首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Role of lipid peroxidation and antioxidative enzymes (catalase, peroxidase, superoxide dismutase, ascorbate peroxidase and glutathione reductase) in water stress-promoted senescence of detached rice leaves was investigated. The senescence was followed by measuring the decrease in protein content. Increased lipid peroxidation was closely correlated with senescence in water stressed leaves. Decrease in superoxide dismutase activity was evident 8 h after beginning of water stress. However, decreased catalase, peroxidase, and ascorbate peroxidase activity was observed only when senescence was observed. Glutathione reductase was not affected by water stress. Free radical scavengers retarded water stress-enhanced senescence.  相似文献   

2.
The freshly harvested mature neem seeds (42.2 % seed moisture content) with 100 % viability deteriorate when naturally desiccated to below 10.9 %. The desiccation-induced loss of viability was closely associated with over accumulation of superoxide anion and lipid peroxidation products both in the embryonic axes and cotyledons. The levels of superoxide anion and lipid peroxidation products were higher in axes compared to cotyledons. Superoxide dismutase activity was not much affected, both in the axes and cotyledons of 100 % viable seeds during desiccation from 42.2 % to 10.9 % seed moisture content. Steep rise in its activity was observed during drying below lowest safe moisture content (LSMC). Activities of catalase and peroxidase exhibited substantially higher levels in the 100 % viable seeds dehydrated up to LSMC. Their activities declined sharply in seeds with water content below LSMC. Impairment of catalase and peroxidase activities possibly lead to enhanced accumulation of reactive oxygen species. The accumulation of superoxide anion, lipid peroxidation and differential expression of superoxide dismutase and catalse/peroxidase activities in response to desiccation (below LSMC) is discussed to explain the intermediate storage physiology of neem seeds.  相似文献   

3.
Effects of flooding on the activities of some enzymes of activated oxygen metabolism, the levels of antioxidants, and lipid peroxidation in senescing leaves of tobacco were investigated. As judged by the decrease in chlorophyll and protein levels, flooding accelerated the senescence of tobacco leaves. Total peroxide and the lipid peroxidation product, malondialdehyde, increased in both control and flooding-treated leaves with increasing duration of the experiment. Throughout the duration of the experiment, flooded leaves had higher levels of total peroxide and malondialdehyde than did control leaves. Flooding resulted in an increase in peroxidase and ascorbate peroxidase activities and a reduction of superoxide dismutase activity in the senescing leaves. Glycolate oxidase, catalase, and glutathione reductase activities were not affected by flooding. Flooding increased the levels of total ascorbate and dehydroascorbate. Total glutathione, reduced form glutathione, or oxidized glutathione levels in flooded leaves were lower than in control leaves during the first two days of the experiment, but were higher than in control leaves at the later stage of the experiment. Our work suggests that senescence of tobacco induced by flooding may be a consequence of lipid peroxidation possibly controlled by superoxide dismutase activity. Our results also suggest that increased rates of hydrogen peroxide in leaves of flooded plants could lead to increased capacities of the scavenging system of hydrogen peroxide.Abbreviations GSH reduced form glutathione - GSSG oxidized form glutathione - GSSG reductase glutathione reductase - MDA malondialdehyde - SOD superoxide dismutase  相似文献   

4.
Abstract

The effects of increasing salt concentrations on the growth, electrolyte leakage, lipid peroxidation, and major antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) of borage plants were investigated. Plants were grown in half strength of Hoagland nutrient solution added with 0, 25, 50, and 75 mM of NaCl. Most measured parameters were affected by salinity. Increasing salt levels caused a significant reduction in leaf area, stem length, stem diameter, flower number, and dry masses of different organs. Growth of borage plants, in terms of dry weight, was affected. As a consequence of salinity stress, lipid peroxidation and membrane permeability was increased. Antioxidant activity showed an increase in the activity of superoxide dismutase, a non-induced activity of catalase and ascorbate peroxidase, and a slight increase in glutathione reductase activity. The results indicate that borage plants appear to be sensitive to salt stress, since enzymes related to antioxidant enzymatic defense system in treated leaves should be highly active.  相似文献   

5.
Antioxidative response to cadmium in roots and leaves of tomato plants   总被引:1,自引:0,他引:1  
Treatment of tomato seedlings (Lycopersicon esculentum Mill. cv. 63/5 F1) with increasing CdCl2 concentrations in the culture medium resulted in Cd accumulation more important in roots than in leaves. Biomass production was severely inhibited, even at low Cd concentration. Cd reduced chlorophyll content in leaves and enhanced lipid peroxidation. An increase in antioxidative enzyme (superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, glutathione reductase) activities was more pronounced in leaves than in roots, while catalase activity increased only in roots. In addition, changes in isoenzyme composition were observed using the non-denaturing polyacrylamid gel electrophoresis.  相似文献   

6.
The aim of the present study is to evaluate the oxidative effects of lead with increased concentrations by the determination of antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and ascorbate peroxidase (AP)) and lipid peroxidation levels in the stem and leaves of watercress (Nasturtium officinale R. Br.) which was exposed to lead acetate, Pb (CH3COOH)2 regime with concentrations of 0, 50, 100, 200, 250, and 500 mg/L Pb in a hydroponic culture. After 14 days, accumulation of lipid peroxidation in stems and leaves and changes in activity of antioxidant enzymes were determined spectrophotometrically. The maximum accumulation was observed in the highest concentration group. In this group, lipid peroxidation levels were three times higher than the control group in the stem and leaves. The highest induction in SOD and GR activities were determined at 200 mg/L Pb group in stem, whereas CAT and AP activities were higher than other groups at the concentration of 250 and 100 mg/L Pb, respectively. The increase in CAT activity was found to be greater than GR, SOD, and AP activities in stems of watercress under Pb treatment. Both lead accumulation and antioxidant enzyme responses were higher in stems than in leaves. The results of the present study suggested that the induction in antioxidant responses could be occurring as an adaptive mechanism to the oxidative potential of lead accumulation.  相似文献   

7.
Brassica juncea L. eight-day-old seedlings treated with various concentrations (50–200 µM) of copper for 48 h accumulated Cu more in the roots than in leaves. Accumulation of copper resulted in more active lipid peroxidation and depletion of glutathione (GSH) pools in both roots and shoots, which was attributed to copper-induced additional oxidative stress. Activities of ascorbate peroxidase and superoxide dismutase were higher in both roots and shoots while catalase activity increased in leaves but remained unchanged in roots in response to copper accumulation. Changes in lipid peroxidation, GSH content, and antioxidant enzyme activities suggest that oxidative damage may be involved in copper toxicity.From Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 233–237.Original English Text Copyright © 2005 by Devi, Prasad.This article was submitted by the authors in English.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

8.
Two wheat (Triticum aestivum L.) genotypes with varying degree of drought tolerance were used to analyze programmed cell death (PCD) and related biochemical changes under drought stress. Drought induced PCD in leaves, as evident by internucleosomal nDNA fragmentation, was observed in sensitive genotype Nesser. Drought tolerant genotype (FD-83) showed higher peroxidase, superoxide dismutase, and catalase activities and ascorbate content under drought stress compared to sensitive genotype. Total phenolic content increased whereas lipid peroxidation remained un-changed under drought in FD-83. In contrast, drought enhanced the proteases and ascorbate peroxidase activities and lipid peroxidation (MDA content) in Nesser.  相似文献   

9.
Treatment with 50 microM CuSO4 for five days caused significant decrease in dry-matter production and protein level of ten-day-old sunflower seedling roots. An increase of lipoperoxidation product rate was also observed. The involvement of some enzyme activities in the sunflower root defence against Cu-induced oxidative stress was studied. Copper treatment induced several changes in antioxidant enzymes. SOD (superoxide dismutase, EC 1.15.1.1) activity was reduced but CAT (catalase, EC 1.11.1.6) and GPX (guaiacol peroxidase, EC 1.11.1.7) activities were significantly enhanced. The lignifying peroxidase activities, assayed using coniferyl alcohol and syringaldazine, were also stimulated. Analysis by native gel electrophoresis of syringaldazine peroxidase activity showed the stimulation of an isoform (A2) and the induction of another one (A1) under cupric stress conditions. On the other hand, the activity of PAL (phenylalanine ammonia lyase, EC 4.3.1.5), which plays an important role in plant defence, was also activated. The possible mechanisms by which Cu-induced growth delay and changes in enzymatic activities involved in plant defence processes are discussed.  相似文献   

10.
Antioxidative responses of Calendula officinalis under salinity conditions.   总被引:10,自引:0,他引:10  
To gain a better insight into long-term salt-induced oxidative stress, some physiological parameters in marigold (Calendula officinalis L.) under 0, 50 and 100 mM NaCl were investigated. Salinity affected most of the considered parameters. High salinity caused reduction in growth parameters, lipid peroxidation and hydrogen peroxide accumulation. Under high salinity stress, a decrease in total glutathione and an increase in total ascorbate (AsA + DHA), accompanied with enhanced glutathione reductase (GR, EC 1.6.4.2) and ascorbate peroxidase (APX, EC 1.11.1.11) activities, were observed in leaves. In addition, salinity induced a decrease in superoxide dismutase (SOD, EC 1.15.1.1) and peroxidase (POX, EC 1.11.1.7) activities. The decrease in dehydroascorbate reductase (DHAR, EC 1.8.5.1) and monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) activities suggests that other mechanisms play a major role in the regeneration of reduced ascorbate. The changes in catalase (CAT, EC 1.11.1.6) activities, both in roots and in leaves, may be important in H2O2 homeostasis.  相似文献   

11.
The effect of exogenously applied H2O2 on salt stress acclimation was studied with regard to plant growth, lipid peroxidation, and activity of antioxidative enzymes in leaves and roots of a salt-sensitive maize genotype. Pre-treatment by addition of 1 microM H2O2 to the hydroponic solution for 2 days induced an increase in salt tolerance during subsequent exposure to salt stress. This was evidenced by plant growth, lipid peroxidation and antioxidative enzymes measurements. In both leaves and roots the variations in lipid peroxidation and antioxidative enzymes (superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, glutathione reductase, and catalase) activities of both acclimated and unacclimated plants, suggest that differences in the antioxidative enzyme activities may, at least in part, explain the increased tolerance of acclimated plants to salt stress, and that H2O2 metabolism is involved as signal in the processes of maize salt acclimation.  相似文献   

12.
Flooding effects on membrane permeability, lipid peroxidation and activated oxygen metabolism in corn (Zea mays L.) leaves were investigated to determine if activated oxygens are involved in corn flooding-injury. Potted corn plants were flooded at the 4-leaf stage in a controlled environment. A 7-day flooding treatment resulted in a significant increase in chlorophyll breakdown, lipid peroxidation (malondialdehye content), membrane permeability, and the production of superoxide (O 2 - ) and hydrogen peroxide (H2O2) in corn leaves. The effects were much greater in older leaves than in younger ones. Spraying leaves with 8-hydroxyquinoline (an O 2 - scavenger) and sodium benzoate (an .OH scavenger) reduced the oxidative damage and enhanced superoxide dismutase (SOD) activity. A short duration flooding treatment elevated the activities of SOD, catalase, ascorbate peroxidase (AP), and glutathione reductase (GR), while further flooding significantly reduced the enzyme activities but enhanced the concentrations of ascorbic acid and reduced form glutathione (GSH). It was noted that the decline in SOD activity was greater than that in H2O2 scavengers (AP and GR). The results suggested that O 2 - induced lipid peroxidation and membrane damage, and that excessive accumulation of O 2 - is due to the reduced activity of SOD under flooding stress.  相似文献   

13.
Using diabetes mellitus as a model of oxidative damage, this study investigated whether subacute treatment (10 mg/kg/day, intraperitoneally for 14 days) with the compound piperine would protect against diabetes-induced oxidative stress in 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione (GSH and GSSG, respectively) content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Piperine treatment of normal rats enhanced hepatic GSSG concentration by 100% and decreased renal GSH concentration by 35% and renal glutathione reductase activity by 25% when compared to normal controls. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Treatment with piperine reversed the diabetic effects on GSSG concentration in brain, on renal glutathione peroxidase and superoxide dismutase activities, and on cardiac glutathione reductase activity and lipid peroxidation. Piperine treatment did not reverse the effects of diabetes on hepatic GSH concentrations, lipid peroxidation, or glutathione peroxidase or catalase activities; on renal superoxide dismutase activity; or on cardiac glutathione peroxidase or catalase activities. These data indicate that subacute treatment with piperine for 14 days is only partially effective as an antioxidant therapy in diabetes.  相似文献   

14.
A. R. McEuen  H. A. O. Hill 《Planta》1982,154(4):295-297
The possible involvement of superoxide and hydrogen peroxide in the oxidative gelling of phloem exudate from Cucurbita pepo. was investigated. Neither superoxide dismutase (EC 1.15.1.1) nor catalase (EC 1.11.1.6) inhibited the reaction. Although catalase could not be detected in exudate, both peroxidase (EC. 1.11.1.7) and superoxide dismutase were present in reasonable amounts. Polyacrylamide gel electrophoresis revealed one major and one minor isozyme of superoxide dismutase, both of which were adjudged to contain copper and zinc as their prosthetic metals, on the basis of cyanide inhibition and molecular weight.Abbreviations SOD superoxide dismutase  相似文献   

15.
Inhibition of root elongation and modification of membrane properties are sensitive responses of plants to aluminium. The present paper reports on the effect of AI on lipid peroxidation and activities of enzymes related to production of activated oxygen species. Soybean seedlings (Glycine max L. cv. Sito) were precultured in solution culture for 3–5 days and then treated for 1–72 h with Al (AICI3) concentrations ranging from 10 to 75 μM at a constant pH of 4.1. In response to Al supply, lipid peroxidation in the root tips (< 2 cm) was enhanced only after longer durations of treatment. Aluminium-dependent increase in lipid peroxidation was intensified by Fe2+ (FeSO4). A close relationship existed between lipid peroxidation and inhibition of root-elongation rate induced by Al and/or Fe toxicity and/or Ca deficiency. Besides enhancement of lipid peroxidation in the crude extracts of root tips due to Al, the activities of superoxide dismutase (EC 1.15.1.1) and peroxidase (EC 1.11.1.7) increased, whereas catalase (EC 1.11.1.6) activity decreased. This indicates a greater generation of oxygen free radicals and related tissue damage. The results suggest that lipid peroxidation is part of the overall expression of Al toxicity in roots and that enhanced lipid peroxidation by oxygen free radicals is a consequence of primary effects of Al on membrane structure.  相似文献   

16.
Andrographis paniculata (AP) treatment prevents BHC induced increase in the activities of enzymes y-Glutamyl transpeptidase, glutathione-S-transferase and lipid peroxidation. The activities of antioxidant enzymes like superoxide dismutase, catalase, glutathione peroxidase and the levels of glutathione were decreased following BHC effect. Administration of AP showed protective effects in the activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase as well the level of glutathione. The activity of lipid peroxidase was also decreased. The result indicate antioxidant and hepatoprotective action of A. paniculata.  相似文献   

17.
The effects of 24-epibrassinolide (24-epiBL) on seedling growth, antioxidative system, lipid peroxidation, proline and soluble protein content were investigated in seedlings of the salt-sensitive rice cultivar IR-28. Seedling growth of rice plants was improved by 24-epiBL treatment under salt stress conditions. When seedlings treated with 24-epiBL were subjected to 120 mM NaCl stress, the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6) and glutathione reductase (EC 1.6.4.2) did not show significant difference, whereas the activity of ascorbate peroxidase (EC 1.11.1.11) significantly increased. Increased activity of peroxidase (EC 1.11.1.7) under NaCl stress showed remarkable decrease in the 24-epiBL+NaCl-applied group. Lipid peroxidation level significantly increased under salt stress but decreased with 24-epiBL application revealing that less oxidative damage occurred in this group (24-epiBL+NaCl). In addition, increased proline content in the NaCl-applied group was decreased by 24-epiBL application in the 24-epiBL+NaCl-applied group. Soluble protein content was increased by 24-epiBL application even under NaCl stress, being also higher than control conditions (no 24-epiBL or NaCl treatment). 24-epiBL treatment considerably alleviated oxidative damage that occurred under NaCl-stressed conditions and improved seedling growth in part under salt stress in sensitive IR-28 seedlings.  相似文献   

18.
Protein pattern, ammonia content, glutamine synthetase activity, lipid peroxidation, superoxide dismutase, catalase, peroxidase and peroxidase isoforms were studied in the leaves and roots of 7-d-old peanut (Arachis hypogaea L. cv. JL-24) seedlings treated by 25, 100 and 250 μM jasmonic acid (JA). SDS-PAGE protein profile of leaves and roots after JA application showed a significant increase in 18, 21, 30, 45, 47 and 97.4 kDa proteins and significant decrease in 22 and 36 kDa proteins. Pathogenesis related PR-18 was specific in leaves at 250 μM JA and PR-21 have cross reacted differently with 21 and 30 kDa proteins in leaves and roots treated by all JA concentrations. Further, the immunoblot analysis with glutamine synthetase, GS-45 antibodies revealed a specific cross reaction with 45 and 47 kDa proteins of both control and JA treated leaves, however, higher at 100 and 250 μM JA treated leaves than control ones. Further, the malondialdehyde (MDA) content significantly increased in leaves and roots treated with JA, indicated membrane damage with JA treatments that led to the generation of peroxidation products. The peroxidase isozymic pattern showed two specific isoforms. Besides, the activities of SOD and catalase were significantly elevated in JA treated leaves.  相似文献   

19.
to-baccoBright Yellow 2 (BY-2) suspension culture to understand the mechanisms of metal resistance in plant cells.We have analysed superoxide dismutase, catalase, and ascorbate peroxidase enzyme activities and superoxidedismutase-isoforms by isoelectric focusing gels in tobacco cells grown at two different toxic concentrations ofeach of the transition metals: copper, iron, manganese and zinc. Exposure of tobacco cells to these metals causedchanges in total superoxide dismutase activity in a different manner, depending on the metal assayed: after cop-perand manganese treatments, total superoxide dismutase activity was enhanced, while it was reduced after ironand zinc exposure. Superoxide dismutase-isoforms were affected by the metal used, and a Fe-SOD band with thesame isoelectric point as a Cu, Zn-SOD from non-treated cells, was induced after iron and zinc treatments. Cu,Zn-SODs were present in all metal-treatments whereas Mn-SOD was not detected in any case. Concerning otherantioxidant enzymes tested, such as catalase and ascorbate peroxidase, the latter showed a remarkable increase inactivity in response to copper treatments and catalase activity was enhanced after iron and with the lowest man-ganeseconcentration. Lipid peroxidation was increased after each metal treatment, as an indication of the oxi-dativedamage caused by metal concentration assayed in tobacco cells. These results suggest that an activation ofsome antioxidant enzymes in response to oxidative stress induced by transition metals is not enough to confertolerance to metal accumulation.  相似文献   

20.
王红霞  胡金朝  施国新  杨海燕  李阳  赵娟  许晔 《生态学报》2010,30(10):2784-2792
采用营养液水培的方法,研究了外源亚精胺(Spd)和精胺(Spm)对Cu胁迫下水鳖叶片3种形态多胺(PAs)、抗氧化系统及营养元素的影响。结果表明:(1)Cu胁迫使水鳖叶片腐胺(Put)急剧积累,Spd和Spm明显下降,从而使(Spd+Spm)/Put比值也随之下降。外源Spd和Spm显著或极显著逆转Cu诱导的PAs变化,抑制Put的积累,缓解Spd和Spm的下降,从而提高了(Spd+Spm)/Put比值。(2)外源Spd和Spm抑制了Cu胁迫诱导的多胺氧化酶(PAO)的增加,缓解了二胺氧化酶(DAO)的下降。(3)与单一Cu胁迫相比,Spd和Spm显著或极显著提高了超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性和抗坏血酸(AsA)、谷胱甘肽(GSH)、游离脯氨酸(Pro)含量,从而降低了超氧阴离子(O2.-)产生速率和过氧化氢(H2O2)含量,极显著降低了丙二醛(MDA)含量,缓解了Cu诱导的氧化胁迫。(4)外源Spd和Spm显著或极显著缓解了Cu胁迫下矿质营养元素吸收平衡的紊乱。以上结果均说明了外施Spd和Spm可增加水鳖对Cu胁迫的耐受性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号