首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Early life events lead to behavioral and neurochemical changes in adulthood. The aim of this study is to verify the effects of neonatal handling on spatial memory, nitric oxide (NO) production, antioxidant enzymatic activities and DNA breaks in the hippocampus of male and female adult rats. Litters of rats were non-handled or handled (10 min/day, days 1–10 after birth). In adulthood they were subjected to a Morris water maze or used for biochemical evaluations. Female handled rats showed impairment in spatial learning. They also showed decreased NO production, while no effects were observed in these parameters in male rats. No effects were observed on the number of hippocampal NADPH diaphorase positive cells. In the Comet Assay, male handled rats showed increased DNA breaks index when compared to non-handled ones. We conclude that neonatal handling impairs learning performance in a sex-specific manner, what may be related to NO decreased levels.  相似文献   

2.
The effect of different L-phenylalanine (Phe) concentrations (0.12-12.1 mM) on acetylcholinesterase (AChE), (Na+,K+)-ATPase and Mg2+-ATPase activities was evaluated in homogenates of suckling rat frontal cortex, hippocampus and hypothalamus. Phe, at high concentrations, reduced AChE activity in frontal cortex and hippocampus by 18%-20%. On the contrary, the enzyme activity was unaltered in the hypothalamus. Na+,K+-ATPase was stimulated by high levels of the amino acid, both in the frontal cortex and the hypothalamus by 60%, whereas it was inhibited in the hippocampus by 40%. Mg2+-ATPase was not influenced by Phe. It is suggested that: a) In the frontal cortex, the improper acetylcholine (ACh) release, due to AChE inhibition by Phe, combined with the stimulation of Na+,K+-ATPase, possibly explain tremor and the hyperkinetic behaviour in patients with classical phenylketonuria (PKU). b) In the hippocampus, inhibition of AChE by Phe could lead to problems in memory, while Na+,K+-ATPase inhibition by Phe may induce metabolic disorders and electrical instability of the synaptosomal membrane. c) In the hypothalamus, the behavioral problems in PKU "off diet" may be related to noradrenaline (NA) levels, which are probably correlated with the modulated Na+,K+-ATPase by Phe.  相似文献   

3.
Neonatal handled rats ingest more sweet food than non-handled ones, but it was documented only after puberty. Here, we studied the purinergic system in the nucleus accumbens, a possible target for the alteration in the preference for palatable food. We measured the ATP, ADP and AMP hydrolysis mediated by ectonucleotidases in synaptosomes of the nucleus accumbens in periadolescent and adult rats from different neonatal environments: non-handled and handled (10 min/day, first 10 days of life). Before adolescence, we found a decreased ingestion of sweet food in the neonatally handled group, with no effect on ATP, ADP or AMP hydrolysis. In adults, we found a greater ingestion of sweet food in the neonatally handled group, with no effect on ATPase or ADPase activities, but a decreased AMP hydrolysis. The nucleus accumbens is a site of intensive interaction between the adenosinergic and dopaminergic systems. Therefore, adenosine may modulate accumbens’ dopamine neurotransmission differently in neonatally handled rats.  相似文献   

4.
Changes in the activity of Na+,K+-ATPase and in the water, Na+, and K+ levels in the parietal cortex, hippocampus, and thalamus were investigated in rats 1, 3, 6, and 24 h following systemic kainic acid injection. An increase in Na+,K+-ATPase activity was observed in all three regions 3 h after the treatment, with a subsequent decrease in enzyme activity. The elevation in Na+,K+-ATPase activity was accompanied by an increase in the Na+ content and a decrease in the K+ content. These changes are presumed to occur because of repeated discharges and excessive prolonged depolarization in response to kainic acid. The decreases in Na+,K+-ATPase activity 6 and 24 h following kainic acid treatment coincide with neuropathological damage and edema formation, mainly in the hippocampus and thalamus.  相似文献   

5.
Oxidized metabolites of polyunsaturated fatty acids produced by lipoxygenase are among the endogenous regulators of Na+/K+-ATPase. The direct effect of lipoxygenase on Na+/K+-ATPase activity was assessed in vitro using soybean lipoxygenase. Treatment of 4.2 microg/mL Na+/K+-ATPase (from dog kidneys) with 4.2 microg/mL of soybean lipoxygenase caused 20+/-2% inhibition of ATPase activity. A 10-fold increase in lipoxygenase concentration (41.6 microg/mL) led to 30+/-0.3% inhibition. In the presence of 12 microg/mL phenidone (a lipoxygenase inhibitor) and 15.4 microg/mL glutathione (a tripeptide containing a cysteine residue) inhibition of Na+/K+-ATPase activity was blocked and an increase in ATPase activity was observed. The presence of lipoxygenase enhanced the inhibition of Na+/K+-ATPase activity caused by 20 ng/mL ouabain (31+/-2 vs. 19+/-2) but had little or no effect with higher concentrations of ouabain. These findings suggest that lipoxygenase may regulate Na+/K+-ATPase by acting directly on the enzyme.  相似文献   

6.
The temperature dependence of ouabain-sensitive ATPase and phosphatase activities of membrane fragments containing the Na+/K+-ATPase were investigated in tissue from ox kidney, ox brain and from shark rectal glands. The shark enzyme was also tested in solubilized form. Arrhenius plots of the Na+/K+-ATPase activity seem to be linear up to about 20 degrees C, and non-linear above this temperature. The Arrhenius plots of mammalian enzyme (ox brain and kidney) were steeper, especially at temperatures below 20-30 degrees C, than that of shark enzyme. The Na+-ATPase activity showed a weaker temperature-dependence than the Na+/K+-ATPase activity. The phosphatase reactions measured, K+-stimulated, Na+/K+-stimulated and Na+/K+/ATP-stimulated, also showed a weaker temperature-dependence than the overall Na+/K+-ATPase activity. Among the phosphatase reactions, the largest change in slope of the Arrhenius plot was observed with the Na+/K+/ATP)-stimulated phosphatase reaction. The Arrhenius plots of the partial reactions were all non-linear. Solubilization of shark enzyme in C12E8 did not change the curvature of Arrhenius plots of the Na+/K+-ATPase activity or the K+-phosphatase activity. Since solubilization involves a disruption of the membrane and an 80% delipidation, the observed curvature of the Arrhenius plot can not be attributed to a property of the membrane as such.  相似文献   

7.
Investigation the influence of calyx[4]arenes C-90, C-91, C-97 and C-99 (codes are indicated) on the enzymatic activity of four functionally different Mg2+ -dependent ATPases from smooth muscle of the uterus: actomyosin ATPase, transporting Ca2+, Mg2+ -ATPase, ouabain-sensible Na+, K+ -ATPase and basal Mg2+ -ATPase. It was shown that calixarenes C-90 and C-91 in concentration 100 microM act multidirectionally on the functionally different Mg2+ -dependent ATP-hydrolase enzymatic systems. These compounds activate effectively the actomyosin ATPase (Ka = 52 +/- 11 microM [Ukrainian character: see text] 8 +/- 2 microM, accordingly), at the same time calixarene C-90 inhibited effectively activity of transporting Ca2+, Mg2+ -ATPase of plasmatic membranes (I(0,5) = 34.6 +/- 6.4 microM), but influence on membrane-bound Na+, K+ -ATPase and basal Mg2+ -ATPase. Calixarene C-91 reduce effectively basal Mg2+ -ATPase activity, insignificantly activating Na+, K+ -ATPase but has no influence on transporting Ca2+, Mg2+ -ATPase activity of plasmatic membranes. Calixarenes C-97 and C-99 (100 microM), which have similar structure, have monodirectional influence on activity of three functionally different Mg2+-dependent ATPases of the myometrium: actomyosin ATPase and two ATPases, that related to the ATP-hydrolases of P-type--Ca2+, Mg2+ -ATPase and Na+, K+ -ATPase of plasmatic membranes. Basal Mg2+ -ATPase is resistant to the action of these two connections. Results of comparative experiments that were obtained by catalytic titration of calixarenes C-97 and C-99 by actomyosin ATPase (I(0,5) = 88 +/- 9 and 86 +/- 8 microM accordingly) and Na+, K+ -ATPase from plasmatic membranes (I(0,5) = 33 +/- 4 and 98 +/- 8 nM accordingly) indicate to the considerably more sensitiveness of Na+, K+ -ATP-ase to these calixarenes than ATPase of contractile proteins. Thus, it is shown that calixarenes have influence on activity of a number of important enzymes, involved in functioning of the smooth muscle of the uterus and related to energy-supplies of the process of the muscle contracting and support of intracellular ionic homeostasis. The obtained results can be useful in further researches, directed at the use of calixarenes as pharmaceutical substance, able to normalize the contractile function of the uterus at some pregnancy pathologies in women's.  相似文献   

8.
Na+/K+-ATPase activity was determined in striated muscles with different aerobic capacities. The underlying hypothesis was that different aerobic capacities are reflective of different contractile activity which imposes greater demands on sarcolemmal ion translocation and may thus set Na pumping capacity. The added ion translocation demands required during exercise-training on Na+/K+-ATPase activity in different muscle fiber types may require an adaptation of this enzyme. The highest and lowest Na+/K+-ATPase activity was in the heart and white gastrocnemius muscle (WG), respectively. A high linear correlation existed between Na+/K+-ATPase activity and succinate dehydrogenase activity in the six muscles studied. Exercise-training did not increase Na+/K+-ATPase activity in any of the muscles, but did increase the aerobic capacity, except in the heart and WG. It was concluded that Na+/K+-ATPase activity has a high positive correlation with the aerobic capacity of striated muscles in the rat and that the Na pump capacity does not adapt to exercise-training of 1 hr X day-1 as does aerobic capacity.  相似文献   

9.
The experiments were conducted to determine intrasporozoite Na+/K+ concentrations (by AAS) and membrane-bound Na+ -K+ -ATPase activity (measured by UV-VIS with a Na+ -K+ -ATPase Detection Kit) of Eimeria tenella sporozoites of the sensitive line (i.e., the parent line, coded as OS) and 2 resistant lines, derived from the parent line (coded as OR125 and OR200), with and without in vitro exposure to monensin. These parameters for OR125 and OR200 were significantly lower than those for OS. In vitro exposure to monensin increased intrasporozoite Na+/K+ concentrations and Na+ -K+ -ATPase activity, but the stimulation on OS was significantly higher than those on OR125 and OR200, indicating that monensin had less effect on resistant parasites. The results of this study suggest that altered biochemical or physiological properties, or both, in the membranes of E. tenella might be related to a reduced sensitivity to monensin.  相似文献   

10.
The alpha- and beta-subunits of Na+,K+-ATPase and H+,K+-ATPase were expressed in Sf9 cells in different combinations. Immunoprecipitation of the alpha-subunits resulted in coprecipitation of the accompanying beta-subunit independent of the type of beta-subunit. This indicates cross-assembly of the subunits of the different ATPases. The hybrid ATPase with the catalytic subunit of Na+,K+-ATPase and the beta-subunit of H+,K+-ATPase (NaKalphaHKbeta) showed an ATPase activity, which was only 12 +/- 4% of the activity of the Na+,K+-ATPase with its own beta-subunit. Likewise, the complementary hybrid ATPase with the catalytic subunit of H+,K+-ATPase and the beta-subunit of Na+,K+-ATPase (HKalphaNaKbeta) showed an ATPase activity which was 9 +/- 2% of that of the recombinant H+,K+-ATPase. In addition, the apparent K+ affinity of hybrid NaKalphaHKbeta was decreased, while the apparent K+ affinity of the opposite hybrid HKalphaNaKbeta was increased. The hybrid NaKalphaHKbeta could be phosphorylated by ATP to a level of 21 +/- 7% of that of Na+,K+-ATPase. These values, together with the ATPase activity gave turnover numbers for NaKalphabeta and NaKalphaHKbeta of 8800 +/- 310 min-1 and 4800 +/- 160 min-1, respectively. Measurements of phosphorylation of the HKalphaNaKbeta and HKalphabeta enzymes are consistent with a higher turnover of the former. These findings suggest a role of the beta-subunit in the catalytic turnover. In conclusion, although both Na+,K+-ATPase and H+,K+-ATPase have a high preference for their own beta-subunit, they can function with the beta-subunit of the other enzyme, in which case the K+ affinity and turnover number are modified.  相似文献   

11.
We have earlier shown that the renal dopaminergic system failed to respond to high salt (HS) intake in old (24-month-old) Fisher 344 rats (Hypertension 1999;34:666-672). In the present study, intestinal Na+,K+-ATPase activity and intestinal dopaminergic tonus were evaluated in adult and old Fischer 344 rats during normal salt (NS) and HS intake. Basal intestinal Na+,K+-ATPase activity (nmol Pi/mg protein/min) in adult rats (142+/-6) was higher than in old Fischer 344 rats (105+/-7). HS intake reduced intestinal Na+,K+-ATPase activity by 20% (P<0.05) in adult, but not in old rats. Dopamine (1 microM) failed to inhibit intestinal Na+,K+-ATPase activity in both adult and old Fischer 344 rats (NS and HS diets). In adult animals, co-incubation of pertussis toxin with dopamine (1 microM) produced a significant inhibitory effect in the intestinal Na+,K+-ATPase activity. L-DOPA and dopamine tissue levels in the intestinal mucosa of adult rats were higher (45+/-9 and 38+/-4 pmol/g) than those in old rats (27+/-9 and 14+/-1 pmol/g). HS diet did not change L-DOPA and DA levels in both adult and old rats. DA/L-DOPA tissue ratios, an indirect measure of dopamine synthesis, were higher in old (1.1+/-0.2) than in adult rats (0.6+/-0.1). Aromatic L-amino acid decarboxylase (AADC) activity in the intestinal mucosa of old rats was higher than in adult rats. HS diet increased the AADC activity in adult rats, but not in old rats. It is concluded that intestinal dopaminergic tonus in old Fisher 344 rats is higher than in adult rats and is accompanied by lower basal intestinal Na+,K+-ATPase activity. In old rats, HS diet failed to alter the intestinal dopaminergic tonus or Na+,K+-ATPase activity, whereas in adult rats increases in AADC activity were accompanied by decreases in Na+,K+-ATPase activity. The association between salt intake, increased dopamine formation and inhibition of Na+,K+-ATPase at the intestinal level was not as straightforward as that described in renal tissues.  相似文献   

12.
The aim of this work was to develop a method for renal H+,K+-ATPase measurement based on the previously used Na+,K+-ATPase assay (Beltowski et al.: J Physiol Pharmacol.; 1998, 49: 625-37). ATPase activity was assessed by measuring the amount of inorganic phosphate liberated from ATP by isolated microsomal fraction. Both ouabain-sensitive and ouabain-resistant K+-stimulated and Na+-independent ATPase activity was detected in the renal cortex and medulla. These activities were blocked by 0.2 mM imidazolpyridine derivative, Sch 28080. The method for ouabain-sensitive H+,K+-ATPase assay is characterized by good reproducibility, linearity and recovery. In contrast, the assay for ouabain-resistant H+,K+-ATPase was unsatisfactory, probably due to low activity of this enzyme. Ouabain-sensitive H+,K+-ATPase was stimulated by K+ with Km of 0.26 +/- 0.04 mM and 0.69 +/- 0.11 mM in cortex and medulla, respectively, and was inhibited by ouabain (Ki of 2.9 +/- 0.3 microM in the renal cortex and 1.9 +/- 0.4 microM in the renal medulla) and by Sch 28080 (Ki of 1.8 +/- 0.5 microM and 2.5 +/- 0.9 microM in cortex and medulla, respectively). We found that ouabain-sensitive H+,K+-ATPase accounted for about 12% of total ouabain-sensitive activity in the Na+,K+-ATPase assay. Therefore, we suggest to use Sch 28080 during Na+,K+-ATPase measurement to block H+,K+-ATPase and improve the assay specificity. Leptin administered intraperitoneally (1 mg/kg) decreased renal medullary Na+,K+-ATPase activity by 32.1% at 1 h after injection but had no effect on H+,K+-ATPase activity suggesting that the two renal ouabain-sensitive ATPases are separately regulated.  相似文献   

13.
Diabetes mellitus induces a decrease in sodium potassium-adenosine triphosphatase (Na+/K(+)-ATPase) activity in several tissues in the rat and red blood cells (RBC) and nervous tissue in human patients. This decrease in Na+/K(+)-ATPase activity is thought to play a role in the development of long-term complications of the disease. Angiotensin enzyme inhibitors (ACEi) and angiotensin-II receptor antagonists (ARBs) reduce proteinuria and retard the progression of renal failure in patients with IDDM and diabetic rats. We investigated the effects of captopril and losartan, which are used in the treatment of diabetic nephropathy, on Na+/K(+)-ATPase activity. Captopril had an inhibitory effect on red cell plasma membrane Na+/K+ ATPase activity, but losartan did not. Our study draws attention to the inhibitory effect of captopril on Na+/K+ ATPase activity. Micro and macro vascular complications are preceeding mortality and morbidity causes in diabetes mellitus. There is a strong relationship between the decrease in Na+/K+ ATPase activity and hypertension. The non-sulphydryl containing ACEi and ARBs must be the choice of treatment in hypertensive diabetic patients and diabetic nephropathy.  相似文献   

14.
HeLa cells synthesize and secrete increased levels of tissue plasminogen activator (tPA) when incubated for 18 h with 10-20 nM phorbol myristate acetate. This response was inhibited by a number of conditions which affect intracellular Na+ and K+ concentrations. Removing extracellular Na+, while maintaining isotonicity with choline+, reduced the secretion of both functional and antigenic tPA in a linear fashion. A series of cardiac glycosides and related compounds strongly inhibited tPA secretion with the following rank order of potency: digitoxin = ouabain greater than digoxin greater than digitoxigenin greater than digoxigenin greater than digitoxose greater than digitonin. These compounds also inhibited cellular Na+/K+-ATPase activity over an identical concentration range. Two compounds which selectively increase cellular permeability to K+, valinomycin, and nigericin, strongly inhibited tPA secretion, with IC50 values of approximately 50 nM. In contrast, monensin, which selectively increases cellular permeability to Na+, was much less active. Valinomycin, but not nigericin, also inhibited cellular Na+/K+-ATPase activity. Phorbol myristate acetate, 5-20 nM, increased Na+/K+-ATPase activity up to 2-fold and tPA secretion up to 15-fold. We conclude that the secretion of tPA by HeLa cells treated with phorbol myristate acetate proceeds via a mechanism which requires extracellular Na+ and a functional Na+/K+-ATPase ("sodium pump") enzyme.  相似文献   

15.
16.
The involvement of membrane (Na+ + K+)-ATPase (Mg2+-dependent, (Na+ + K+)-activated ATP phosphohydrolase, E.C. 3.6.1.3) in the oxygen consumption of rat brain cortical slices was studied in order to determine whether (Na+ + K+)-ATPase activity in intact cells can be estimated from oxygen consumption. The stimulation of brain slice respiration with K+ required the simultaneous presence of Na+. Ouabain, a specific inhibitor of (Na+ + K+)-ATPase, significantly inhibited the (Na+ + K+)-stimulation of respiration. These observations suggest that the (Na+ + K+)-stimulation of brain slice respiration is related to ADP production as a result of (Na+ + K+)-ATPase activity. However, ouabain also inhibited non-K+ -stimulated respiration. Additionally, ouabain markedly reduced the stimulation of respiration by 2,4-dinitrophenol in a high (Na+ + K+)-medium. Thus, ouabain depresses brain slice respiration by reducing the availability of ADP through (Na+ + K+)-ATPase inhibition and acts additionally by increasing the intracellular Na+ concentration. These studies indicate that the use of ouabain results in an over-estimation of the respiration related to (Na+ + K+)-ATPase activity. This fraction of the respiration can be estimated more precisely from the difference between slice respiration in high Na+ and K+ media and that in choline, K+ media. Studies were performed with two (Na+ + K+)-ATPase inhibitors to determine whether administration of these agents to intact rats would produce changes in brain respiration and (Na+ + K+)-ATPase activity. The intraperitoneal injection of digitoxin in rats caused an inhibition of brain (Na+ + K+)-ATPase and related respiration, but chlorpromazine failed to alter either (Na+ + K+)-ATPase activity or related respiration.  相似文献   

17.
Since the mechanism underlying the insulin stimulation of (Na+,K+)-ATPase transport activity observed in multiple tissues has remained undetermined, we have examined (Na+,K+)-ATPase transport activity (ouabain-sensitive 86Rb+ uptake) and Na+/H+ exchange transport (amiloride-sensitive 22Na+ influx) in differentiated BC3H-1 cultured myocytes as a model of insulin action in muscle. The active uptake of 86Rb+ was sensitive to physiological insulin concentrations (1 nM), yielding a maximum increase of 60% without any change in 86Rb+ permeability. In order to determine the mechanism of insulin stimulation of (Na+,K+)-ATPase activity, we demonstrated that insulin also stimulates passive 22Na+ influx by Na+/H+ exchange transport (maximal 200% increase) and an 80% increase in intracellular Na+ concentration with an identical time course and dose-response curve as insulin-stimulated (Na+,K+)-ATPase transport activity. Incubation of the cells with high [Na+] (195 mM) significantly potentiated insulin stimulation of ouabain-inhibitable 86Rb+ uptake. The ionophore monensin, which also promotes passive Na+ entry into BC3H-1 cells, mimics the insulin stimulation of ouabain-inhibitable 86Rb+ uptake. In contrast, incubation with amiloride or low [Na+] (10 mM), both of which inhibit Na+/H+ exchange transport, abolished the insulin stimulation of (Na+,K+)-ATPase transport activity. Furthermore, each of these insulin-stimulated transport activities displayed a similar sensitivity to amiloride. These results indicate that insulin stimulates a large increase in Na+/H+ exchange transport and that the resulting Na+ influx increases the intracellular Na+ concentration, thus activating the internal Na+ transport sites of the (Na+,K+)-ATPase. This Na+ influx is, therefore, the mediator of the insulin-induced stimulation of membrane (Na+,K+)-ATPase transport activity classically observed in muscle.  相似文献   

18.
Na+/K+-ATPase during diabetes may be regulated by synthesis of its alpha and beta subunits and by changes in membrane fluidity and lipid composition. As these mechanisms were unknown in liver, we studied in rats the effect of streptozotocin-induced diabetes on liver Na+/K+-ATPase. We then evaluated whether fish oil treatment prevented the diabetes-induced changes. Diabetes mellitus induced an increased Na+/K+-ATPase activity and an enhanced expression of the beta1 subunit; there was no change in the amount of the alpha1 and beta3 isoenzymes. Biphasic ouabain inhibition curves were obtained for diabetic groups indicating the presence of low and high affinity sites. No alpha2 and alpha3 isoenzymes could be detected. Diabetes mellitus led to a decrease in membrane fluidity and a change in membrane lipid composition. The diabetes-induced changes are not prevented by fish oil treatment. The results suggest that the increase of Na+/K+-ATPase activity can be associated with the enhanced expression of the beta1 subunit in the diabetic state, but cannot be attributed to changes in membrane fluidity as typically this enzyme will increase in response to an enhancement of membrane fluidity. The presence of a high-affinity site for ouabain (IC50 = 10-7 M) could be explained by the presence of (alphabeta)2 diprotomeric structure of Na+/K+-ATPase or an as yet unknown alpha subunit isoform that may exist in diabetes mellitus. These stimulations might be related, in part, to the modification of fatty acid content during diabetes.  相似文献   

19.
To better comprehend physiological adaptation to dilute media and the molecular mechanisms underlying ammonia excretion in palaemonid shrimps, we characterized the (Na+,K+)-ATPase from Macrobrachium amazonicum gills, disclosing high- (K(0.5) = 4.2+/-0.2 micromol L(-1); V = 33.9+/-1.9 U mg(-1)) and low-affinity (K(0.5) = 0.144+/-0.010 mmol L(-1); V = 232.9+/-15.3 U mg(-1)) ATP hydrolyzing sites. Stimulation by Na+ (K(0.5) = 5.5+/-0.3 mmol L(-1); V = 275.1+/-15.1 U mg(-1)), Mg2+ (K(0.5) = 0.79+/-0.06 mmol L(-1); V = 261.9+/-18.3 U mg(-1)), K+ (K(M) = 0.88+/-0.04 mmol L(-1); V = 271.8+/-10.9 U mg(-1)) and NH4(+) (K(M) = 5.0+/-0.2 mmol L(-1); V = 385.9+/-15.8 U mg(-1)) obeys single saturation curves, activity being stimulated synergistically by NH4(+) and K+. There is a single K+ binding site, NH4(+) binding to a second, exclusive site, stimulating activity by 33%, modulating K+ affinity. (Na+,K+)-ATPase activity constitutes approximately 80% of total ATPase activity (K(Iouabain) = 147.5+/-8.9 micromol L(-1)); Na+-, K+-, Ca2+-, V- and F(o)F(1)-ATPases are also present. M. amazonicum microsomal fractions possess approximately 2-fold less (Na+,K+)-ATPase alpha-subunit than M. olfersi, consistent with a 2.6-fold lower specific activity. These differences in (Na+, K+)-ATPase stimulation by ATP and ions, and specific activities of other ATPases, suggest the presence of distinct biochemical adaptations to life in fresh water in these related species.  相似文献   

20.
We have shown that ouabain activates Src, resulting in subsequent tyrosine phosphorylation of multiple effectors. Here, we tested if the Na+/K+-ATPase and Src can form a functional signaling complex. In LLC-PK1 cells the Na+/K+-ATPase and Src colocalized in the plasma membrane. Fluorescence resonance energy transfer analysis indicated that both proteins were in close proximity, suggesting a direct interaction. GST pulldown assay showed a direct, ouabain-regulated, and multifocal interaction between the 1 subunit of Na+/K+-ATPase and Src. Although the interaction between the Src kinase domain and the third cytosolic domain (CD3) of 1 is regulated by ouabain, the Src SH3SH2 domain binds to the second cytosolic domain constitutively. Functionally, binding of Src to either the Na+/K+-ATPase or GST-CD3 inhibited Src activity. Addition of ouabain, but not vanadate, to the purified Na+/K+-ATPase/Src complex freed the kinase domain and restored the Src activity. Consistently, exposure of intact cells to ouabain apparently increased the distance between the Na+/K+-ATPase and Src. Concomitantly, it also stimulated tyrosine phosphorylation of the proteins that are associated with the Na+/K+-ATPase. These new findings illustrate a novel molecular mechanism of signal transduction involving the interaction of a P-type ATPase and a nonreceptor tyrosine kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号