首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
In eukaryotes, DNA is packaged within nucleosomes. The DNA of each nucleosome is typically centered around an octameric histone protein core: one central tetramer plus two separate dimers. Studying the assembly mechanisms of histones is essential for understanding the dynamics of entire nucleosomes and higher-order DNA packaging. Here, we investigate canonical histone assembly and that of the centromere-specific histone variant, centromere protein A (CENP-A), using molecular dynamics simulations. We quantitatively characterize their thermodynamical and dynamical features, showing that two H3/H4 dimers form a structurally floppy, weakly bound complex, the latter exhibiting large instability around the central interface manifested via a swiveling motion of two halves. This finding is consistent with the recently observed DNA handedness flipping of the tetrasome. In contrast, the variant CENP-A encodes distinctive stability to its tetramer with a rigid but twisted interface compared to the crystal structure, implying diverse structural possibilities of the histone variant. Interestingly, the observed tetramer dynamics alter significantly and appear to reach a new balance when H2A/H2B dimers are present. Furthermore, we found that the preferred structure for the (CENP-A/H4)2 tetramer is incongruent with the octameric structure, explaining many of the unusual dynamical behaviors of the CENP-A nucleosome. In all, these data reveal key mechanistic insights and structural details for the assembly of canonical and variant histone tetramers and octamers, providing theoretical quantifications and physical interpretations for longstanding and recent experimental observations. Based on these findings, we propose different chaperone-assisted binding and nucleosome assembly mechanisms for the canonical and CENP-A histone oligomers.  相似文献   

3.
Centromeric loci of chromosomes are defined by nucleosomes containing the histone H3 variant CENP-A, which bind their DNA termini more permissively than their canonical counterpart, a feature that is critical for the mitotic fidelity. A recent cryo-EM study demonstrated that the DNA termini of CENP-A nucleosomes, reconstituted with the Widom 601 DNA sequence, are asymmetrically flexible, meaning one terminus is more clearly resolved than the other. However, an earlier work claimed that both ends could be resolved in the presence of two stabilizing single chain variable fragment (scFv) antibodies per nucleosome, and thus are likely permanently bound to the histone octamer. This suggests that the binding of scFv antibodies to the histone octamer surface would be associated with CENP-A nucleosome conformational changes, including stable binding of the DNA termini. Here, we present computational evidence that allows to explain at atomistic level the structural rearrangements of CENP-A nucleosomes resulting from the antibody binding. The antibodies, while they only bind the octamer façades, are capable of altering the dynamics of the nucleosomal core, and indirectly also the surrounding DNA. This effect has more drastic implications for the structure and the dynamics of the CENP-A nucleosome in comparison to its canonical counterpart. Furthermore, we find evidence that the antibodies bind the left and the right octamer façades at different affinities, another manifestation of the DNA sequence. We speculate that the cells could use induction of similar allosteric effects to control centromere function.  相似文献   

4.
The nucleosome comprises two histone dimers of H2A-H2B and one histone tetramer of (H3-H4)2, wrapped around by ~145 bp of DNA. Detailed core structures of nucleosomes have been established by X-ray and cryo-EM, however, histone tails have not been visualized. Here, we have examined the dynamic structures of the H2A and H2B tails in 145-bp and 193-bp nucleosomes using NMR, and have compared them with those of the H2A and H2B tail peptides unbound and bound to DNA. Whereas the H2A C-tail adopts a single but different conformation in both nucleosomes, the N-tails of H2A and H2B adopt two distinct conformations in each nucleosome. To clarify these conformations, we conducted molecular dynamics (MD) simulations, which suggest that the H2A N-tail can locate stably in either the major or minor grooves of nucleosomal DNA. While the H2B N-tail, which sticks out between two DNA gyres in the nucleosome, was considered to adopt two different orientations, one toward the entry/exit side and one on the opposite side. Then, the H2A N-tail minor groove conformation was obtained in the H2B opposite side and the H2B N-tail interacts with DNA similarly in both sides, though more varied conformations are obtained in the entry/exit side. Collectively, the NMR findings and MD simulations suggest that the minor groove conformer of the H2A N-tail is likely to contact DNA more strongly than the major groove conformer, and the H2A N-tail reduces contact with DNA in the major groove when the H2B N-tail is located in the entry/exit side.  相似文献   

5.
6.
CENP-A is a histone variant that replaces conventional H3 in nucleosomes of functional centromeres. We report here, from reconstitutions of CENP-A- and H3-containing nucleosomes on linear DNA fragments and the comparison of their electrophoretic mobility, that CENP-A induces some positioning of its own and some unwrapping at the entry-exit relative to canonical nucleosomes on both 5 S DNA and the alpha-satellite sequence on which it is normally loaded. This steady-state unwrapping was quantified to 7(+/-2) bp by nucleosome reconstitutions on a series of DNA minicircles, followed by their relaxation with topoisomerase I. The unwrapping was found to ease nucleosome invasion by exonuclease III, to hinder the binding of a linker histone, and to promote the release of an H2A-H2B dimer by nucleosome assembly protein 1 (NAP-1). The (CENP-A-H4)2 tetramer was also more readily destabilized with heparin than the (H3-H4)2 tetramer, suggesting that CENP-A has evolved to confer its nucleosome a specific ability to disassemble. This dual relative instability is proposed to facilitate the progressive clearance of CENP-A nucleosomes that assemble promiscuously in euchromatin, especially as is seen following CENP-A transient over-expression.  相似文献   

7.
Multiscale modeling of nucleosome dynamics   总被引:3,自引:1,他引:2       下载免费PDF全文
Nucleosomes form the fundamental building blocks of chromatin. Subtle modifications of the constituent histone tails mediate chromatin stability and regulate gene expression. For this reason, it is important to understand structural dynamics of nucleosomes at atomic levels. We report a novel multiscale model of the fundamental chromatin unit, a nucleosome, using a simplified model for rapid discrete molecular dynamics simulations and an all-atom model for detailed structural investigation. Using a simplified structural model, we perform equilibrium simulations of a single nucleosome at various temperatures. We further reconstruct all-atom nucleosome structures from simulation trajectories. We find that histone tails bind to nucleosomal DNA via strong salt-bridge interactions over a wide range of temperatures, suggesting a mechanism of chromatin structural organization whereby histone tails regulate inter- and intranucleosomal assemblies via binding with nucleosomal DNA. We identify specific regions of the histone core H2A/H2B-H4/H3-H3/H4-H2B/H2A, termed “cold sites”, which retain a significant fraction of contacts with adjoining residues throughout the simulation, indicating their functional role in nucleosome organization. Cold sites are clustered around H3-H3, H2A-H4 and H4-H2A interhistone interfaces, indicating the necessity of these contacts for nucleosome stability. Essential dynamics analysis of simulation trajectories shows that bending across the H3-H3 is a prominent mode of intranucleosomal dynamics. We postulate that effects of salts on mononucleosomes can be modeled in discrete molecular dynamics by modulating histone-DNA interaction potentials. Local fluctuations in nucleosomal DNA vary significantly along the DNA sequence, suggesting that only a fraction of histone-DNA contacts make strong interactions dominating mononucleosomal dynamics. Our findings suggest that histone tails have a direct functional role in stabilizing higher-order chromatin structure, mediated by salt-bridge interactions with adjacent DNA.  相似文献   

8.
The human centromere proteins A (CENP-A) and B (CENP-B) are the fundamental centromere components of chromosomes. CENP-A is the centromere-specific histone H3 variant, and CENP-B specifically binds a 17-base pair sequence (the CENP-B box), which appears within every other alpha-satellite DNA repeat. In the present study, we demonstrated centromere-specific nucleosome formation in vitro with recombinant proteins, including histones H2A, H2B, H4, CENP-A, and the DNA-binding domain of CENP-B. The CENP-A nucleosome wraps 147 base pairs of the alpha-satellite sequence within its nucleosome core particle, like the canonical H3 nucleosome. Surprisingly, CENP-B binds to nucleosomal DNA when the CENP-B box is wrapped within the nucleosome core particle and induces translational positioning of the nucleosome without affecting its rotational setting. This CENP-B-induced translational positioning only occurs when the CENP-B box sequence is settled in the proper rotational setting with respect to the histone octamer surface. Therefore, CENP-B may be a determinant for translational positioning of the centromere-specific nucleosomes through its binding to the nucleosomal CENP-B box.  相似文献   

9.
Centromeres are the site of kinetochore formation during mitosis. Centromere protein A (CENP-A), the centromere-specific histone H3 variant, is essential for the epigenetic maintenance of centromere position. Previously we showed that newly synthesized CENP-A is targeted to centromeres exclusively during early G1 phase and is subsequently maintained across mitotic divisions. Using SNAP-based fluorescent pulse labeling, we now demonstrate that cell cycle–restricted chromatin assembly at centromeres is unique to CENP-A nucleosomes and does not involve assembly of other H3 variants. Strikingly, stable retention is restricted to the CENP-A/H4 core of the nucleosome, which we find to outlast general chromatin across several cell divisions. We further show that cell cycle timing of CENP-A assembly is independent of centromeric DNA sequences and instead is mediated by the CENP-A targeting domain. Unexpectedly, this domain also induces stable transmission of centromeric nucleosomes, independent of the CENP-A deposition factor HJURP. This demonstrates that intrinsic properties of the CENP-A protein direct its cell cycle–restricted assembly and induces quantitative mitotic transmission of the CENP-A/H4 nucleosome core, ensuring long-term stability and epigenetic maintenance of centromere position.  相似文献   

10.
A DNA sequence-dependent nucleosome structural and dynamic polymorphism was recently uncovered through topoisomerase I relaxation of mononucleosomes on two homologous approximately 350-370 bp DNA minicircle series, one originating from pBR322, the other from the 5S nucleosome positioning sequence. Whereas both pBR and 5S nucleosomes had access to the closed, negatively crossed conformation, only the pBR nucleosome had access to the positively crossed conformation. Simulation suggested this discrepancy was the result of a reorientation of entry/exit DNAs, itself proposed to be the consequence of specific DNA untwistings occurring in pBR nucleosome where H2B N-terminal tails pass between the two gyres. The present work investigates the behavior of the same two nucleosomes after binding of linker histone H5, its globular domain, GH5, and engineered H5 C-tail deletion mutants. Nucleosome access to the open uncrossed conformation was suppressed and, more surprisingly, the ability of 5S nucleosome to positively cross was largely restored. This, together with the paradoxical observation of a less extensive crossing in the negative conformation with GH5 than without, favored an asymmetrical location of the globular domain in interaction with the central gyre and only entry (or exit) DNA, and raised the possibility of the domain physical rotation as a mechanism assisting nucleosome fluctuation from one conformation to the other. Moreover, both negative and positive conformations showed a high degree of loop conformational flexibility in the presence of the full-length H5 C-tail, which the simulation suggested to reflect the unique feature of the resulting stem to bring entry/exit DNAs in contact and parallel. The results point to the stem being a fundamental structural motif directing chromatin higher order folding, as well as a major player in its dynamics.  相似文献   

11.
CENP-A and CENP-B are major components of centromeric chromatin. CENP-A is the histone H3 variant, which forms the centromere-specific nucleosome. CENP-B specifically binds to the CENP-B box DNA sequence on the centromere-specific repetitive DNA. In the present study, we found that the CENP-A nucleosome more stably retains human CENP-B than the H3.1 nucleosome in vitro. Specifically, CENP-B forms a stable complex with the CENP-A nucleosome, when the CENP-B box sequence is located at the proximal edge of the nucleosome. Surprisingly, the CENP-B binding was weaker when the CENP-B box sequence was located in the distal linker region of the nucleosome. This difference in CENP-B binding, depending on the CENP-B box location, was not observed with the H3.1 nucleosome. Consistently, we found that the DNA-binding domain of CENP-B specifically interacted with the CENP-A-H4 complex, but not with the H3.1-H4 complex, in vitro. These results suggested that CENP-B forms a more stable complex with the CENP-A nucleosome through specific interactions with CENP-A, if the CENP-B box is located proximal to the CENP-A nucleosome. Our in vivo assay also revealed that CENP-B binding in the vicinity of the CENP-A nucleosome substantially stabilizes the CENP-A nucleosome on alphoid DNA in human cells.  相似文献   

12.
The histone variant CENP-A and centromere specification   总被引:2,自引:0,他引:2  
The centromere is the chromosomal locus that guides faithful inheritance. Centromeres are specified epigenetically, and the histone H3 variant CENP-A has emerged as the best candidate to carry the epigenetic centromere mark. Recent advances demonstrate the physical basis for this epigenetic mark whereby CENP-A confers conformational rigidity to the nucleosome it forms with other core histones. This nucleosome is recognized by a multisubunit complex of constitutive centromere proteins, termed the CENP-A(NAC). Evidence from two CENP-A relatives in diverse eukaryotes suggests that the histone complexes they form adopt highly unconventional arrangements on DNA. Centromere identity, itself, is propagated during mitotic exit and early G1, and it relies upon a cis-acting targeting domain within CENP-A and a proposed centromere 'priming' reaction.  相似文献   

13.
Lochmann B  Ivanov D 《PLoS genetics》2012,8(5):e1002739
During cell division, segregation of sister chromatids to daughter cells is achieved by the poleward pulling force of microtubules, which attach to the chromatids by means of a multiprotein complex, the kinetochore. Kinetochores assemble at the centromeric DNA organized by specialized centromeric nucleosomes. In contrast to other eukaryotes, which typically have large repetitive centromeric regions, budding yeast CEN DNA is defined by a 125 bp sequence and assembles a single centromeric nucleosome. In budding yeast, as well as in other eukaryotes, the Cse4 histone variant (known in vertebrates as CENP-A) is believed to substitute for histone H3 at the centromeric nucleosome. However, the exact composition of the CEN nucleosome remains a subject of debate. We report the use of a novel ChIP approach to reveal the composition of the centromeric nucleosome and its localization on CEN DNA in budding yeast. Surprisingly, we observed a strong interaction of H3, as well as Cse4, H4, H2A, and H2B, but not histone chaperone Scm3 (HJURP in human) with the centromeric DNA. H3 localizes to centromeric DNA at all stages of the cell cycle. Using a sequential ChIP approach, we could demonstrate the co-occupancy of H3 and Cse4 at the CEN DNA. Our results favor a H3-Cse4 heterotypic octamer at the budding yeast centromere. Whether or not our model is correct, any future model will have to account for the stable association of histone H3 with the centromeric DNA.  相似文献   

14.
The centromere is a critical genomic region that enables faithful chromosome segregation during mitosis, and must be distinguishable from other genomic regions to facilitate establishment of the kinetochore. The centromere-specific histone H3-variant CENP-A forms a special nucleosome that functions as a marker for centromere specification. In addition to the CENP-A nucleosomes, there are additional H3 nucleosomes that have been identified in centromeres, both of which are predicted to exhibit specific features. It is likely that the composite organization of CENP-A and H3 nucleosomes contributes to the formation of centromere-specific chromatin, termed ‘centrochromatin’. Recent studies suggest that centrochromatin has specific histone modifications that mediate centromere specification and kinetochore assembly. We use chicken non-repetitive centromeres as a model of centromeric activities to characterize functional features of centrochromatin. This review discusses our recent progress, and that of various other research groups, in elucidating the functional roles of histone modifications in centrochromatin.  相似文献   

15.
Genomic DNA is packaged in chromatin, a dynamic fiber variable in size and compaction. In chromatin, repeating nucleosome units wrap 145–147 DNA basepairs around histone proteins. Genetic and epigenetic regulation of genes relies on structural transitions in chromatin which are driven by intra- and inter-nucleosome dynamics and modulated by chemical modifications of the unstructured terminal tails of histones. Here we demonstrate how the interplay between histone H3 and H2A tails control ample nucleosome breathing motions. We monitored large openings of two genomic nucleosomes, and only moderate breathing of an engineered nucleosome in atomistic molecular simulations amounting to 24 μs. Transitions between open and closed nucleosome conformations were mediated by the displacement and changes in compaction of the two histone tails. These motions involved changes in the DNA interaction profiles of clusters of epigenetic regulatory aminoacids in the tails. Removing the histone tails resulted in a large increase of the amplitude of nucleosome breathing but did not change the sequence dependent pattern of the motions. Histone tail modulated nucleosome breathing is a key mechanism of chromatin dynamics with important implications for epigenetic regulation.  相似文献   

16.
Centromeres are specialized chromosome domain that serve as the site for kinetochore assembly and microtubule attachment during cell division, to ensure proper segregation of chromosomes. In higher eukaryotes, the identity of active centromeres is marked by the presence of CENP-A (centromeric protein-A), a histone H3 variant. CENP-A forms a centromere-specific nucleosome that acts as a foundation for centromere assembly and function. The posttranslational modification (PTM) of histone proteins is a major mechanism regulating the function of chromatin. While a few CENP-A site-specific modifications are shared with histone H3, the majority are specific to CENP-A-containing nucleosomes, indicating that modification of these residues contribute to centromere-specific function. CENP-A undergoes posttranslational modifications including phosphorylation, acetylation, methylation, and ubiquitylation. Work from many laboratories have uncovered the importance of these CENP-A modifications in its deposition at centromeres, protein stability, and recruitment of the CCAN (constitutive centromere-associated network). Here, we discuss the PTMs of CENP-A and their biological relevance.  相似文献   

17.
The nucleosome remodeling activity of ISW1a was dependent on whether ISW1a was bound to one or both extranucleosomal DNAs. ISW1a preferentially bound nucleosomes with an optimal length of approximately 33 to 35 bp of extranucleosomal DNA at both the entry and exit sites over nucleosomes with extranucleosomal DNA at only one entry or exit site. Nucleosomes with extranucleosomal DNA at one of the entry/exit sites were readily remodeled by ISW1a and stimulated the ATPase activity of ISW1a, while conversely, nucleosomes with extranucleosomal DNA at both entry/exit sites were unable either to stimulate the ATPase activity of ISW1a or to be mobilized. DNA footprinting revealed that a major conformational difference between the nucleosomes was the lack of ISW1a binding to nucleosomal DNA two helical turns from the dyad axis in nucleosomes with extranucleosomal DNA at both entry/exit sites. The Ioc3 subunit of ISW1a was found to be the predominant subunit associated with extranucleosomal DNA when ISW1a is bound either to one or to both extranucleosomal DNAs. These two conformations of the ISW1a-nucleosome complex are suggested to be the molecular basis for the nucleosome spacing activity of ISW1a on nucleosomal arrays. ISW1b, the other isoform of ISW1, does not have the same dependency for extranucleosomal DNA as ISW1a and, likewise, is not able to space nucleosomes.  相似文献   

18.
Using FRET in bulk and on single molecules, we assessed the structural role of histone acetylation in nucleosomes reconstituted on the 170 bp long Widom 601 sequence. We followed salt-induced nucleosome disassembly, using donor–acceptor pairs on the ends or in the internal part of the nucleosomal DNA, and on H2B histone for measuring H2A/H2B dimer exchange. This allowed us to distinguish the influence of acetylation on salt-induced DNA unwrapping at the entry–exit site from its effect on nucleosome core dissociation. The effect of lysine acetylation is not simply cumulative, but showed distinct histone-specificity. Both H3- and H4-acetylation enhance DNA unwrapping above physiological ionic strength; however, while H3-acetylation renders the nucleosome core more sensitive to salt-induced dissociation and to dimer exchange, H4-acetylation counteracts these effects. Thus, our data suggest, that H3- and H4-acetylation have partially opposing roles in regulating nucleosome architecture and that distinct aspects of nucleosome dynamics might be independently controlled by individual histones.  相似文献   

19.
20.
Centromeres are the chromosomal loci that direct the formation of the kinetochores. These macromolecular assemblies mediate the interaction between chromosomes and spindle microtubules and thereby power chromosome movement during cell division. They are also the sites of extensive regulation of the chromosome segregation process. Except in the case of budding yeast, centromere identity does not rely on DNA sequence but on the presence of a special nucleosome that contains a histone H3 variant known as CenH3 or CENP-A (Centromere Protein A). It has been therefore proposed that CENP-A is the epigenetic mark of the centromere. Upon DNA replication the mark is diluted two-fold and must be replenished to maintain centromere identity. What distinguishes CENP-A nucleosomes from those containing histone H3, how CENP-A nucleosomes are incorporated specifically into centromeric chromatin, and how this incorporation is coordinated with other cell cycle events are key issues that have been the focus of intensive research over the last decade. Here we review some of the highlights of this research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号