首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The past few decades have seen a world-wide increase in coral diseases, yet little is known about coral pathogens. In this study, techniques commonly used in pathogenomic research were applied to the coral pathogen Vibrio shiloi in order to identify genetic elements involved in its virulence. Suppressive subtractive hybridization was used to compare the gene content of V. shiloi to that of a closely related but non-pathogenic bacterium, Vibrio mediterranei, resulting in identification of several putative virulence factors and of three novel genomic islands. The entire genome of V. shiloi was further screened for genes related to previously characterized steps in infection: adhesion, superoxide dismutase production and toxin production. Exposure of pure cultures of V. shiloi to crushed coral tissues strongly affected the expression of seven genes encoding pili, zona occludins toxin (Zot) and a superoxide dismutase. Analysis of eight V. shiloi strains isolated in the last decade shows a shift of the natural population from strains carrying all three genomic islands to strains carrying none of them. This shift occurred following appearance of resistance in the coral Oculina patagonica to infection by V. shiloi. The relevance of these findings to the bleaching disease caused by V. shiloi is discussed.  相似文献   

2.
Inoculation of the coral-bleaching bacterium Vibrio shiloi into seawater containing its host Oculina patagonica led to adhesion of the bacteria to the coral surface via a beta-D-galactose receptor, followed by penetration of the bacteria into the coral tissue. The internalized V. shiloi cells were observed inside the exodermal layer of the coral by electron microscopy and fluorescence microscopy using specific anti-V. shiloi antibodies to stain the intracellular bacteria. At 29 degrees C, 80% of the bacteria bound to the coral within 8 h. Penetration, measured by the viable count (gentamicin invasion assay) inside the coral tissue, was 5.6, 20.9, and 21.7% of the initial inoculum at 8, 12, and 24 h, respectively. The viable count in the coral tissue decreased to 5.3% at 48 h, and none could be detected at 72 h. Determination of V. shiloi total counts (using the anti-V. shiloi antibodies) in the coral tissue showed results similar to viable counts for the first 12 h of infection. After 12 h, however, the total count more than doubled from 12 to 24 h and continued to rise, reaching a value 6 times that of the initial inoculum at 72 h. Thus, the intracellular V. shiloi organisms were transformed into a form that could multiply inside the coral tissue but did not form colonies on agar medium. Internalization of the bacteria was accompanied by the production of high concentrations of V. shiloi toxin P activity in the coral tissue. Internalization and multiplication of V. shiloi are discussed in terms of the mechanism of bacterial bleaching of corals.  相似文献   

3.
Vibrio shiloi is the causative agent of bleaching (loss of endosymbiotic zooxanthellae) of the coral Oculina patagonica in the Mediterranean Sea. To obtain information on the mechanism of bleaching, we examined the effect of secreted material (AK1-S) produced by V. shiloi on zooxanthellae isolated from corals. AK1-S caused a rapid inhibition of photosynthesis of the algae, as measured with a Mini-PAM fluorometer. The inhibition of photosynthesis was caused by (i) ammonia produced during the growth of V. shiloi on protein-containing media and (ii) a non-dialysable heat-resistant factor. This latter material did not inhibit photosynthesis of the algae by itself but, when added to different concentrations of NH4Cl, enhanced the inhibition approximately two- to threefold. Ammonia and the enhancer were effective to different degrees on zooxanthellae isolated from four species of coral examined. In addition to the rapid inhibition of photosynthesis, AK1-S caused bleaching (loss of pigmentation) and lysis of zooxanthellae. Bleaching was more rapid than lysis, reaching a peak (25% bleached algae) after 6 h. The factors in AK1-S responsible for bleaching and lysis were different from those responsible for the inhibition of photosynthesis, because they were heat sensitive, non-dialysable and active in the dark. Thus, the coral pathogen V. shiloi produces an array of extracellular materials that can inhibit photosynthesis, bleach and lyse zooxanthellae.  相似文献   

4.
Coral bleaching is a disease that threatens coral reefs throughout the world. The disease is correlated with higher-than-normal seawater temperatures. Data have been reported showing that bleaching of the coral Oculina patagonica during the summer in the Mediterranean Sea is the result of an infection with Vibrio shiloi. The summer temperatures induce the expression of virulence factors in the pathogen. We report here that V. shiloi produces an extracellular superoxide dismutase (SOD) at 30 degrees C, but not at 16 degrees C. An SOD(-) mutant was avirulent. The mutant adhered to corals, penetrated into coral cells, multiplied intracellularly for a short time, and then died. These data support the hypothesis that SOD protects the intracellular V. shiloi from oxidative stress caused by the high concentration of oxygen produced by intracellular zooxanthellae photosynthesis.  相似文献   

5.
Vibrio shiloi, the causative agent of bleaching of the coral Oculina patagonica in the Mediterranean Sea, is present in all bleached O. patagonica corals in the summer (25-30 degrees C), but can be not detected in the coral during the winter (16-20 degrees C). Furthermore, the pathogen can not survive in O. patagonica at temperatures below 20 degrees C. Using fluorescence in situ hybridization (FISH) with a V. shiloi-specific oligonucleotide probe, we found that the marine fireworm Hermodice caranculata is a winter reservoir for V. shiloi. Worms taken directly from the sea during the winter contained approximately 10(8) V. shiloi per worm by FISH analysis. However, colony-forming units (cfu) revealed only 4.1-18.3 x 10(4) V. shiloi per worm, indicating that approximately 99.9% of them were in the viable-but-not-culturable (VBNC) state. When worms were infected with V. shiloi, most of the bacteria adhered to the worm within 24 h and then penetrated into epidermal cells. By 48 h, less than 10(-4) of the intact V. shiloi in the worm gave rise to colonies, suggesting that they differentiated inside the worm into the VBNC state. When worms infected with V. shiloi were placed in aquaria containing O. patagonica, all of the corals showed small patches of bleached tissue in 7-10 days and total bleaching in 17 days. This is the first report of a reservoir and vector for a coral disease.  相似文献   

6.
We compared induction of the viable-but-nonculturable (VBNC) state in two Vibrio spp. isolated from diseased corals by starving the cells and maintaining them in artificial seawater at 4 and 20 degrees C. In Vibrio tasmaniensis, isolated from a gorgonian octocoral growing in cool temperate water (7 to 17 degrees C), the VBNC state was not induced by incubation at 4 degrees C after 157 days. By contrast, Vibrio shiloi, isolated from a coral in warmer water (16 to 30 degrees C), was induced into the VBNC state by incubation at 4 degrees C after 126 days. This result is consistent with reports of low-temperature induction in several Vibrio spp. A large proportion of the V. tasmaniensis population became VBNC after incubation for 157 days at 20 degrees C, and V. shiloi became VBNC after incubation for 126 days at 20 degrees C. Resuscitation of V. shiloi cells from cultures at both temperatures was achieved by nutrient addition, suggesting that starvation plays a major role in inducing the VBNC state. Our results suggest that viable V. shiloi could successfully persist in the VBNC state in seawater for significant periods at the lower temperatures that may be experienced in winter conditions, which may have an effect on the seasonal incidence of coral bleaching. For both species, electron microscopy revealed that prolonged starvation resulted in transformation of the cells from rods to cocci, together with profuse blebbing, production of a polymer-like substance, and increased membrane roughness. V. shiloi cells developed an increased periplasmic space and membrane curling; these features were absent in V. tasmaniensis.  相似文献   

7.
We describe the polyphasic characterization of four Vibrio isolates which formed a tight AFLP group in a former study. The group was closely related to V. cyclitrophicus, V. lentus and V. splendidus (98.2-98.9% similarity) on the basis of the 16S rDNA sequence analysis, but by DNA-DNA hybridisation experiments it had at maximum 61% DNA similarity towards V. splendidus. Thus, we propose that the isolates represent a new Vibrio species i.e. V. tasmaniensis (LMG 20012T; EMBL under the accession numbers AJ316192; mol% G+C of DNA of the type strain is 44.7). Useful phenotypical features for discrimination of V. tasmaniensis from other Vibrio species include gelatinase and beta-galactosidase activity, fatty acid composition (particularly 14:0), utilisation and fermentation of different compounds (e.g. sucrose, melibiose and D-galactose) as sole carbon source.  相似文献   

8.
Microbial diseases of corals and global warming   总被引:8,自引:0,他引:8  
Coral bleaching and other diseases of corals have increased dramatically during the last few decades. As outbreaks of these diseases are highly correlated with increased sea-water temperature, one of the consequences of global warming will probably be mass destruction of coral reefs. The causative agent(s) of a few of these diseases have been reported: bleaching of Oculina patagonica by Vibrio shiloi; black band disease by a microbial consortium; sea-fan disease (aspergillosis) by Aspergillus sydowii; and coral white plague possibly by Sphingomonas sp. In addition, we have recently discovered that Vibrio coralyticus is the aetiological agent for bleaching the coral Pocillopora damicornis in the Red Sea. In the case of coral bleaching by V. shiloi, the major effect of increasing temperature is the expression of virulence genes by the pathogen. At high summer sea-water temperatures, V. shiloi produces an adhesin that allows it to adhere to a beta-galactoside-containing receptor in the coral mucus, penetrate into the coral epidermis, multiply intracellularly, differentiate into a viable-but-not-culturable (VBNC) state and produce toxins that inhibit photosynthesis and lyse the symbiotic zooxanthellae. In black band disease, sulphide is produced at the coral-microbial biofilm interface, which is probably responsible for tissue death. Reports of newly emerging coral diseases and the lack of epidemiological and biochemical information on the known diseases indicate that this will become a fertile area of research in the interface between microbial ecology and infectious disease.  相似文献   

9.
The coral-bleaching bacterium Vibrio shiloi biosynthesizes and secretes an extracellular peptide, referred to as toxin P, which inhibits photosynthesis of coral symbiotic algae (zooxanthellae). Toxin P was produced during the stationary phase when the bacterium was grown on peptone or Casamino Acids media at 29 degrees C. Glycerol inhibited the production of toxin P. Toxin P was purified to homogeneity, yielding the following 12-residue peptide: PYPVYAPPPVVP (molecular weight, 1,295.54). The structure of toxin P was confirmed by chemical synthesis. In the presence of 12.5 mM NH(4)Cl, pure natural or synthetic toxin P (10 microM) caused a 64% decrease in the photosynthetic quantum yield of zooxanthellae within 5 min. The inhibition was proportional to the toxin P concentration. Toxin P bound avidly to zooxanthellae, such that subsequent addition of NH(4)Cl resulted in rapid inhibition of photosynthesis. When zooxanthellae were incubated in the presence of NH(4)Cl and toxin P, there was a rapid decrease in the pH (pH 7.8 to 7.2) of the bulk liquid, suggesting that toxin P facilitates transport of NH(3) into the cell. It is known that uptake of NH(3) into cells can destroy the pH gradient and block photosynthesis. This mode of action of toxin P can help explain the mechanism of coral bleaching by V. shiloi.  相似文献   

10.
The inhibitory properties of the microbial community of the coral mucus from the Mediterranean coral Oculina patagonica were examined. Out of 156 different colony morphotypes that were isolated from the coral mucus, nine inhibited the growth of Vibrio shiloi , a species previously shown to be a pathogen of this coral. An isolate identified as Pseudoalteromonas sp. was the strongest inhibitor of V. shiloi . Several isolates, especially one identified as Roseobacter sp., also showed a broad spectrum of action against the coral pathogens Vibrio coralliilyticus and Thallassomonas loyana , plus nine other selected Gram-positive and Gram-negative bacteria. Inoculation of a previously established biofilm of the Roseobacter strain with V. shiloi led to a 5-log reduction in the viable count of the pathogen within 3 h, while inoculation of a Pseudoalteromonas biofilm led to complete loss of viability of V. shiloi after 3 h. These results support the concept of a probiotic effect on microbial communities associated with the coral holobiont.  相似文献   

11.
The genomic diversity among 506 strains of the family Vibrionaceae was analysed using Fluorescent Amplified Fragments Length Polymorphisms (FAFLP). Isolates were from different sources (e.g. fish, mollusc, shrimp, rotifers, artemia, and their culture water) in different countries, mainly from the aquacultural environment. Clustering of the FAFLP band patterns resulted in 69 clusters. A majority of the actually known species of the family Vibrionaceae formed separate clusters. Certain species e.g. V. alginolyticus, V. cholerae, V. cincinnatiensis, V. diabolicus, V. diazotrophicus, V. harveyi, V. logei, V. natriegens, V. nereis, V. splendidus and V. tubiashii were found to be ubiquitous, whereas V. halioticoli, V. ichthyoenteri, V. pectenicida and V. wodanis appear to be exclusively associated with a particular host or geographical region. Three main categories of isolates could be distinguished: (1) isolates with genomes related (i.e. with > or =45% FAFLP pattern similarity) to one of the known type strains; (2) isolates clustering (> or =45% pattern similarity) with more than one type strain; (3) isolates with genomes unrelated (<45% pattern similarity) to any of the type strains. The latter group consisted of 236 isolates distributed in 31 clusters indicating that many culturable taxa of the Vibrionaceae remain as yet to be described.  相似文献   

12.
Five alginolytic, facultative anaerobic, non-motile bacteria were isolated from the gut of Japanese abalones (Haliotis discus discus, H. diversicolor diversicolor and H. diversicolor aquatilis). Phylogenetic analyses based on 16S rRNA gene and gap gene sequences indicated that these strains are closely related to V. halioticoli. DNA-DNA hybridizations, FAFLP fingerprintings, and phylogenies of gap and 16S rRNA gene sequences showed that the five strains represent two species different from all currently described vibrios. The names Vibrio neonatus sp. nov. (IAM 15060T = LMG 19973T = HDD3-1T; mol% G+C of DNA is 42.1-43.9), and Vibrio ezurae sp. nov. (IAM 15061T = LMG 19970T = HDS1-1T; mol% G+C of DNA is 43.6-44.8) are proposed to encompass these new taxa. The two new species can be differentiated from V. halioticoli on the basis of several features, including beta-galactosidase activity, assimilation of glycerol, D-mannose and D-gluconate.  相似文献   

13.
Coral bleaching is the disruption of symbioses between coral animals and their photosynthetic microalgal endosymbionts (zooxanthellae). It has been suggested that large-scale bleaching episodes are linked to global warming. The data presented here demonstrate that Vibrio coralliilyticus is an etiological agent of bleaching of the coral Pocillopora damicornis. This bacterium was present at high levels in bleached P. damicornis but absent from healthy corals. The bacterium was isolated in pure culture, characterized microbiologically, and shown to cause bleaching when it was inoculated onto healthy corals at 25 degrees C. The pathogen was reisolated from the diseased tissues of the infected corals. The zooxanthella concentration in the bacterium-bleached corals was less than 12% of the zooxanthella concentration in healthy corals. When P. damicornis was infected with V. coralliilyticus at higher temperatures (27 and 29 degrees C), the corals lysed within 2 weeks, indicating that the seawater temperature is a critical environmental parameter in determining the outcome of infection. A large increase in the level of the extracellular protease activity of V. coralliilyticus occurred at the same temperature range (24 to 28 degrees C) as the transition from bleaching to lysis of the corals. We suggest that bleaching of P. damicornis results from an attack on the algae, whereas bacterium-induced lysis and death are promoted by bacterial extracellular proteases. The data presented here support the bacterial hypothesis of coral bleaching.  相似文献   

14.
Different strains related to Vibrio splendidus have been associated with infection of aquatic animals. An epidemiological study of V. splendidus strains associated with Crassostrea gigas mortalities demonstrated genetic diversity within this group and suggested its polyphyletic nature. Recently 4 species, V. lentus, V. chagasii, V. pomeroyi and V. kanaloae, phenotypically related to V. splendidus, have been described, although biochemical methods do not clearly discriminate species within this group. Here, we propose a polyphasic approach to investigate their taxonomic relationships. Phylogenetic analysis of V. splendidus-related strains was carried out using the nucleotide sequences of 16S ribosomal DNA (16S rDNA) and gyrase B subunit (gyrB) genes. Species delineation based on 16S rDNA-sequencing is limited because of divergence between cistrons, roughly equivalent to divergence between strains. Despite a high level of sequence similarity, strains were separated into 2 clades. In the phylogenetic tree constructed on the basis of gyrB gene sequences, strains were separated into 5 independent clusters containing V. splendidus, V. lentus, V. chagasii-type strains and a putative new genomic species. This phylogenetic grouping was almost congruent with that based on DNA-DNA hybridisation analysis. V. pomeroyi, V. kanaloae and V. tasmaniensis-type strains clustered together in a fifth clade. The gyrB gene-sequencing approach is discussed as an alternative for investigating the taxonomy of Vibrio species.  相似文献   

15.
A new Vibrio species, Vibrio ponticus, is proposed to accommodate four marine bacteria isolated from sea water, mussels and diseased sea bream (Sparus aurata), at the Mediterranean coast of Spain. Strains are Gram negative, slightly halophilic bacteria that require Na+ ion for growth, oxidase and catalase positive, negative for arginine dihydrolase and ornithine decarboxylase but positive for lysine decarboxylase and indole, and utilize beta-hydroxybutyrate as a sole carbon source. Phylogenetic analysis locate these marine bacteria in the vicinity of the V. fluvialis-V. furnissii clade, sharing with these two species 16S rDNA sequence similarities slightly above 97% (97.1 and 97.3%, respectively). DNA-DNA hybridisation values confirm that the four strains form a genospecies and represent a new species in the genus Vibrio. We propose strain 369T (CECT 5869T, DSM 16217T) as the type strain.  相似文献   

16.
环介导等温扩增技术快速检测施罗氏弧菌(Vibrio shilonii)   总被引:1,自引:0,他引:1  
【背景】近年来,珊瑚白化事件频有发生,面临着严重衰退。由气候变化引起的珊瑚病原菌快速增殖是导致珊瑚白化的主要因素之一。施罗氏弧菌是枇杷珊瑚的致病菌,能侵入珊瑚虫体内而使珊瑚白化死亡。【目的】优化并建立一种钙黄绿素显色法快速检测珊瑚致病菌施罗氏弧菌的环介导等温扩增(Loop-mediatedisothermalamplificaiton,LAMP)检测技术。【方法】以枇杷珊瑚致病菌施罗氏弧菌为研究对象,针对施罗氏弧菌的rpoD (RNA polymerase subunit D)基因设计6条特异性扩增引物,建立LAMP检测体系并检测其特异性和灵敏度,同时对LAMP法、常规PCR和荧光定量PCR3种检测方法进行比较分析。【结果】供检测的10个样品菌株中,施罗氏弧菌反应结果为阳性,呈亮绿色,其他9株包括阴性对照(灭菌水为模板)反应结果为阴性,呈浅橙黄色;同时,所建立的钙黄绿素-LAMP方法最低检测限度为3.641×10~3 cps/mL,具有与荧光定量PCR等同的灵敏度和准确性,是常规PCR最低检测限度的0.1%;此外,通过模拟野外海水样品检测发现,钙黄绿素-LAMP方法对海水样品中施罗氏弧菌的检测限度可达1.3×10~2 CFU/mL。【结论】建立的钙黄绿素-LAMP检测技术具有很好的特异性、灵敏度和准确性,其操作方法简单、方便,无需昂贵仪器,适用于野外现场珊瑚致病菌施罗氏弧菌的快速检测。  相似文献   

17.
Coral bleaching is the disruption of symbioses between coral animals and their photosynthetic microalgal endosymbionts (zooxanthellae). It has been suggested that large-scale bleaching episodes are linked to global warming. The data presented here demonstrate that Vibrio coralliilyticus is an etiological agent of bleaching of the coral Pocillopora damicornis. This bacterium was present at high levels in bleached P. damicornis but absent from healthy corals. The bacterium was isolated in pure culture, characterized microbiologically, and shown to cause bleaching when it was inoculated onto healthy corals at 25°C. The pathogen was reisolated from the diseased tissues of the infected corals. The zooxanthella concentration in the bacterium-bleached corals was less than 12% of the zooxanthella concentration in healthy corals. When P. damicornis was infected with V. coralliilyticus at higher temperatures (27 and 29°C), the corals lysed within 2 weeks, indicating that the seawater temperature is a critical environmental parameter in determining the outcome of infection. A large increase in the level of the extracellular protease activity of V. coralliilyticus occurred at the same temperature range (24 to 28°C) as the transition from bleaching to lysis of the corals. We suggest that bleaching of P. damicornis results from an attack on the algae, whereas bacterium-induced lysis and death are promoted by bacterial extracellular proteases. The data presented here support the bacterial hypothesis of coral bleaching.  相似文献   

18.
The determination of phenotypic and genotypic traits of a group of closely related Vibrio strains from the Baltic Sea did not allow species designation. DNA-DNA hybridization and fatty acid analysis revealed them as Vibrio navarrensis. Therefore we suggest these Vibrios to represent a new biotype, named V. navarrensis biotype pommerensis.  相似文献   

19.
Seventeen bacterial strains previously identified as Vibrio harveyi (Baumann et al. 1981) or V. carchariae (Grimes et al. 1984) and the type strains of V. harveyi, V. carchariae and V. campbellii were analyzed by 16S ribosomal DNA (rDNA) sequencing. Four clusters were identified in a phylogenetic analysis performed by comparing a 746 base pair fragment of the 16S rDNA and previously published sequences of other closely related Vibrio species. The type strains of V. harveyi and V. carchariae and about half of the strains identified as V. harveyi or V. carchariae formed a single, well-supported cluster designed as 'bona fide' V. harveyi/carchariae. A second more heterogeneous cluster included most other strains and the V. campbellii type strain. Two remaining strains are shown to be more closely related to V. rumoiensis and V. mediterranei. 16S rDNA sequencing has confirmed the homogeneity and synonymy of V. harveyi and V. carchariae. Analysis of API20E biochemical profiles revealed that they are insufficient by themselves to differentiate V. harveyi and V. campbellii strains. 16S rDNA sequencing, however, can be used in conjunction with biochemical techniques to provide a reliable method of distinguishing V. harveyi from other closely related species.  相似文献   

20.
AIMS: The aim of this research was to identify and partially purify new bacteriocin-like substances from strains of halophilic 'non-cholera' vibrios isolated from food sources. METHODS AND RESULTS: Forty-five halophilic Vibrio spp. strains were screened for antimicrobial production. Vibrio mediterranei 1, a nonpathogenic strain, showed antimicrobial activity towards Vibrio parahaemolyticus spp. and related species. The bacteriocin-like inhibitory substance (BLIS), released by the bacteria into growth media, was concentrated by ultrafiltration and characterized. BLIS was sensitive to proteinase K, was stable in the pH range 5-9, was resistant to organic solvents and was heat stable up to 75 degrees C. Initial purification of BLIS by size exclusion chromatography showed an apparent molecular mass of 63-65 kDa. CONCLUSIONS: This study reports the ability of V. mediterranei 1 to produce a bacteriocin-like substance inhibiting growth of V. parahaemolyticus spp. and other closely related bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: The strong activity of BLIS towards the human and fish pathogen V. parahaemolyticus and the persistence of antimicrobial properties under a variety of different conditions suggest its potential application in food microbiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号