首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Summary Of 36 plant species surveyed, 6 were significantly associated with nests of the desert seed-harvester ant Veromessor pergandei or Pogonomyrmex rugosus; two other plant species were significantly absent from ant nests. Seeds of two common desert annuals, Schismus arabicus and Plantago insularis, realize a 15.6 and 6.5 fold increase (respectively) in number of fruits or seeds produced per plant growing in ant nest refuse piles compared to nearby controls. Mass of individual S. arabicus seed produced by plants growing in refuse piles also increased significantly. Schismus arabicus, P. insularis and other plants associated with ant nests do not have seeds with obvious appendages attractive to ants. Dispersal and reproductive increase of such seeds may represent a relatively primitive form of ant-plant dispersal devoid of seed morphological specializations. Alternatively, evolution of specialized seed structures for dispersal may be precluded by the assemblage of North American seed-harvester ants whose workers are significantly larger than those ants normally associated with elaiosome-attached seed dispersal. Large worker size may permit consumption of elaiosome and seed.  相似文献   

2.
Differential learning and memory by co-occurring ant species   总被引:1,自引:0,他引:1  
Foragers of the antsMessor pergandei andPogonomyrmex rugosus experience differing levels of variability in the distribution of seeds they harvest due to species-specific differences in foraging behavior.Messor pergandei foragers experience more variable seed distributions and densities, learn to recognize a novel seed faster but forget this information faster thanP. rugosus, which experiences more constant seed distributions even in the same habitat. Rate of learning to recognize a novel seed species was negatively associated with measures of seed species diversity for both ants.Messor pergandei foragers respond to variation in seed density by varying number of seeds handled per seed harvested, whileP. rugosus foragers do not. Memory of a novel seed exceeds forager longevity, due perhaps to use of seed caches as a type of information center.  相似文献   

3.
Although seed dispersal by ants might reduce seed predation near the parent plants, predation on discarded seeds clustered on nest refuse piles may reduce any initial benefit provided by seed removal. Here we examine the fate of Croton sonderianus seeds that were discarded by Pheidole fallax Mayr ants on their nest refuses in caatinga vegetation of northeast Brazil. We collected all seeds discarded in refuse piles of 20 nests and within a radius of 50 cm from their borders, and examined them for evidence of predation. A total of 3,017 seeds were recorded either located in the P. fallax refuse piles (89.1%) or nest vicinity (10.9%). Predation was three fold higher in nest vicinity as compared to refuse piles. By removing seeds from beneath parent plants and relocating then to refuse piles, P. fallax is possibly providing double protection services for C. sonderianus seeds. Our findings represent the first evidence for predator-avoidance as benefit for plants resulting from ant seed-dispersal in the neotropics.  相似文献   

4.
Fungal endophytes of grasses are often included in agricultural management and in ecological studies of natural grass populations. In European agriculture and ecological studies, however, grass endophytes are largely ignored. In this study, we determined endophyte infection frequencies of 13 European cultivars and 49 wild tall fescue (Schedonorus phoenix) populations in Northern Europe. We then examined seed production and seed predation of endophyte-infected (E+) and endophyte-free (E?) tall fescue (in wild grass populations and in a field experiment) and meadow fescue (Schedonorus pratensis; in a field experiment only). Endophytes were detected in only one of the 13 cultivars. In contrast, >90% of wild tall fescue plants harbored endophytes in 45 wild populations but were absent in three inland populations in Estonia. In three wild tall fescue study sites, 17%, 22%, and 56% of the seeds were preyed upon by the cocksfoot moth. Endophyte infection did not affect seed mass of tall fescue in the field experiment. However, seed predation was lower in E+ than E? grasses in the two tall fescue populations with higher predation rates. For meadow fescue, the mean number of seeds from E+ plants was higher than E? plants, but E? and E+ seeds had equal rates of predation by the moth. Our results suggest that the effects of grass endophytes on seed production and cocksfoot moth seed predation vary considerably among grass species, and the effects may depend on herbivore pressure and other environmental conditions.  相似文献   

5.
Neotyphodium endophytes are vertically transmitted fungal symbionts of grasses. Being pest-repelling and growth-promoting agents for their hosts, and also potential mycotoxin producers, their detection in plants is important. Observation of chemically cleared flowers of infected grasses (Festuca arundinacea, F. pratensis, Lolium perenne, and L. multiflorum) using differential interference contrast microscopy revealed the existence of endophytes within immature ovaries of host plants. This observation method provides an accurate and easy way to detect and distinguish Neotyphodium endophytes in flowering host grasses and to investigate the seed transmission process, which is critical to their life cycle, and the practical use of infected plants.  相似文献   

6.
K. Clay 《Oecologia》1987,73(3):358-362
Summary Many grasses are infected by endophytic fungi that grow intercellularly in leaves, stems, and flowers and are transmitted maternally by hyphal growth into ovules and seeds. The seed biology and seedling growth of endophyte-infected and uninfected perennial ryegrass (Lolium perenne) and tall fescue (Festuca arundinacea) were investigated under controlled environmental conditions. The percentage of filled seeds produced by infected tall fescue was over twice of uninfected tall fescue; infected and uninfected perennial reegrass had similar percentages. Weights of seeds from infected and uninfected plants were similar in both species. Seeds from infected plants of both species exhibited a higher rate of germination than seeds from uninfected plants. Shoot growth in the greenhouse was compared by making three sequential harvests of above-ground plant parts from infected and uninfected plants of both species. Infected perennial ryegrass plants produced significantly more biomass and tillers than uninfected plants after 6 and 10 weeks of growth and significantly more biomass after 14 weeks of growth. Infected tall fescue plants produced significantly more biomass and tillers than uninfected plants after 10 and 14 weeks of growth. The physiological mechanism of enhancement of growth is not known. The results of this study suggest that infected plants may have a selective advantage in populations with uninfected members.  相似文献   

7.
The interaction between two species often depends on the presence or absence of a third species. One widespread three-species interaction involves fungal endophytes infecting grasses and the herbivores that feed upon them. The endophytes are allied with the fungal family Clavicipitaceae and grow systemically in intercellular spaces in above-ground plant tissues including seeds. Like relatedClaviceps species, the endophytes produce a variety of alkaloids that make the host plants toxic or distasteful to herbivores. A large number of grass species are infected, especially cool-season grasses in temperate areas. Field and laboratory studies have shown that herbivores avoid infected plants in choice trials and suffer increased mortality and decreased growth on infected grasses in feeding experiments. Resistance to herbivores may provide a selective advantage to infected plants in competitive interactions with noninfected plants. Recent studies have shown that differential herbivory can reverse competitive hierarchies among plant species. Both endophyte-infected and noninfected tall fescue grass (Festuca arundinacea) are outcompeted by orchardgrass (Dactylis glomerata) in the absence of insect herbivory. However, when herbivores are present infected tall fescue outcompetes orchardgrass. These results suggest that the frequency of infection in grass species and grassland communities will increase over time. Several studies are reviewed illustrating increases in infection frequency within grass populations subject to herbivore pressure. Endophytic fungi may be important regulators of plant-herbivore interactions and so indirectly affect the structure and dynamics of plant communities.  相似文献   

8.
The natural history of the short-lived, fire-following shrub Dendromecon rigida Benth. was studied with emphasis on reproductive output and the consequences of seed dispersal, by intensive study of one population and comparisons with several others.
  1. In 16 populations throughout California, mean seed weight ranged from 10 to 16 mg, and was not correlated with rainfall, elevation or latitude. Seed number per fruit ranged from 3 to 11. Adult populations ranged in size up to several million, but each was probably even-aged, established after recent disturbance. Seed-dispersing ants were found at all localities.
  2. Reproduction began one year after establishment. Precocious reproduction did not increase mortality; rather, longer-lived plants were more fecund at all ages.
  3. The percentage of the population reproducing and fruit number in the most fecund plants were directly related to rainfall in the preceding six months, regardless of plant age. Reproduction also differed according to topographic position.
  4. Mean life expectancy of one-year-old plants was about six years, and only 5% survived to age 10 years. Intraspecific density effects were not apparent. Seed longevity probably exceeds adult longevity by a factor of five or ten.
  5. The fruits are explosive and secondary dispersal is by gravity and ants. The ants are attracted to a caruncle which represents 14% of the propagule's caloric content. In the intensive study area ants removed more seeds from more sites than did vertebrate seed predators. Pogonomyrmex subnitidus developed large nests on open sites on ridges, and thus provided uphill (even interdrainage) dispersal; it discarded seeds on the soil surface, free to roll but open to predation. Camponotus species had fewer foragers but many small nests in well-covered sites, and discarded the seeds in underground refuse galleries. Dispersal thus affects exposure to predation, the microsite of germination, conspecific aggregation, and position in the mosaic patterns of topography and fire.
  相似文献   

9.
Harvester ants have long been known to exhibit interspecific seed preference and this preference has been thought to be associated with distance in a manner analogous with optimal foraging theory. However, little attention has been given to how intraspecific seed preference changes or how microhabitat (i.e. the composition of the terrain that the ants are moving through) impacts seed harvesting preference. We addressed these questions by conducting seed harvesting experiments in three different Ephedra viridis populations that contain harvester ants (Pogonomyrmex occidentalis) by using only E. viridis seeds and conducting trials over multiple distances and varying degrees of microhabitat cover. We found that increased microhabitat cover and increased seed mass decrease the likelihood of E. viridis seeds being harvested much more dramatically than distance. However, we found no effect of distance or microhabitat cover on which E. viridis seeds were harvested. We conclude that harvester ant E. viridis seed preference is distance and microhabitat independent. However, increases in microhabitat cover negatively impacts the likelihood of P. occidentalis harvesting E. viridis seeds of any size. Our findings suggest that harvester ant foraging behavior is influenced by structure of the microhabitat more than by distance. This provides a new context on how harvester ant foraging behavior and effectiveness should be considered.  相似文献   

10.
Granivore foraging decisions affect consumer success and determine the quantity and spatial pattern of seed survival. These decisions are influenced by environmental variation at spatial scales ranging from landscapes to local foraging patches. In a field experiment, the effects of seed patch variation across three spatial scales on seed removal by western harvester ants Pogonomyrmex occidentalis were evaluated. At the largest scale we assessed harvesting in different plant communities, at the intermediate scale we assessed harvesting at different distances from ant mounds, and at the smallest scale we assessed the effects of interactions among seed species in local seed neighborhoods on seed harvesting (i.e. resource–consumer interface). Selected seed species were presented alone (monospecific treatment) and in mixture with Bromus tectorum (cheatgrass; mixture treatment) at four distances from P. occidentalis mounds in adjacent intact sagebrush and non‐native cheatgrass‐dominated communities in the Great Basin, Utah, USA. Seed species differed in harvest, with B. tectorum being least preferred. Large and intermediate scale variation influenced harvest. More seeds were harvested in sagebrush than in cheatgrass‐dominated communities (largest scale), and the quantity of seed harvested varied with distance from mounds (intermediate‐scale), although the form of the distance effect differed between plant communities. At the smallest scale, seed neighborhood affected harvest, but the patterns differed among seed species considered. Ants harvested fewer seeds from mixed‐seed neighborhoods than from monospecific neighborhoods, suggesting context dependence and potential associational resistance. Further, the effects of plant community and distance from mound on seed harvest in mixtures differed from their effects in monospecific treatments. Beyond the local seed neighborhood, selection of seed resources is better understood by simultaneously evaluating removal at multiple scales. Associational effects provide a useful theoretical basis for better understanding harvester ant foraging decisions. These results demonstrate the importance of ecological context for seed removal, which has implications for seed pools, plant populations and communities.  相似文献   

11.
Summary We investigated individual foraging components of the western harvester ant,Pogonomyrmex occidentalis, in the native seed background of a shrub-steppe environment. Our study identified factors affecting foraging movements and seed selection by individual ants. Some assumptions and predictions of central-place foraging theory and a correlated random walk were evaluated for individual foragers. Results showed that ant size was only weakly correlated with the seed sizes harvested; seed size was a more important constraint than a predictor of seed selection. Individual ants spent more time in localized search behavior than traveling between search areas and nests.P. occidentalis foragers encountered seeds randomly with respect to time, and handled a mean of 1.7 seeds/trip. A correlation of increased search effort with greater travel distances was consistent with central-place foraging theory but, contrary to it, search and travel effort were not associated with energetic reward.Individual ants exhibited fidelity in both search site and native seed species. Spatial analyses of foraging movements showed a highly oriented travel path while running, and an area-restricted path while searching. Searching ants moved in a manner consistent with a correlated random walk. The deterministic component of patch fidelity and the stochastic component of search may override energetic foraging decisions in individualP. occidentalis ants.  相似文献   

12.
Artificial infection of grasses with endophytes   总被引:16,自引:0,他引:16  
The endophytic fungi Acremonium loliae and a Gliocladium-like sp. were isolated from Lolium perenne; A. coenophialum and a Phialophora-like sp. from Festuca arundinacea; and Epichloe typhina from F. rubra. All five fungi infected endophyte-free seedlings of the host grasses and F. arundinacea after artificial inoculation. All fungi except A. coenophialum were able to infect L. perenne. The inoculation technique involved placing endophyte mycelium into the coleoptile tissue of sterile seedlings growing on water agar in Petri dishes. Infection of mature plants with endophytes was not achieved. The presence of some endophytes in grasses can be beneficial to plant growth and persistence but deleterious to the health of animals which graze them. The desirability of infecting cultivars of grasses with endophytes is discussed.  相似文献   

13.
Symbiotic associations between grasses and vertically transmitted endophytic fungi are widespread in nature. Within grass populations, changes in the frequency of infected plants are driven by influence of the endophyte on the fitness of their hosts and by the efficiency of endophyte transmission from parent plants to their offspring. During the seed stage, the endophyte might influence the fitness of its host by affecting the rate of seed viability loss, whereas the efficiency of endophyte transmission is affected by losses of viability of the fungus within viable seeds. We assessed the viability losses of Lolium multiflorum seeds with high and low level of infection of the endophyte Neotyphodium occultans, as well as the loss of viability of the fungus itself, under accelerated seed ageing and under field conditions. Starting with high endophyte-infected accessions of L. multiflorum, we produced their low endophyte-infected counterparts by treating seeds with a fungicide, and subsequently multiplying seeds in adjacent plots allowing pollen exchange. In our accelerated ageing experiments, which included three accessions, high endophyte-infected seeds lost viability significantly faster than their low endophyte-infected counterpart, for only one accession. High endophyte-infected seeds of this particular accession absorbed more water than low endophyte-infected seeds. In contrast, the endophyte lost viability within live seeds of all three accessions, as the proportions of viable seeds producing infected seedlings decreased over time. In our field experiment, which included only one accession, high endophyte-infected seed lost viability significantly but only slightly faster than low endophyte-infected seed. In contrast, the loss of viability of the endophyte was substantial as the proportions of viable seeds producing infected seedlings decreased greatly over time. Moving the seeds from the air to the soil surface (simulating seed dispersion off the spikes) decreased substantially the rate of seed viability loss, but increased the rate of endophyte viability loss. Our experiments suggest that, in ageing seed pools, endophyte viability loss and differential seed mortality determine decreases in the proportions of endophyte-infected seeds in L. multiflorum. Endophyte viability loss within live seeds contributes substantially more to infection frequency changes than differential viability losses of infected and non-infected seeds.  相似文献   

14.
T. M. Tibbets  S. H. Faeth 《Oecologia》1999,118(3):297-305
Endophytic fungi, particularly in the genus Neotyphodium, are thought to interact mutualistically with host grasses primarily by deterring herbivores and pathogens via production of alkaloidal mycotoxins. Little is known, however, about how these endophytes interact with host plants and herbivores outside the realm of agronomic forage grasses, such as tall fescue, and their livestock grazers or invertebrate pest herbivores. We tested the effects of Neotyphodium inhabiting introduced tall fescue and native Arizona fescue on preference, survival, and performance of the leaf-cutting ant, Acromyrmex versicolor, an important generalist herbivore in the southwestern United States. In a choice experiment, we determined preferences of foraging queens and workers for infected and uninfected tall fescue and Arizona fescue. In a no-choice experiment, we determined queen survival, worker production, and size of fungal gardens for foundress queens reared on diets of infected and uninfected tall fescue and Arizona fescue. Foraging workers and queens did not significantly prefer either uninfected tall fescue or Arizona fescue relative to infected grasses, although ants tended to harvest more uninfected than infected tall fescue and more infected than uninfected Arizona fescue. Queen survivorship and length of survival was greater on uninfected tall fescue, uninfected Arizona fescue, and infected Arizona fescue than on infected tall fescue or the standard diet of palo verde and mesquite leaves. No queens survived beyond 6 weeks of the study when fed the infected tall fescue diet, in contrast to the effects of the other diets. Likewise, worker production was much lower and fungal garden size much smaller on infected tall fescue than in all other treatments, including the standard diet. In general, ant colonies survived and performed better on uninfected tall fescue and infected and uninfected Arizona fescue than standard diets of palo verde and mesquite leaves. The interaction of Neotyphodium with its host grasses is highly variable and these endophytes may increase, not alter, or even decrease resistance to herbivores. The direction of the interaction depends on host and fungal genotype, herbivore species, and environmental factors. The presence of endophytes in most, if not all, host plants suggests that endophytes may alter foraging patterns, performance, and survival of herbivores, such as leaf-cutting ants, but not always in ways that increase host plant fitness. Received: 27 October 1998 / Accepted: 19 October 1998  相似文献   

15.
Neotyphodium species occur as endophytic fungi in cool-season grasses around the world. The beneficial aspects of grass-Neotyphodium associations have provoked researchers to look for a novel association in plant species where this symbiotum has not been reported. We surveyed Russian bromegrass (Bromus tomentellus Boiss.) accessions from a germplasm collection for the presence of Neotyphodium spp. fungi and determined levels of endophyte infection in B. tomentellus populations in native rangelands of Iran. Among 50 collected accessions, symbiotic fungi were detected in 45 accessions without any symptoms of choke disease on host plants. In culture medium, fast-growing endophytes appeared from seeds after 7-14 days. Plants grown from seed collections were 80-100% infected. Based on morphological characteristics and PCR analysis, we concluded that this fungus is a member of the Neotyphodium group of endophytic fungi. Lack of apparent toxicity to grazing animals suggests a place for endophyte-infected B. tomentellus in rangeland renovation, providing this infected grass exhibits increased tolerance to abiotic stresses.  相似文献   

16.
Trans‐generational adaptation is important to respond rapidly to environmental challenges and increase overall plant fitness. Besides well‐known mechanisms such as epigenetic modifications, vertically transmitted endophytic bacteria might contribute to this process. The cultivable and total endophytic communities of several generations of Arabidopsis thaliana seeds harvested from plants exposed to cadmium (Cd) or not exposed were investigated. The diversity and richness of the seed endophytic community decreased with an increasing number of generations. Aeromicrobium and Pseudonocardia were identified as indicator species in seeds from Cd‐exposed plants, while Rhizobium was abundantly present in both seed types. Remarkably, Rhizobium was the only genus that was consistently detected in seeds of all generations, which suggests that the phenotypic characteristics were more important as selection criteria for which bacteria are transferred to the next plant generation than the actual genera. Production of IAA was an important trait for endophytes from both seed types, while ACC deaminase activity and Cd tolerance were mainly associated with seed endophytes from Cd‐exposed plants. Understanding how different factors influence the seed endophytic community can help us to improve seed quality and plant growth through different biotechnological applications.  相似文献   

17.
Neotyphodium endophytes are asexual, filamentous fungi, mutualistically associated with diverse cool season grasses. Infected seeds and vegetative organs of infected host plants are the only known modes of propagation of the asexual endophytes. In the last decade certain Epichloë and Neotyphodium-infected grass species have been shown to have epiphyllous structures of the endophytes, hyphae, conidiophores, and conidia, growing on leaf blades. The production of epiphyllous conidia suggests the possibility that some of these endophytes may have the ability for plant-to-plant spread. The objective of this study was to determine the possible mechanisms involved in liberation and dispersal of asexual spores of Neotyphodium growing in vitro and epiphyllously on leaves of Poa ampla. Our results indicate that water dispersal is the most likely means of dissemination of conidia of the Neotyphodium sp. Wind generated by dry compressed air does not dislodge the conidia from slide cultures or from P. ampla leaves.  相似文献   

18.
Selected Neotyphodium sp. endophytes are now commonly used to enhance pasture persistence and livestock productivity, with seed of perennial ryegrass and tall fescue cultivars with these selected endophytes being commercially available. In a large population of perennial ryegrass plants infected with a Neotyphodium sp. endophyte that was being grown for seed production a small percentage of inflorescences were distorted and covered with a conspicuous white mycelial growth. Within individual plants only a small number of inflorescences were affected and the amount of distortion differed between affected inflorescences. This Neotyphodium sp. is an interspecific hybrid of Epichloë typhina and Neotyphodium. lolii and like nearly all other Neotyphodium spp is symptomless in host grasses. The fungus isolated from distorted inflorescences had colonies that were identical to those isolated from symptomless inflorescences and these were characteristic of this Neotyphodium sp. This is the first report of distorted inflorescences covered with epiphytic hyphal growth on host grasses infected with an interspecific hybrid Neotyphodium sp.  相似文献   

19.
The role of harvester ants in Mediterranean grassland and scrubland has mostly focused on seed consumption. However, recent studies have reported their role as accidental dispersal agents of some of the collected seeds via refuse piles. The objective of this study is to examine the effect of the ant Messor barbarus on seed availability and dispersal of one of its major diet components, Lavandula stoechas subsp. pedunculata, in scrubland, grassland and the ecotones between them. After confirming and quantifying the Lavandula contribution to M. barbarus diet, we described the spatial and temporal patterns of pre- and post-dispersal seed predation, seed content and seedling occurrence in the refuse piles. Our results show that: (1) Lavandula propagules constitute a high proportion of the prey items collected by M. barbarus, with particularly intense collection activity in mid-summer, spring and autumn, in decreasing order. (2) Pre-dispersal predation rate was significantly higher in the ecotone than in the scrubland (76% and 13.5% of total seed production lost respectively). (3) Season and propagule type (seed vs. fruit) were the most significant variables explaining the post-dispersal predation probability, which approached 100% of seeds after 48 h in mid-summer. (4) Viable Lavandula seeds were found in refuse piles at densities of 0.06–0.2 per g of refuse pile material, or 58.8–207.2 per refuse pile. On the one hand, these results indicate that the ecotones are most affected by M. barbarus pre-dispersal consumption, which may locally limit Lavandula colonisation. On the other hand, the small proportion of consumed seeds that is dispersed to refuse piles may be relevant at the population level, as this dispersal implies arrival at potentially favourable sites for establishment.  相似文献   

20.
Symbiosis between cool‐season grasses and vertically transmitted fungal endophytes are common and significantly impact on ecosystem function. This makes the understanding of the underlying mechanisms to symbiotic individuals frequency in local populations much more interesting. Most studies have been focused on the differential fitness between symbiotic and non‐symbiotic counterparts (relative fitness), barely considering other mechanisms. We performed a microcosms experiment to evaluate whether grazing alters the dynamics of the endophyte Neotyphodium occultans in the annual grass Lolium multiflorum by simultaneously modifying the relative fitness and the endophyte efficiency to be transmitted from host plants to seeds. Grazing was simulated by means of clipping and trampling on symbiotic and non‐symbiotic plants growing separately, in soils obtained from paddocks, differing in their agronomic management history (natural grassland vs. ryegrass promotion). Seed production showed a complex pattern as it depended on the symbiotic status of the plants, the level of grazing and the agro‐ecological context. Grazed plants produced three times fewer seeds than ungrazed plants only in microcosms with endophyte‐symbiotic plants in soils from ryegrass promotion. Endophyte benefits on seed production were exclusively observed in ungrazed plants in the same soil. Symbiotic plants produced symbiotic and non‐symbiotic seeds in all the treatments. While the production of non‐symbiotic seeds by these plants was not affected by grazing and the soil, grazing reduced the production of symbiotic seeds in both contexts. Grazing negative effect on the density of fully infected spikes determined a significant increment in the transmission failures which were not modified by agro‐ecological contexts. Therefore, grazing can modulate symbiosis dynamics through reducing seed production and endophyte transmission efficiency. Transmission has been disregarded, but it is a context‐dependent process that could lead to a gradual reduction in the symbiotic plants frequency in a population if the mutualism effectiveness does not outweigh transmission failures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号