because males with divergent recognition traits may avoid needless interspecific conflicts, but suffer reduced attractiveness to conspecific females. Therefore, the key empirical issue is whether the same or different traits are used for mate recognition and competitor recognition.  相似文献   

12.

Background  

Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood.  相似文献   

13.
Divergent selection is a key in the ecological theory of adaptive radiation. Most evidence on its causes and consequences relies on studies of pairs of populations or closely related taxa. However, adaptive radiation involves multiple taxa adapted to different environmental factors. We propose an operational definition of divergent selection to explore the continuum between divergent and convergent selection in multiple populations and taxa, and its links with environmental variation and phenotypic and taxonomic differentiation. We apply this approach to explore phenotypic differentiation of vegetative traits between 15 populations of four taxa of Iberian columbines (Gen. Aquilegia). Differences in soil rockiness impose divergent selection on inflorescence height and the number of flowers per inflorescence, likely affecting the processes of phenotypic and, in the case of inflorescence height, taxonomic diversification between taxa. Elevational variation imposes divergent selection on the number of leaves; however, the current pattern of divergent selection on this trait seems related to ecotypic differentiation within taxa but not to their taxonomic diversification.  相似文献   

14.
We investigated replicated ecological speciation in the livebearing fish Poecilia mexicana and P. sulphuraria (Poeciliidae), which inhabit freshwater habitats and have also colonized multiple sulfidic springs in southern Mexico. These springs exhibit extreme hypoxia and high concentrations of hydrogen sulfide, which is lethal to most metazoans. We used phylogenetic analyses to test whether springs were independently colonized, performed phenotypic assessments of body and gill morphology variation to identify convergent patterns of trait differentiation, and conducted an eco-toxicological experiment to detect differences in sulfide tolerances among ecotypes. Our results indicate that sulfidic springs were colonized by three different lineages, two within P. mexicana and one representing P. sulphuraria. Colonization occurred earlier in P. sulphuraria, whereas invasion of sulfidic springs in P. mexicana was more recent, such that each population is more closely related to neighboring populations from adjacent nonsulfidic habitats. Sulfide spring fish also show divergence from nonsulfidic phenotypes and a phenotypic convergence toward larger heads, larger gills, and increased tolerance to H(2) S. Together with previous studies that indicated significant reproductive isolation between fish from sulfidic and nonsulfidic habitats, this study provides evidence for repeated ecological speciation in the independent sulfide spring populations of P. mexicana and P. sulphuraria.  相似文献   

15.
Krom N  Ramakrishna W 《Plant physiology》2008,147(4):1763-1773
Comparative analysis of the organization and expression patterns of divergent and convergent gene pairs in multiple plant genomes can identify patterns that are shared by more than one species or are unique to a particular species. Here, we study the coexpression and interspecies conservation of divergent and convergent gene pairs in three plant species: rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), and black cottonwood (Populus trichocarpa). Strongly correlated expression levels between divergent and convergent genes were found to be quite common in all three species, and the frequency of strong correlation appears to be independent of intergenic distance. Conservation of divergent or convergent arrangement among these species appears to be quite rare. However, conserved arrangement is significantly more frequent when the genes display strongly correlated expression levels or have one or more Gene Ontology (GO) classes in common. A correlation between intergenic distance in divergent and convergent gene pairs and shared GO classes was observed, in varying degrees, in rice and Populus but not in Arabidopsis. Furthermore, multiple GO classes were either overrepresented or underrepresented in Arabidopsis and Populus gene pairs, while only two GO classes were underrepresented in rice divergent gene pairs. Three cis-regulatory elements common to both Arabidopsis and rice were overrepresented in the intergenic regions of strongly correlated divergent gene pairs compared to those of noncorrelated pairs. Our results suggest that shared as well as unique mechanisms operate in shaping the organization and function of divergent and convergent gene pairs in different plant species.  相似文献   

16.
Niche differentiation and ecological filtering are primary ecological processes that shape community assembly, but their relative importance remains poorly understood. Analyses of the distributions of functional traits can provide insight into the community structure generated by these processes. We predicted the trait distributions expected under the ecological processes of niche differentiation and environmental filtering, then tested these predictions with a dataset of 4672 trees located in nine 1‐ha plots of tropical rain forest in French Guiana. Five traits related to leaf function (foliar N concentration, chlorophyll content, toughness, tissue density and specific leaf area), and three traits related to stem function (trunk sapwood density, branch sapwood density, and trunk bark thickness), as well as laminar surface area, were measured on every individual tree. There was far more evidence for environmental filtering than for niche differentiation in these forests. Furthermore, we contrasted results from species‐mean and individual‐level trait values. Analyses that took within‐species trait variation into account were far more sensitive indicators of niche differentiation and ecological filtering. Species‐mean analyses, by contrast, may underestimate the effects of ecological processes on community assembly. Environmental filtering appeared somewhat more intense on leaf traits than on stem traits, whereas niche differentiation affected neither strongly. By accounting for within‐species trait variation, we were able to more properly consider the ecological interactions among individual trees and between individual trees and their environment. In so doing, our results suggest that the ecological processes of niche differentiation and environmental filtering may be more pervasive than previously believed.  相似文献   

17.
Understanding and disentangling different processes underlying the assembly and diversity of communities remains a key challenge in ecology. Species can assemble into communities either randomly or due to deterministic processes. Deterministic assembly leads to species being more similar (underdispersed) or more different (overdispersed) in certain traits than would be expected by chance. However, the relative importance of those processes is not well understood for many organisms, including terrestrial invertebrates. Based on knowledge of a broad range of species traits, we tested for the presence of trait underdispersion (indicating dispersal or environmental filtering) and trait overdispersion (indicating niche partitioning) and their relative importance in explaining land snail community composition on lake islands. The analysis of community assembly was performed using a functional diversity index (Rao's quadratic entropy) in combination with a null model approach. Regression analysis with the effect sizes of the assembly tests and environmental variables gave information on the strength of under‐ and overdispersion along environmental gradients. Additionally, we examined the link between community weighted mean trait values and environmental variables using a CWM‐RDA. We found both trait underdispersion and trait overdispersion, but underdispersion (eight traits) was more frequently detected than overdispersion (two traits). Underdispersion was related to four environmental variables (tree cover, habitat diversity, productivity of ground vegetation, and location on an esker ridge). Our results show clear evidence for underdispersion in traits driven by environmental filtering, but no clear evidence for dispersal filtering. We did not find evidence for overdispersion of traits due to diet or body size, but overdispersion in shell shape may indicate niche differentiation between snail species driven by small‐scale habitat heterogeneity. The use of species traits enabled us to identify key traits involved in snail community assembly and to detect the simultaneous occurrence of trait underdispersion and overdispersion.  相似文献   

18.
Understanding the mechanisms of secondary succession related to forest management practices is receiving increasing attention in community ecology and biodiversity conservation. Abiotic and biotic filtering are deterministic processes driving community reassembly. A functional trait or phylogeny-based approach predicts that environmental filtering induced by clearcut-logging results in functional/phylogenetic clustering in younger forests, while biotic filtering (competitive exclusion) promotes functional/phylogenetic overdispersion in old-growth forests. From this perspective, we examined the patterns of functional/phylogenetic structures using tree community data (147 species × 170 plots). These data were chronosequenced from clearcut secondary forests to old-growth subtropical forests in the Ryukyu Archipelago, with species’ trait data (leaf and stem) and species level phylogeny. To detect clustering or overdispersion in the functional and phylogenetic structures, we calculated the standardized effect size of mean nearest trait distance and mean nearest phylogenetic distance within the plots. Functional or phylogenetic clustering was relatively weak in secondary forests, and their directional change with increasing forest age was not generally detected. Mean nearest trait/phylogenetic distance for most plots fell within the range of random expectation. The results suggest that abiotic/biotic filtering related to functional traits or phylogenetic relatedness plays a diminished role in shaping species assembly during secondary succession in the subtropical forest. Our findings of functional and phylogenetic properties might shed light on the importance of dispersal (stochastic) processes in the regional species pool during community reassembly after anthropogenic disturbance. It will also contribute to the development of coordinated schemes that maintain potential species assembly processes in the subtropical forest.  相似文献   

19.

Our ability to predict the outcome of invasion declines rapidly as non-native species progress through intertwined ecological barriers to establish and spread in recipient ecosystems. This is largely due to the lack of systemic knowledge on key processes at play as species establish self-sustaining populations within the invaded range. To address this knowledge gap, we present a mathematical model that captures the eco-evolutionary dynamics of native and non-native species interacting within an ecological network. The model is derived from continuous-trait evolutionary game theory (i.e., Adaptive Dynamics) and its associated concept of invasion fitness which depicts dynamic demographic performance that is both trait mediated and density dependent. Our approach allows us to explore how multiple resident and non-native species coevolve to reshape invasion performance, or more precisely invasiveness, over trait space. The model clarifies the role of specific traits in enabling non-native species to occupy realised opportunistic niches. It also elucidates the direction and speed of both ecological and evolutionary dynamics of residing species (natives or non-natives) in the recipient network under different levels of propagule pressure. The versatility of the model is demonstrated using four examples that correspond to the invasion of (i) a horizontal competitive community; (ii) a bipartite mutualistic network; (iii) a bipartite antagonistic network; and (iv) a multi-trophic food web. We identified a cohesive trait strategy that enables the success and establishment of non-native species to possess high invasiveness. Specifically, we find that a non-native species can achieve high levels of invasiveness by possessing traits that overlap with those of its facilitators (and mutualists), which enhances the benefits accrued from positive interactions, and by possessing traits outside the range of those of antagonists, which mitigates the costs accrued from negative interactions. This ‘central-to-reap, edge-to-elude’ trait strategy therefore describes the strategic trait positions of non-native species to invade an ecological network. This model provides a theoretical platform for exploring invasion strategies in complex adaptive ecological networks.

  相似文献   

20.
Eco-evolutionary dynamics can mediate species and community responses to habitat warming and fragmentation, two of the largest threats to biodiversity and ecosystems. The eco-evolutionary consequences of warming and fragmentation are typically studied independently, hindering our understanding of their simultaneous impacts. Here, we provide a new perspective rooted in trade-offs among traits for understanding their eco-evolutionary consequences. On the one hand, temperature influences traits related to metabolism, such as resource acquisition and activity levels. Such traits are also likely to have trade-offs with other energetically costly traits, like antipredator defences or dispersal. On the other hand, fragmentation can influence a variety of traits (e.g. dispersal) through its effects on the spatial environment experienced by individuals, as well as properties of populations, such as genetic structure. The combined effects of warming and fragmentation on communities should thus reflect their collective impact on traits of individuals and populations, as well as trade-offs at multiple trophic levels, leading to unexpected dynamics when effects are not additive and when evolutionary responses modulate them. Here, we provide a road map to navigate this complexity. First, we review single-species responses to warming and fragmentation. Second, we focus on consumer–resource interactions, considering how eco-evolutionary dynamics can arise in response to warming, fragmentation, and their interaction. Third, we illustrate our perspective with several example scenarios in which trait trade-offs could result in significant eco-evolutionary dynamics. Specifically, we consider the possible eco-evolutionary consequences of (i) evolution in thermal performance of a species involved in a consumer–resource interaction, (ii) ecological or evolutionary changes to encounter and attack rates of consumers, and (iii) changes to top consumer body size in tri-trophic food chains. In these scenarios, we present a number of novel, sometimes counter-intuitive, potential outcomes. Some of these expectations contrast with those solely based on ecological dynamics, for example, evolutionary responses in unexpected directions for resource species or unanticipated population declines in top consumers. Finally, we identify several unanswered questions about the conditions most likely to yield strong eco-evolutionary dynamics, how better to incorporate the role of trade-offs among traits, and the role of eco-evolutionary dynamics in governing responses to warming in fragmented communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号