首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The razor clam (Sinonovacula constricta) is an important aquaculture species, for which a high-density genetic linkage map would play an important role in marker-assisted selection (MAS). In this study, we constructed a high-density genetic map and detected quantitative trait loci (QTLs) for Sinonovacula constricta with an F1 cross population by using the specific locus amplified fragment sequencing (SLAF-seq) method. A total of 315,553 SLAF markers out of 467.71 Mreads were developed. The final linkage map was composed of 7516 SLAFs (156.60-fold in the parents and 20.80-fold in each F1 population on average). The total distance of the linkage map was 2383.85 cM, covering 19 linkage groups with an average inter-marker distance of 0.32 cM. The proportion of gaps less than 5.0 cM was on average 96.90%. A total of 16 suggestive QTLs for five growth-related traits (five QTLs for shell height, six QTLs for shell length, three QTLs for shell width, one QTL for total body weight, and one QTL for soft body weight) were identified. These QTLs were distributed on five linkage groups, and the regions showed overlapping on LG9 and LG13. In conclusion, the high-density genetic map and QTLs for S. constricta provide a valuable genetic resource and a basis for MAS.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

Introduction

Metamorphosis is a complicated process in which cell proliferation, differentiation, and death are orchestrated to form the mature structures of insects. In Drosophila, this process is controlled by ecdysone, a steroid hormone responsible for tissue remodeling and organogenesis that gives rise to the adult fly.

Objective

By using a metabolomics approach, this study aimed to elucidate global changes in the central metabolic pathways in Drosophila throughout metamorphosis and then further examine the effects of temperature and origin on metabolic profiles.

Methods

Targeted and non-targeted metabolic profiling of time-course samples from Drosophila were constructed to cover a wide range of cellular metabolites during metamorphosis.

Results

This was the first wide-scale metabolomics study of Drosophila metamorphosis focusing on central metabolism. The abundance of detected metabolites changed drastically and correlated strongly with the development of Drosophila pupae. In non-stress conditions, temperature affected the developmental time, but the metabolic state at a certain stage of metamorphosis remained stable. Between D. melanogaster Canton S and Oregon R, similar metabolic profiles throughout metamorphosis was observed. However, there were still differences in purine and pyrimidine metabolism at an early stage in the pupal period, which was matched by differences in ecdysteroid levels.

Conclusion

This study supported the strength of metabolomics in the field of developmental biology. The results provided a general view on the metabolic profile of Drosophila during metamorphosis, which provides basic 3 knowledge for future metabolomics studies using Drosophila.
  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号