首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mapping loci associated with milling yield in wheat (Triticum aestivum L.)   总被引:2,自引:0,他引:2  
A partial genetic linkage map constructed using 150 single seed descent (SSD) lines generated from a cross between the hexaploid wheat varieties Schomburgk and Yarralinka was used to identify loci controlling milling yield. Milling yield data were obtained using seed collected from field trials conducted at different sites over two seasons. The estimated broad-sense heritability of milling yield in this population was calculated as 0.48. In the preliminary analysis, two regions were identified on chromosomes 3A and 7D, which were significantly associated with milling yield and accounted for 22% and 19% of the genetic variation, respectively. Bulked segregant analysis in combination with AFLP identified other markers linked to these loci, as well as an additional region on chromosome 5A, which accounted for 19% of the genetic variation. The applicability of these markers as selection tools for breeding purposes is discussed.  相似文献   

2.
Silicon absorption by wheat (Triticum aestivum L.)   总被引:3,自引:0,他引:3  
Rafi  Malik M.  Epstein  Emanuel 《Plant and Soil》1999,211(2):223-230
Although silicon (Si) is a quantitatively major inorganic constituent of higher plants the element is not considered generally essential for them. Therefore it is not included in the formulation of any of the solution cultures widely used in plant physiological research. One consequence of this state of affairs is that the absorption and transport of Si have not been investigated nearly as much as those of the elements accorded 'essential' status. In this paper we report experiments showing that Si is rapidly absorbed by wheat (Triticum aestivum L.) plants from solution cultures initially containing Si at 0.5 mM, a concentration realistic in terms of the concentrations of the element in soil solutions. Nearly mature plants (headed out) 'preloaded' with Si absorbed it at virtually the same rate as did plants grown previously in solutions to which Si had not been added. The rate of Si absorption increased by more than an order of magnitude between the 2-leaf and the 7-8 leaf stage, with little change thereafter. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
We have developed a method for the accelerated production of fertile transgenic wheat (Triticum aestivum L.) that yields rooted plants ready for transfer to soil in 8–9 weeks (56–66 days) after the initiation of cultures. This was made possible by improvements in the procedures used for culture, bombardment, and selection. Cultured immature embryos were given a 4–6 h pre-and 16 h post-bombardment osmotic treatment. The most consistent and satisfactory results were obtained with 30 g of gold particles/bombardment. No clear correlation was found between the frequencies of transient expression and stable transformation. The highest rates of regeneration and transformation were obtained when callus formation after bombardment was limited to two weeks in the dark, with or without selection, followed by selection during regeneration under light. Selection with bialaphos, and not phosphinothricin, yielded more vigorously growing transformed plantlets. The elongation of dark green plantlets in the presence of 4–5 mg/l bialaphos was found to be reliable for identifying transformed plants. Eighty independent transgenic wheat lines were produced in this study. Under optimum conditions, 32 transformed wheat plants were obtained from 2100 immature embryos in 56–66 days, making it possible to obtain R3 homozygous plants in less than a year.  相似文献   

4.
Protoplasts isolated from embryogenic suspension cultures of wheat (Triticum aestivum cv. Hartog) were electroporated in the presence of plasmid pEmuGN and/or pEmuPAT, which contained the reporter gene gus and selectable marker gene bar, respectively. Under optimised electroporation conditions, up to 0.9% of viable protoplasts displayed gus activity two days after electroporation. To select for phosphinothricin (PPT) resistant colonies, electroporated protoplasts were incubated for six weeks in a medium containing 10 g/ml PPT. The cells surviving the selection were maintained as individual colonies on solid medium or as suspension cultures. More than 60% of these colonies exhibited tolerance to 40 g/ml PPT when tested 10 months after initial selection. To date, 57 green plants have been regenerated from these colonies and 24 have been transferred to soil. Southern blot analyses of colonies and plants, using the bar gene sequence as the probe, confirmed transformation of the cells. Positive PAT assays of both regenerated colonies and plants indicated the presence of the bar gene product. These results provide a basis for the establishment of routine procedures for transformation of wheat by direct gene transfer into protoplasts.Abbreviations gus -glucuronidase - PAT phosphinothricin N-acetyltransferase - PPT phosphinothricin - MS Murashige and Skoog medium  相似文献   

5.
Abstract

A complete diallel study of crosses between eight wheat varieties was carried out to determine the relative magnitude of components of genetic variation and heritability for important grain yield, quality and drought‐related traits. The data appeared adequate for the additive‐dominance model. The additive effects predominated for most traits, and consequently the narrow‐sense heritability was high to moderately high for flag leaf area, weight and venation, stomatal frequency and size, epidermal cell size, biomass, protein content, number of tillers, spike length, spike density, 1000‐grain weight and grain yield. These results appear promising for selecting better plants in the segregating populations with some degree of improvement for yield, quality and physiological efficiency.  相似文献   

6.
The present investigation was undertaken in order to select the surface-sterilization technique most efficient for eliminating epiphytes, to document the spectrum of endophytes of healthy leaves from three wheat cultivars in Buenos Aires Province (Argentina) and to determine their infection frequencies at three growth stages. Surface-sterilization with undiluted commercial solution of sodium hypochlorite was reaffirmed as adequate for removing epiphytes on wheat leaves. From the 450 wheat leaf segments incubated, three bacterial isolates and 130 fungal isolates were obtained. From all the isolates, 19 fungal species were identified. Bacterial isolates were characterized as Bacillus sp. There were significant differences between microorganisms, stages of growth, and stages × microorganisms interaction. Differences between cultivars, stages × cultivars, microorganisms × cultivars and for the triple interaction were not significant. Frequency of microorganisms isolated increased with crop age, but it was statistically similar for the three wheat cultivars tested (Klein Centauro, Klein Dragón and Buck Ombú). Rhodotorula rubra, Alternaria alternata, Cladosporium herbarum and Epicoccum nigrum were isolated in the highest frequency. The other microorganisms were present at intermediate or low values. The species isolated may be assigned to three groups: (a) well-known and economically important pathogens of wheat, (b) commonly abundant phylloplane fungi considered to be primary saprobic and minor pathogens and (c) species occasionally present in wheat.  相似文献   

7.
Foliar inorganic ion and carbohydrate concentrations were determined in wheat plants treated with factorial combinations of phosphorus fertilizer and NaCl in a glasshouse experiment. Growth reductions and visual symptoms of salt toxicity were minimized when phosphorus nutrition was adequate, and were intensified by phosphorus deficiency. Foliar sodium and chloride accumulated up to 4.0–5.5% d.w. with salinity treatment. However, ionic concentrations within corresponding leaves or distributions between leaves of plants with different phosphorus treatments were not influenced by phosphorus treatment and had no relationship to the severity of salt toxicity symptoms. This suggests that phosphorus deficiency reduced the cellular tolerance for ion accumulation. A combination of phosphorus deficiency and salinity induced an accumulation of foliar starch and sucrose despite substantial reductions in net CO2 assimilation rates. This accumulation did not occur if phosphorus nutrition was adequate, which is consistent with the roles of phosphorus in carbohydrate metabolism. It is proposed that adequate phosphorus nutrition is essential for effective ion compartmentation by contributing to efficient carbohydrate utilization in salt-stressed wheat.  相似文献   

8.
Mapping loci associated with flour colour in wheat (Triticum aestivum L.)   总被引:8,自引:0,他引:8  
 An RFLP map constructed using 150 single seed descent (SSD) lines from a cross between two hexaploid wheat varieties (‘Schomburgk’בYarralinka’) was used to identify loci controlling flour colour. Flour colour data were obtained from field trials conducted over two seasons at different sites. The estimated heritability of this trait was calculated as 0.67. Two regions identified in the preliminary analysis on chromosomes 3A and 7A, accounted for 13% and 60% of the genetic variation respectively. A detailed analysis of the major locus on 7A was conducted through fine mapping of AFLP markers identified using bulked segregant analysis (BSA). Seven additional markers were identified by the BSA and mapped to the region of the 7A locus. The applicability of these markers to identify wheat lines with enhanced flour colour is discussed. Received: 30 September 1997 / Accepted: 4 February 1998  相似文献   

9.
Flour colour is an important quality trait in the production of bread, noodles and other related end products. Current screening for flour colour in breeding programs requires several grams of flour to be milled. In order to screen large numbers of plants, a rapid PCR-based assay is required. We report here the conversion of a codominant AFLP marker linked to a major locus controlling flour colour in hexaploid wheat, to a sequence tagged site (STS) marker for use in marker-assisted selection (MAS). The two-allelic AFLP bands were cloned and sequenced to allow specific primers to be designed. The primers amplified bands of the expected size in the parental varieties and co-segregated with the original AFLP marker in the mapping population. The primers also amplified alleles of the expected size from the DNA of parental lines of two other related mapping populations. Cultivars that contributed to the pedigree of the original parent `Schomburgk' used to generate the mapping population were also screened to determine the origin of the `yellow' allele.  相似文献   

10.
We have used a cDNA clone encoding a pathogen-induced putative wheat peroxidase to screen a genomic libary of wheat (Triticum aestivum L. cv. Cheyenne) and isolated one positive clone, lambda POX1. Sequence analysis revealed that this clone contains a gene encoding a putative peroxidase with a calculated pI of 8.1 which exhibits 58% and 83% sequence identity to the amino acid sequence of the turnip (Brassica rapa) peroxidase and a pathogen-induced putative wheat peroxidase, respectively. The two introns in the wheat gene are at the same positions as introns in the peroxidase genes of tomato and horseradish. Results of S1-mapping experiments suggest that this gene is neither pathogen-nor wound-induced in leaves but is constitutively expressed in roots.  相似文献   

11.
In this study, we developed 359 detection primers for single nucleotide polymorphisms (SNPs) previously discovered within intron sequences of wheat genes and used them to evaluate SNP polymorphism in common wheat (Triticum aestivum L.). These SNPs showed an average polymorphism information content (PIC) of 0.18 among 20 US elite wheat cultivars, representing seven market classes. This value increased to 0.23 when SNPs were pre-selected for polymorphisms among a diverse set of 13 hexaploid wheat accessions (excluding synthetic wheats) used in the wheat SNP discovery project (). PIC values for SNP markers in the D genome were approximately half of those for the A and B genomes. D genome SNPs also showed a larger PIC reduction relative to the other genomes (P < 0.05) when US cultivars were compared with the more diverse set of 13 wheat accessions. Within those accessions, D genome SNPs show a higher proportion of alleles with low minor allele frequencies (<0.125) than found in the other two genomes. These data suggest that the reduction of PIC values in the D genome was caused by differential loss of low frequency alleles during the population size bottleneck that accompanied the development of modern commercial cultivars. Additional SNP discovery efforts targeted to the D genome in elite wheat germplasm will likely be required to offset the lower diversity of this genome. With increasing SNP discovery projects and the development of high-throughput SNP assay technologies, it is anticipated that SNP markers will play an increasingly important role in wheat genetics and breeding applications. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Summary Several high molecular weight endosperm glutenin subunits, coded by genes located on chromosomes 1A, 1B and 1D of common wheat, Triticum aestivum L. em. Thell., were isolated from excised gel segments and subjected to amino acid analysis and peptide mapping; the latter was carried out following a limited digestion with trypsin, chymotrypsin or Staphylococcus aureus — V8 protease. Generally, all high molecular weight glutenins had a similar amino acid composition but several significant differences were observed in some of them. Both analyses revealed that the structural similarity among the various subunits was related to the homology of the genes coding them: subunits coded by homoalleles, i.e., different alleles of the same gene, were most similar; those coded by homoeoalleles, i.e., alleles of homoeologous genes, were less similar; whereas subunits coded either by alleles of different genes of the same gene cluster, or by nonhomoeoalleles of homoeologous clusters, were the least similar. Several small peptides derived from protease digestion of various subunits had a higher than expected staining intensity indicating that small peptide repeats may be interspersed within the glutenin subunits. The evolutionary course of the high molecular weight glutenins is discussed.  相似文献   

13.
We report here the complete amino acid sequence of a pathogen-induced putative peroxidase from wheat (Triticum aestivum L.) as deduced from cDNA clones representing mRNA from leaves infected with the powdery mildew fungus Erysiphe graminis. The protein consists of 312 amino acids, of which the first 22 form a putative signal sequence, and has a calculated pI of 5.7. Sequence comparison revealed that the putative wheat peroxidase is most similar to the turnip (Brassica rapa) peroxidase, with which it shares 57% identical and 13% conserved amino acids.  相似文献   

14.
Ten current European wheat varieties were transformed at efficiencies ranging from 1-17% (mean 4% across varieties) following modifications in particle bombardment and tissue culture procedures. All plants surviving phosphinothricin selection were screened for uidA and bar gene activity, and for the presence of marker gene sequences by PCR analysis. A minimum of 35% plant 'escape' frequency was achieved with selection on 4 mg l(-1) gluphosinate ammonium after shoot initiation. Mean co-transformation frequency with various genes-of-interest was 66%. The estimated number of insertions of the uidA gene in 25 lines were; 1-2 in 32%, 3-5 in 52%, and 6-8 in 16% of lines. In T(1) progenies, marker genes segregated in a Mendelian fashion in 50% of 39 lines analysed, as determined by transgene activity assays. Based on PCR analysis, it appeared that in some lines the occurrence of distorted segregation was due to poor transmission of the transgenes.  相似文献   

15.
The effects of sodium chloride salinity and hypoxia were studied in eight wheat lines and three wheat-Thinopyrum amphiploids in vermiculite-gravel culture. The lines were treated with either 100 or 150 mol m–3 NaCl with and without hypoxia. Saline hypoxic conditions significantly reduced the vegetative growth, water use, grain and straw yields for all wheat varieties except the amphiploids, whereas NaCl or hypoxia alone had less pronounced effects. In addition, saline hypoxic stress reduced K+ concentration and increased significantly the Na+ and Cl concentrations in cell sap expressed from leaves. There was more Na+ and Cl accumulation in wheats than the amphiploids in hypoxic conditions at 150 mol m–3 NaCl. Of the wheats, Pato was the most sensitive at all stress levels while aTriticum aestivum cv. Chinese Spring ×Thinopyrum elongatum amphiploid was the most tolerant of the three amphiploids.  相似文献   

16.
Salicylic acid (SA) and nitric oxide (NO) are reported to alleviate the damaging effects of stress in plants rather similarly when applied at appropriate low concentrations. An experiment was therefore conducted to study the impact of SA, sodium nitroprusside (SNP; as NO donor), and methylene blue (MB; as a guanylate cyclase inhibitor) on wheat seedling performance under osmotic stress. Osmotic stress significantly reduced shoot fresh weight (SFW), chlorophyll contents (Chla, Chlb, total Chl), and membrane stability index (MSI) and also increased malondialdehyde (MDA) level, lipoxygenase (LOX) activity, and hydrogen peroxide production. Moreover, enzymatic antioxidant activities including superoxide dismutase, guaiacol peroxidase, and glutathione reductase activity were enhanced under osmotic stress. On the contrary, SA or SNP pretreatment reduced the damaging effects of osmotic stress by further enhancing the antioxidant activities that led to increased SFW, Chl, and MSI and reduced MDA level and LOX activity. However, pretreatment of plants with MB reversed or reduced the protective effects of SA and SNP suggesting that the protective effects were likely attributed to NO signaling. Therefore, NO may act as downstream of SA signaling in reduction of induced oxidative damage in wheat seedlings.  相似文献   

17.
Polyphenol oxidases (PPOs) are involved in the time-dependent darkening and discolouration of Asian noodles and other wheat end products. In this study, a doubled haploid (DH) population derived from Chara (moderately high PPO activity)/WW2449 (low PPO activity) was screened for PPO activity based on l-DOPA and l-tyrosine assays using whole seeds. Both these assays were significantly genetically correlated (r=0.91) in measuring the PPO activity in this DH population. Quantitative trait loci (QTLs) analysis utilising a skeleton map enabled us to identify a major QTL controlling PPO activity based on l-DOPA and l-tyrosine on the long arm of chromosome 2A. The simple sequence repeat (SSR) marker GWM294b explained over 82% of the line mean phenotypic variation from samples collected in both 2000 and 2003. Four SSR markers were validated for PPO linkage in genetically diverse backgrounds and proven to correctly predict the PPO activity in more than 92% of wheat lines. Physical mapping using deletion lines of Chinese Spring has confirmed the location of the GWM294b, GWM312 and WMC170 on chromosome 2AL, between deletion breakpoints 2AL-C to 0.85. In order to identify functional gene markers, data searches for alignments between rice BAC/PAC clones assembled on chromosome 1 and 4, chromosome 7, and (1) the wheat expressed sequence tags mapped in deletion bin (2AL-C to 0.85) and (2) the coding sequence of a previously cloned wheat PPO gene were made and found significant sequence similarities with the PPO gene or common central domain of tyrosinase. Available PPO gene sequences in the National Centre for Biotechnology Information (NCBI) database have revealed that there is a significant molecular diversity at the nucleotide and amino acid level in the wheat PPO genes.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

18.
19.
Seventeen RNA-degrading enzymes of common wheat, with apparent molecular masses from 42.2 kDa to 16.3 kDa, were observed by the RNA-SDS-PAGE assay. To determine their chromosome locations, all chromosome arms of common wheat except 4BS were assayed in their null condition by using a set of ditelosomic or nullitetrasomic lines of the cultivar Chinese Spring. Our results showed that only one chromosome location each was identified for the 22.8-kDa and the 21.2-kDa enzymes, as well as for the 21.6 kDa enzyme, and they are on chromosome arms 2AS and 2DS, respectively. Loci controlling the 20.1 kDa activity were on chromosome arms 2AL, 4BS, 4DS and 6BS. The locus or loci coding for the gene(s) of the 42.2-kDa, 40.9-kDa and 39.2-kDa enzymes were probably ocated on chromosome arm 5AS, and their expression, in agreement with most other RNA-degrading enzyme activities were stimulated when chromosome arm 5AL was missing, indicating a inhibiting locus on 5AL. Our data suggested that the 31.9-kDa, 30.6-kDa and 29.6-kDa enzymes were possibly products of a common precursor which might be coded by a gene(s) on chromosome arm 6BS, and that the processing is co-regulated by loci on chromosome arms 2BS, 3DS, 6AL, 6BL and 7BS. The remaining of the enzyme activities were consistently found in all of the lines tested, and thus are presumably encoded by multiple loci. The only other possibility is that, their loci may be on chromosome arm 4BS which we have not assayed in its null condition.Contribution from Agriculture Research Division, University of Nebraska. Journal Series No. 11271 Current address: Dept. Bio/Microbiology, South Dakota State University, Brookings, SD57007, USA  相似文献   

20.
The carbon balance of a winter wheat crop in Lonzée, Belgium, was assessed from measurements carried out at different spatial and temporal scales between November 2004 and August 2005. From eddy covariance measurements, the net ecosystem exchange was found to be ?0.63 kg C m?2 and resulted from the difference between gross primary productivity (GPP) (?1.58 kg C m?2) and total ecosystem respiration (TER) (0.95 kg C m?2). The impact of the u* threshold value on these fluxes was assessed and found to be very small. GPP assessment was partially validated by comparison with an estimation scaled up from leaf scale assimilation measurements. Soil respiration (SR), extrapolated from chamber measurements, was 0.52 kg C m?2. Net primary productivity, assessed from crop sampling, was ?0.83 kg C m?2. By combining these fluxes, the autotrophic and heterotrophic components of respiration were deduced. Autotrophic respiration dominated both TER and SR. The evolution of these fluxes was analysed in relation to wheat development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号