首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of phorbol esters [phorbol 12,13-dibutyrate (PDB), 12-O-tetradecanoylphorbol 13-acetate (TPA), and phorbol 13-acetate] were investigated on the release of [3H]norepinephrine, 45Ca2+ accumulation, and protein kinase C activity in cultured sympathetic neurons of the chick embryo. Sympathetic neurons derived from 10-day-old chick embryo were cultured in serum-free medium supplemented with insulin, transferrin, and nerve growth factor. After 3 days, neurons were loaded with [3H]-norepinephrine and the release of [3H]norepinephrine was determined before and after electrical stimulation. Stimulation at 1 Hz for 15 s increased the release of [3H]-norepinephrine over the nonstimulation period. Stimulation-evoked release gradually declined with time during subsequent stimulation periods. Incubation of neurons in Ca2+-free Krebs solution containing 1 mM EGTA completely blocked stimulation-evoked release of [3H]-norepinephrine. Stimulation-evoked release of [3H]-norepinephrine was markedly facilitated by 3 and 10 nM PDB or TPA. The spontaneous release was also enhanced by PDB and TPA. The net accumulation of 45Ca2+ during stimulation of sympathetic neurons was increased by two- to fourfold in the presence of PDB or TPA. PDB at 1-100 nM produced a concentration-dependent increase in the activation of protein kinase C. PDB at 30 nM increased the activity of protein kinase C of the particulate fraction from 0.09 to 0.58 pmol/min/mg protein. There was no significant change in protein kinase C activity of the cytosolic fraction (0.14 pmol/min/mg versus 0.13 pmol/min/mg protein). The ratio of the particulate to cytosolic protein kinase C increased from a control value of 0.62 to 4.39 after treatment with 30 nM PDB. TPA (10 and 30 nM) also increased protein kinase C activity of the particulate fraction by six- to eightfold. Phorbol 13-acetate had no effect on protein kinase C activity, [3H]norepinephrine release, and 45Ca2+ accumulation. These results provide direct evidence that activation of protein kinase C enhances Ca2+ accumulation, which in turn leads to the facilitation of transmitter release in sympathetic neurons.  相似文献   

2.
The distribution of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) in supernatant and particulate fractions of primary cultures of rat astrocytes and its translocation by a phorbol ester were studied. We observed that 91% of protein kinase C activity in astrocytes was in the supernatant fraction, as measured by lysine-rich histone phosphorylation assay. Attempts to uncover latent activity in the particulate fraction were unsuccessful. Approximately 75% of the supernatant protein kinase C activity could be translocated to the particulate fraction by prior treatment (30-60 min) of the cultures with 100 nM 12-O-tetradecanoyl-phorbol 13-acetate (TPA), but not with 4 alpha-phorbol, an inactive phorbol ester. Investigation of endogenous substrates for protein kinase C showed that TPA treatment brought about an increase in phosphorylation in membrane proteins and a decrease in phosphorylation of supernatant proteins. These findings indicate that the distribution of protein kinase C in astrocytes differs substantially from that in whole brain tissue, where approximately two-thirds of the protein kinase C activity is associated with the particulate fraction. Because protein kinase C is concentrated in the cytosol of astrocytes and most of this activity can be translocated to membranes, astrocytes may be particularly well-suited to respond to signals that activate phosphoinositide-linked receptors in brain.  相似文献   

3.
The effect of phorbol esters on calcium-activated, phospholipid-dependent kinase (protein kinase C) and luteinizing hormone (LH) secretion was examined in cultured rat anterior pituitary cells. The potent tumor promoter 12-O-tetra-decanoylphorbol-13-acetate (TPA) stimulated LH secretion and activated pituitary protein kinase C in the presence of calcium and phosphatidylserine. The enzyme activity present in cytosol and particulate fractions was eluted at about 0.05 M NaCl during DE52-cellulose chromatography. Preincubation of pituitary cells with TPA markedly decreased cytosolic protein kinase C activity and increased enzyme activity in the particulate fraction. The maximal TPA-induced change in enzyme activity, with a 76% decrease in cytosol and a 4.3-fold increase in the particulate fraction, occurred within 10 min. The dose-dependent changes in protein kinase C redistribution in TPA-treated cells were correlated with the stimulation of LH release by the phorbol ester. These results suggest that activation of protein kinase C by TPA is associated with intracellular redistribution of the enzyme and is related to the process of secretory granule release from gonadotrophs.  相似文献   

4.
Human neutrophils stimulated with a phorbol ester (phorbol 12-myristrate 13-acetate or phorbol 12,13-dibutyrate) responded with an increase in diacylglycerol, considered the natural activator of protein kinase C. The amounts of diacylglycerol formed were considerable, reaching 700-900% of basal after 20 min. In contrast, 4-alpha-phorbol 12-myristate 13-acetate did not induce any detectable formation of diacylglycerol. Simultaneously, phorbol 12-myristate 13-acetate exposure caused increased breakdown of both phosphatidylcholine and phosphatidylinositol 4,5-bisphosphate. These results suggest that once activated, protein kinase C can positively modulate its own activity by inducing additional formation of diacylglycerol from at least two different sources.  相似文献   

5.
1. The perfused rat heart was treated with the tumour-promoter and protein kinase C activator, phorbol 12-myristate 13-acetate and the distribution of protein kinase C activity between cytosolic and particulate fractions determined. 2. Phorbol ester treatment led to a rapid loss of protein kinase C activity from the cytosol (t0.5 = 2 min) with a corresponding translocation into the particulate fraction. Translocated protein kinase C activity was tightly bound to the particulate fraction, could only be extracted with buffers containing 2% Triton X-100 and could therefore be misinterpreted as being down-regulated. 3. Claims of rapid down-regulation of protein kinase C activity by phorbol esters need to be supported by rigorous procedures for extraction of the particulate material.  相似文献   

6.
Phorbol 12-myristate 13-acetate (PMA) induces time-dependent changes in protein kinase C subcellular distribution and enzymatic activity in the human osteosarcoma cell line SaOS-2. Short (less than 60 min) incubations with PMA caused decreased cytosolic enzyme activity and a concomitant increase in particulate protein kinase; after 3 h, particulate protein kinase C activity also declined to reach less than 10% of basal activity by 24 h (Krug, E., and Tashjian, Jr., A. H., (1987) Cancer Res. 47, 2243-2246). In order to determine whether the loss in enzyme activity was due to decreased enzyme protein, Western blot analyses were performed using a polyclonal antibody against protein kinase C raised in rabbits. This approach confirmed the previously reported time-related changes: 80-kDa immunoreactive protein kinase C initially translocated from the cytosol to the particulate cell fraction and later disappeared completely from the particulate fraction. Loss of protein kinase C enzymatic activity thus results from actual loss of the 80-kDa protein; we found no evidence for generation of a calcium/phospholipid-independent protein kinase C-like form of the enzyme. Membrane association was confirmed by immunoprecipitation experiments using [35S]methionine-labeled cells. Brief exposure to PMA caused a marked loss in the [35S]methionine-labeled cytosolic protein kinase C band and an increase in the labeled particulate band. Protein kinase C immunoprecipitated from cells treated with PMA for 14 h displayed an increase in [35S]methionine label despite a greater than 80% loss of enzyme activity. The high specific radioactivity of the remaining 80-kDa protein leads us to conclude that long term treatment with PMA causes an increase in the rate of protein kinase C synthesis accompanied by a still greater increase in the rate of enzyme degradation in SaOS-2 cells.  相似文献   

7.
Incubation of human platelets with 12-0-tetradecanoylphorbol-13-acetate (TPA) caused a rapid decrease in soluble Ca2+, phospholipid-dependent protein kinase activity (protein kinase C) and an increase in protein kinase C associated with the particulate fraction. TPA also induced an increased activity of a Ca2+, phospholipid-independent protein kinase activity in both the soluble and the particulate fractions of platelets. This latter kinase eluted from DEAE cellulose columns at a higher salt concentration than protein kinase C, and was shown by Sephadex G-100 chromatography to have a MW of approx. 50,000 compared with an MW of 80,000 for protein kinase C. The data suggest that TPA treatment of platelets causes irreversible activation of protein kinase C by proteolysis of the enzyme to a form active in the absence of Ca2+ and phospholipid.  相似文献   

8.
Endothelin, a novel peptide isolated from the conditioned medium of endothelial cells, causes a slow, sustained contraction of vascular smooth muscle, but its mechanism of action remains unclear. To determine whether the diacylglycerol/protein kinase C signalling pathway is stimulated by endothelin, we exposed cultured rat aortic smooth muscle cells to endothelin and measured diacylglycerol accumulation and protein kinase C-dependent protein phosphorylation. Endothelin stimulated a dose-dependent, biphasic increase in diacylglycerol, which was sustained for at least 20 min. This peptide also induced a prolonged phosphorylation of an acidic protein with a molecular weight of 76,000, which was detectable by 30 s and sustained for at least 20 min. This phosphorylation could be mimicked by phorbol 12-myristate 13-acetate, but not by ionomycin, and was markedly reduced when protein kinase C was down-regulated by a 24-h pretreatment with phorbol 12,13-dibutyrate. These results suggest that endothelin causes a robust stimulation of the diacylglycerol/protein kinase C pathway in cultured vascular smooth muscle cells, and that this mechanism may contribute importantly to the physiologic events stimulated by endothelin in intact blood vessels, including slow, tonic contraction and Ca2+ influx.  相似文献   

9.
Treatment of rabbit pancreatic acini with the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), resulted in a time- and dose-dependent decrease of soluble protein kinase C activity coinciding with an increase of protein kinase C activity in the particulate fraction. After 5 min, soluble protein kinase C activity had decreased to almost 10% of the corresponding control. Total extractable protein kinase C activity, however, remained unchanged, indicating that the decrease of soluble protein kinase C activity was not due to TPA-induced inactivation of the enzyme. The biologically inactive phorbol ester, 4 alpha-phorbol 12,13-didecanoate, did not induce such a translocation of protein kinase C. The half-maximal concentration for TPA-induced translocation of protein kinase C was 40 nM, and was equal to that for TPA-induced amylase secretion from isolated acini. This suggests that translocation of protein kinase C to the particulate fraction is an important step in TPA-induced activation of protein kinase C and enzyme secretion. On the other hand, cholecystokinin, a secretagogue of the calcium-mobilizing type, whose secretory action is thought to be mediated, at least in part, by protein kinase C, did not change the subcellular distribution of protein kinase C. In the presence of R59022 6-(2-[(4-fluorophenyl)phenylmethylene]-1-piperidinyl ) ethyl-7-methyl-5H-thiazolo[3,2-a]pyrimidin-5-one, an inhibitor of diacylglycerol kinase activity, cholecystokinin produced a small but significant translocation of protein kinase C, suggesting that the inability of the hormone to induce translocation is not due to a rapid conversion of the diacylglycerol formed into phosphatidic acid.  相似文献   

10.
Exposure of MCF-7 human breast cancer cells to phorbol ester 12-O-tetradecanoyl-13-acetate (TPA) results in a complete inhibition of cell proliferation. We investigated the effects of TPA on protein kinase C activity when cells were exposed to phorbol ester for various lengths of time. TPA induces within 5 min a drastic dose-dependent decrease of the cytosolic protein kinase C activity. The enzyme apparently lost at the cytosolic level was only partially recovered in the particulate fraction. The apparent down-regulation of the translocated enzyme which was only 34% after 1 min reached 72% and 84% after respectively 10 min and 15 min. Moreover, when cells are treated with TPA for longer periods of time, the particulate protein kinase C activity continues to decrease, dropping below control after 1 hour. This progressive decline leads to an almost complete disappearance of protein kinase C activity in MCF-7 cells after 45 hours of TPA treatment. The apparent loss of protein kinase C activity upon short- as well as long-exposure of cells to TPA was not accompanied by a concomitant increase of Ca, PL-independent protein kinase activity. We discuss the implication of these biochemical events in the inhibition of cell proliferation with regard to the respective short- and long-term effects of TPA on protein kinase C activity.  相似文献   

11.
The ability of Ca2+/phospholipid-dependent protein kinase (protein kinase C, PKC) to stimulate cAMP phosphodiesterase (PDE) activity in a liver Golgi-endosomal (GE) fraction was examined in vivo and in a cell-free system. Injection into rats of 4 beta-phorbol 12-myristate 13-acetate, a known activator of PKC, caused a rapid and marked increase in PKC activity (+325% at 10 min) in the GE fraction, along with an increase in the abundance of the PKC alpha-isoform as seen on Western immunoblots. Concurrently, 4 beta-phorbol 12-myristate 13-acetate treatment caused a time-dependent increase in cAMP PDE activity in the GE fraction (96% at 30 min). Addition of the catalytic subunit of protein kinase A (PKA) to GE fractions from control and 4 beta-phorbol 12-myristate 13-acetate-treated rats led to a comparable increase (130-150%) in PDE activity, suggesting that PKA is probably not involved in the in-vivo effect of 4 beta-phorbol 12-myristate 13-acetate. In contrast, addition of purified PKC increased (twofold) PDE activity in GE fractions from control rats but affected only slightly the activity in GE fractions from 4 beta-phorbol 12-myristate 13-acetate-treated rats. About 50% of the Triton-X-100-solubilized cAMP PDE activity in the GE fraction was immunoprecipitated with an anti-PDE3 antibody. On DEAE-Sephacel chromatography, three peaks of PDE were sequentially eluted: one early peak, which was stimulated by cGMP and inhibited by erythro-9 (2-hydroxy-3-nonyl) adenine (EHNA); a selective inhibitor of type 2 PDEs; and two retarded peaks of activity, which were potently inhibited by cGMP and cilostamide, an inhibitor of type 3 PDEs. Further characterization of peak I by HPLC resolved a major peak which was activated (threefold) by 5 microM cGMP and inhibited (87%) by 25 microM EHNA, and a minor peak which was insensitive to EHNA and cilostamide. 4 beta-Phorbol 12-myristate 13-acetate treatment caused a selective increase (2.5-fold) in the activity associated with DEAE-Sephacel peak I, without changing the K(m) value. These results suggest that PKC selectively activates a PDE2, cGMP-stimulated isoform in the GE fraction.  相似文献   

12.
The ability of tumor promoting 12-O-tetradecanoylphorbol-13-acetate (TPA) to redistribute protein kinase C in human promyelocytic leukemic HL60 cells was investigated. It was found that TPA caused a rapid translocation (within 10 min) of protein kinase C from the cytosolic (soluble) fraction to the particulate (membrane) fraction, as determined indirectly by assaying for the enzyme activity or by immunoblotting of the enzyme protein in the isolated subcellular fractions. Immunocytochemical localization of the enzyme demonstrated directly that the TPA caused an enzyme translocation t the plasma membrane. These findings suggest that translocation to the plasma membrane of the enzyme may represent initial events related to the TPA effect on terminal differentiation of HL60 cells to monocytes/macrophages.  相似文献   

13.
Insulin treatment stimulated the activity of the Ca2+- and phospholipid-dependent protein kinase (protein kinase C) in both cytosolic and membrane fractions of BC3H-1 myocytes. Within 60 s of insulin treatment, membrane protein kinase C activity increased 2-fold, diminished toward control levels transiently, and then increased 2-fold again after 15 min. Cytosolic protein kinase C activity increased more gradually and steadily up to 80% over a 20-min period. Increases in protein kinase C activity were dose-dependent and were not simply a result of translocation of cytosolic enzyme (although this may have occurred), as total activity was also increased. The increase in protein kinase C activity was not inhibited by cycloheximide (which also increased protein kinase C activity and 2-deoxyglucose transport) and was still evident following anion exchange chromatography. The insulin effect was decidedly different from those of 12-O-tetradecanoylphorbol-13-acetate and phenylephrine using histone III-S as substrate. Phenylephrine decreased cytosolic protein kinase C activity while increasing membrane activity; 12-O-tetradecanoylphorbol-13-acetate only decreased cytosolic protein kinase C activity. The early insulin-induced increases in membrane protein kinase C activity may be related to increased diacylglycerol generation from de novo phosphatidic acid synthesis, as there were rapid increases in [3H]glycerol incorporation into diacylglycerol, and transient increases in phospholipid hydrolysis, as there were transient rapid increases in [3H]diacylglycerol in cells prelabeled with [3H]arachidonate. Later, sustained increases in membrane and cytosolic protein kinase C activity may reflect the continuous activation of de novo phospholipid synthesis, as there were associated increases in [3H]glycerol incorporation into diacylglycerol at later, as well as very early time points.  相似文献   

14.
Staurosporine, a most potent protein kinase C inhibitor, actually inhibited protein kinase C activity obtained either from cytosol or particulate fraction of mouse epidermis. Staurosporine at the concentrations which exert protein kinase C inhibition, however, failed to inhibit, but markedly augmented 12-O-tetradecanoylphorbol-13-acetate (TPA)-caused ornithine decarboxylase (ODC) induction in isolated mouse epidermal cells. Staurosporine by itself induced ODC activity as TPA does. Mechanism of ODC induction seems different between these two compounds. Another protein kinase C inhibitor, H-7, inhibited both staurosporine- and TPA-caused ODC induction.  相似文献   

15.
Peripheral blood lymphocytes from patients with chronic lymphocytic leukemia (CLL) acquire after several days of exposure to 12-O-tetradecanoylphorbol-13-acetate (TPA) several morphological, immunological and histochemical features of hairy cell leukemia. We have investigated the short term effects of TPA treatment on protein kinase C and its subcellular distribution. Within minutes of addition of TPA to CLL cells 20% of the cytosolic protein kinase C had associated with the particulate fraction. The remaining 80% of protein kinase C activity was down-regulated. The association with the membrane dramatically increased the resistance of the enzyme to inhibition by the non-ionic detergent, Triton X-100. These results suggest that activation of protein kinase C causes multiple biological changes in CLL cells.  相似文献   

16.
The potent tumor promoter 12-O-tetradecanoyl-phorbol 13-acetate (TPA) affects several thyroid cell functions and interacts with thyroid-stimulating hormone (TSH) either by inhibiting or potentiating its action on different cellular parameters. Since phorbol ester acts mainly through the activation of protein kinase C, which is its receptor, we studied this activation and its interaction with TSH and forskolin in suspension cultures of porcine thyroid cells. In thyroid cell cultures, TPA has a dual effect on protein kinase C activity: immediately (2-5 min) after exposure of cells to TPA, it began to be translocated from the cytosol to the particulate fraction. The transfer of the cytosolic enzyme was total and could occur with or without a loss of activity. The translocated enzyme still needed Ca2+ and phospholipids for its activation. The basal activity increased transiently (2-4 h) in both the cytosol and particulate fractions during translocation. The peak activity in the particulate fraction was reached 10-30 min after exposure of cells to TPA, and was followed by down-regulation of protein kinase C and almost complete disappearance of its activity. The residual activity was about 13% of control after a 2-day exposure to TPA. It was unequally distributed between cytosol (4%) and particulate fraction (9%). Prolonged exposure of cells to TPA did not affect either the activity or the subcellular distribution of the cAMP-dependent protein kinase activity. TPA interacted with TSH and prevented the decrease of this activity induced by prolonged exposure of cells to the hormone not only when it was introduced simultaneously with TSH, but also when it was added 24 h after TSH. However, the forskolin-induced decrease in cAMP-dependent protein kinase activity was not prevented by the presence of TPA. TPA also affected the increases in cAMP accumulation mediated by TSH and forskolin. The TSH-induced increase was significantly stimulated by TPA after short contacts (5-15 min), while longer preincubations of cells with TPA provoked a very strong inhibition of the TSH action. However, the forskolin-induced stimulation of the cAMP accumulation was maintained and even further increased in the presence of TPA. Consequently, the actions of TSH and TPA are apparently interdependent, while those of forskolin and TPA seem to be parallel and independent. Neither TSH nor forskolin prevented the TPA-induced down regulation of protein kinase C. The biologically inactive phorbol ester analogue 4 alpha-phorbol 12,13-didecanoate had no effect on protein kinase C activity, and did not interact with either TSH or forskolin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
In a Triton X100-extract from the particulate fraction of mouse epidermis but also of other murine tissues, the phosphorylation of a protein with the relative molecular mass of 82,000 (p82) is found to be dependent on phosphatidyl serine and the tumor promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). Unlike protein kinase C-catalyzed phosphorylation, p82 phosphorylation is neither observed in the presence of high concentrations of Ca2+ and phosphatidyl serine alone nor after addition of exogenous protein kinase C. Dioctanoylglycerol and the "incomplete" promoter 12-0-retinoylphorbol-13-acetate are also capable of stimulating p82 phosphorylation, whereas the non-promoting phorbol ester 4-0-methyl-TPA is at least 100-fold less active in this respect.  相似文献   

18.
D B Luckie  K L Boyd  K Takeyasu 《FEBS letters》1991,290(1-2):231-234
HL-60 cells are very sensitive to the cytotoxic action of ether lipids. Several hypotheses have been proposed to explain this cytotoxicity. We investigated the influence of the alkylphospholipid ET-18-OCH3 on the activity of protein kinase C. HL-60 cells were incubated with ET-18-OCH3 at a concentration of 20 μg/ml for 4 h. After the incubation the membrane fraction of the HL-60 cells was isolated and the activity of protein kinase C was determined while it was still associated with the membrane, using the synthetic peptide substrate [Ser25]-protein kinase C (19–31) as a protein kinase C specific substrate. The activity of the membrane-bound protein kinase C was increased in HL-60 cells treated with ET-18-OCH3 compared to untreated HL-60 cells. The increase in protein kinase C activity was not a consequence of translocation and appeared to be additive to the effect of the phorbol ester 12-myristate 13-acetate. In contrast, solubilized protein kinase C from HL-60 cells could be inhibited or stimulated in vitro by ET-18-OCH3, dependent on the mode of addition of ET-18-OCH3 and phospholipids.  相似文献   

19.
Exposure of freshly isolated rat hepatocytes to tumor-promoting phorbol esters like phorbol 12-myristate 13-acetate resulted in a time- and concentration-dependent translocation of protein kinase C from the soluble to the particulate fraction of the cells. No such disappearance of soluble protein kinase C activity was observed with either epidermal growth factor or insulin, indicating that activation of protein kinase C is not necessarily involved in the short-term metabolic action of physiological growth factors on rat hepatocytes.  相似文献   

20.
Interleukin-2 and phorbol 12-myristate 13-acetate (PMA) are shown to induce DNA-synthesis in human T-lymphocytes activated with phytohaemagglutinin. However, whereas PMA induced a rapid and persistent translocation of protein kinase C from cytosol to particulate fraction, no translocation was observed upon stimulation with interleukin-2. Treatment with PMA for 72 h caused a slow down-regulation of protein kinase C activity to less than 10% of unstimulated T-lymphocytes and was mainly located in the particulate fraction. In contrast, stimulation with phytohaemagglutinin increased the total cellular protein kinase C activity by approx. 100% but with an unaltered subcellular distribution. However, interleukin-2-induced DNA synthesis in PMA- and phytohaemagglutinin-stimulated T-lymphocytes was comparable. Further, maximal DNA synthesis was shown to be dependent on the continuous presence of interleukin-2. These results indicate that interleukin-2-induced proliferation of activated human T-lymphocytes can occur without a translocation of protein kinase C from the cytosol to the particulate fraction and that interleukin-2 most likely functions as a progression factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号