首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 260 毫秒
1.
Kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) is a good substrate for cholera toxin in comparison with the angiotensin peptides. Because kemptide contains two potential ADP-ribosylation sites and, is also a good substrate for cAMP-dependent protein kinase, it was possible to gain some insight into factors influencing the specificity of cholera toxin and to study the relationship between phosphorylation and ADP-ribosylation. The ADP-ribosylated products of kemptide were purified by high-performance liquid chromatography and characterized by peptide sequence analysis, trypsin digestion, and fast-atom bombardment mass spectrometry. The major product is mono(ADP-ribosyl)ated preferentially on the first arginyl residue and some mono(ADP-ribosyl)ation was observed to occur on the second arginine. The minor product is di(ADP-ribosyl)ated. The Km and Vmax for mono(ADP-ribosyl)ation of kemptide are approximately 4.3 +/- 1.2 mM and 38.1 +/- 5.5 nmol min-1 mg-1, respectively. Phosphorylated seryl residue of kemptide suppresses ADP-ribosylation of the arginyl residues by cholera toxin. Mono(ADP-ribosyl)ated kemptide is a poor substrate for the cAMP-dependent protein kinase in comparison with kemptide. Di(ADP-ribosyl)ated kemptide is not phosphorylated at all. These results suggest that a mere exposure of an arginyl residue in peptides is not a sufficient condition for effective ADP-ribosylation and that a relationship exists between ADP-ribosylation and phosphorylation.  相似文献   

2.
The C2 toxin from Clostridium botulinum represents the prototype of the family of binary actin-ADP-ribosylating toxins. These toxins covalently transfer ADP-ribose from nicotinamide adenine dinucleotide (NAD(+)) onto arginine-177 of actin in the cytosol of eukaryotic cells resulting in depolymerization of actin filaments and cell rounding. The C2 toxin consists of two non-linked proteins, the enzyme component C2I and the binding and translocation component C2II, which delivers C2I into host cells. The ADP-ribosyltransferase SpvB from Salmonella enterica also modifies actin, but is delivered into the host cell cytosol from intracellular growing Salmonella, most likely via type-III-secretion. We characterized the mode of action of SpvB in comparison to C2 toxin in vitro and in intact cells. We identified arginine-177 as the target for SpvB-catalyzed mono-ADP-ribosylation of actin. To compare the cellular responses following modification of actin by SpvB or by the binary toxins without the influence of other Salmonella virulence factors, we constructed a cell-permeable fusion toxin to deliver the catalytic domain of SpvB (C/SpvB) into the cytosol of target cells. This review summarizes recent findings of research on the actin ADP-ribosylating toxins regarding their cellular uptake, molecular mode of action and the cellular consequences following ADP-ribosylation of actin.  相似文献   

3.
Purification of a novel insulin-stimulated protein kinase from rat liver   总被引:3,自引:0,他引:3  
We previously described a novel insulin-stimulated protein kinase activity that phosphorylates Kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) in cytosolic extracts of adipocytes (Yu, K-T., Khalaf, N., and Czech, M. P. (1987) J. Biol. Chem. 262, 16677-16685). In the present experiments, cytosolic extracts of livers from insulin-treated rats also exhibited a 30-100% increase in this Kemptide kinase activity and served as an abundant source for purification. The Kemptide kinase was purified in parallel from liver extracts of insulin-treated or control rats through five chromatographic steps and one polyethylene glycol precipitation. The chromatographic behavior of the insulin-stimulated Kemptide kinase differed significantly from the control kinase on Mono Q and heparin-Sepharose resins. The purified kinase preparations retain insulin stimulations of 2-10-fold. Analysis of the purified control and insulin-stimulated kinases by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed single bands with similar silver staining intensity and apparent molecular masses of 52 kDa. The insulin-stimulated Kemptide phosphorylating activity also coincided with the major silver-stained band following isoelectric focusing in polyacrylamide gels. The stimulation of kinase activity in response to administration of insulin is due to an increase in Vmax, whereas the Km for Kemptide (0.3 mM) is unchanged. The apparent molecular mass of the native kinase determined by gel filtration is approximately 50 kDa, suggesting that it exists as a monomer. Either Mg2+ or Mn2+ serve as cofactors for the kinase which phosphorylates a variety of basic substrates including a number of peptides and histones. The activity of the Kemptide kinase is not changed by several compounds that have been shown to modulate other kinases. Based on these data, we conclude 1) a novel insulin-sensitive Kemptide kinase in liver cytosol has been purified to near homogeneity, and 2) insulin administration acutely modulates the specific activity of this Kemptide kinase in livers of intact rats.  相似文献   

4.
The heptapeptide Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide) is a synthetic construct of a substrate for cAMP-dependent protein kinase (PK). In this work we show that Kemptide has all the properties of a cytophilic substrate, i.e. it is a molecule preserving cell membrane intactness when added to cultured cells. Kemptide thus satisfies the prerequisites for employment in assays for cell surface-located ecto-PK activity. Different types of intact cells catalyze the phosphorylation of Kemptide in the presence of extracellular ATP and cAMP with Km values of 3-4 microM for Kemptide. Kemptide phosphorylation was influenced by PKI, the inhibitory protein specific for cAMP-PK. The results of comparative experiments with intact cells and with cell extracts demonstrate the ectoenzyme nature of this cAMP-PK. Further, the possibility was ruled out of a transfer of enzyme activity from damaged cells to the surface of intact cells. The anchorage of the surface cAMP-PK activity to the plasma membrane appears to be relatively stable since (i) cell supernatants, obtained after preincubation of intact cells with cAMP or Kemptide, did not show Kemptide phosphorylation, and (ii) the cAMP-dependent PK activity remained with cells even after five consecutive washes with cAMP or Kemptide. This is in contrast to the ecto-cAMP-independent phosvitin/casein type PK (Kübler, D., Pyerin, W., Burow, E., and Kinzel, V. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4021-4025) which is released from intact cells through the addition of substrate. Data are presented which show that both ectokinase activities are exhibited independently. In conjunction with published evidence for an active export of cAMP from cells as well as for the appearance of extracellular ATP the demonstration of an ecto-cAMP-PK further supports the potential of PK for intercellular regulation. The potential of ecto-cAMP-PK is demonstrated by its ability to phosphorylate biologically active forms of atrial natriuretic peptide, the atrial natriuretic peptide, which possesses the specific sequence for a cAMP-PK-catalyzed phosphorylation.  相似文献   

5.
Affinities of the catalytic subunit (C1) of Saccharomyces cerevisiae cAMP-dependent protein kinase and of mammalian cGMP-dependent protein kinase were determined for the protein kinase inhibitor (PKI) peptide PKI(6-22)amide and seven analogues. These analogues contained structural alterations in the N-terminal alpha-helix, the C-terminal pseudosubstrate portion, or the central connecting region of the PKI peptide. In all cases, the PKI peptides were appreciably less active as inhibitors of yeast C1 than of mammalian C alpha subunit. Ki values ranged from 5- to 290-fold higher for the yeast enzyme than for its mammalian counterpart. Consistent with these results, yeast C1 exhibited a higher Km for the peptide substrate Kemptide. All of the PKI peptides were even less active against the mammalian cGMP-dependent protein kinase than toward yeast cAMP-dependent protein kinase, and Kemptide was a poorer substrate for the former enzyme. Alignment of amino acid sequences of these homologous protein kinases around residues in the active site of mammalian C alpha subunit known to interact with determinants in the PKI peptide [Knighton, D. R., Zheng, J., Ten Eyck, L. F., Xuong, N-h, Taylor, S. S., & Sowadski, J. M. (1991) Science 253, 414-420] provides a structural basis for the inherently lower affinities of yeast C1 and cGMP-dependent protein kinase for binding peptide inhibitors and substrates. Both yeast cAMP-dependent and mammalian cGMP-dependent protein kinases are missing two of the three acidic residues that interact with arginine-18 in the pseudosubstrate portion of PKI. Further, the cGMP-dependent protein kinase appears to completely lack the hydrophobic/aromatic pocket that recognizes the important phenylalanine-10 residue in the N-terminus of the PKI peptide, and binding of the inhibitor by the yeast protein kinase at this site appears to be partially compromised.  相似文献   

6.
Pseudomonas exotoxin (PE) contains 613 amino acids that are arranged into 3 structural domains. PE exerts its cell-killing effects in a series of steps initiated by binding to the cell surface and internalization into endocytic vesicles. The toxin is then cleaved within domain II near arginine-279, generating a C-terminal 37-kDa fragment that is translocated into the cytosol where it ADP-ribosylates elongation factor 2 and arrests protein synthesis. In this study, we have focused on the functions of PE which are encoded by domain II. We have used the chimeric toxin TGF alpha-PE40 to deliver the toxin's ADP-ribosylating activity to the cell cytosol. Deletion analysis revealed that sequences from 253 to 345 were essential for toxicity but sequences from 346 to 364 were dispensable. Additional point mutants were constructed which identified amino acids 339 and 343 as important residues while amino acids 344 and 345 could be altered without loss of cytotoxic activity. Our data support the idea that domain II functions by first allowing PE to be processed to a 37-kDa fragment and then key sequences such as those identified in this study mediate the translocation of ADP-ribosylation activity to the cytosol.  相似文献   

7.
Various bacterial protein toxins and effectors target the actin cytoskeleton. At least three groups of toxins/effectors can be identified, which directly modify actin molecules. One group of toxins/effectors causes ADP-ribosylation of actin at arginine-177, thereby inhibiting actin polymerization. Members of this group are numerous binary actin-ADP-ribosylating exotoxins (e.g. Clostridium botulinum C2 toxin) as well as several bacterial ADP-ribosyltransferases (e.g. Salmonella enterica SpvB) which are not binary in structure. The second group includes toxins that modify actin to promote actin polymerization and the formation of actin aggregates. To this group belongs a toxin from the Photorhabdus luminescens Tc toxin complex that ADP-ribosylates actin at threonine-148. A third group of bacterial toxins/effectors (e.g. Vibrio cholerae multifunctional, autoprocessing RTX toxin) catalyses a chemical crosslinking reaction of actin thereby forming oligomers, while blocking the polymerization of actin to functional filaments. Novel findings about members of these toxin groups are discussed in detail.  相似文献   

8.
Kethoxal (3-ethoxy-2-ketobutanal) reacts with the guanidino group of Nalpha-acetylarginine to produce four derivatives, reactive to periodate, stable at pH 7, with 15% reverting to arginine on acid hydrolysis. Other amino acids with blocked alpha-amino groups do not react, except the epsilon-amino of lysine (slowly). The pK of the mixed Kethoxal-Nalpha-acetylarginine derivatives is 5.8-6.1. Kethoxal reacts at neutral pH with arginyl residues of bovine pancreatic ribonuclease A. In the presence of an active-site ligand, arginine-39 and arginine-85 react at about equal rates. The loss of enzymic activity at pH 7 is proportional to the combined loss of these residues. The enzymic activity toward RNA is 20-25% of that of native RNAase at pH 7, and 90-100% at pH 5. In the absence of an active site ligand, arginine-10 is also modified with the loss of almost all enzymic activity, although arginine-10 is not an active-site residue. Arginine-33 is unreactive. Kethoxal-modified RNAase undergoes cross-linking in solution at pH 7 or in the freeze-dried state, Incubation at pH 9 in the presence of homoarginine results in partial regeneration of arginyl residues and activity at pH 7. Kethoxal modification of arginines-39 and -85 appears to raise the pK of lysine-41 by about 1 unit, as indicated ty the pH dependence of arylation by 2-carboxy-4,6-dinitrochlorobenzene. The claims of Patthy and Smith (J. Biol, Chem. (1975) 250, 565-569), and of Takahashi (J. Biol. Chem. (1968) 243, 6171-6179) that arginine-39 is a more important functional residue than is arginine-85 are questioned.  相似文献   

9.
The cGMP analogue 8-(2-carboxymethylthio)-cGMP (CMT-cGMP) was synthesized and its binding to cGMP-dependent protein kinase (cGMP kinase) was studied. CMT-cGMP bound at 4 degrees C with an over 1400-fold higher affinity to site 1 than to site 2 of the native enzyme with apparent Kd values of 4.1 nM and 5.9 microM, respectively. The apparent selectivity for site 1 was about threefold less with the autophosphorylated enzyme and about sixfold with the catalytically active fragment of cGMP kinase. The apparent selectivity was confirmed by determination of the dissociation of [3H]cGMP from cGMP kinase in the presence of 1 microM CMT-cGMP at 4 degrees C. The apparent site 1 selectivity was 250-fold at 30 degrees C under the conditions of the phosphotransferase assay. The apparent Kd values were 47 nM and 11.7 microM for site 1 and 2, respectively. CMT-cGMP stimulated the phosphotransferase activity of native and autophosphorylated cGMP kinase with Ka values of about 80 nM. About 60% of the total catalytic rate of cGMP kinase was obtained in the presence of 1 microM CMT-cGMP and 0.13 mM Kemptide. The apparent Km values for ATP and Kemptide were not affected. However, CMT-cGMP activated the enzyme to the same level as cGMP when 1.3 mM Kemptide was present. CMT-cGMP and cGMP inhibited cAMP-stimulated autophosphorylation of cGMP kinase with IC50 values of 0.7 microM and 2 microM, respectively. Neither compound stimulated autophosphorylation of cGMP kinase by itself. These results indicate that CMT-cGMP binds with high preference to site 1 of cGMP kinase and that occupation of site 1 may lead to expression of a partial enzyme activity.  相似文献   

10.
Botulinum ADP-ribosyltransferase C3 modified 21-24 kDa proteins in a guanine nucleotide-dependent manner similar to that described for botulinum neurotoxin C1 and D. Whereas GTP and GTP gamma S stimulated C3-catalyzed ADP-ribosylation in the absence of Mg2+, in the presence of added Mg2+ ADP-ribosylation was impaired by GTP gamma S. C3 was about 1000-fold more potent than botulinum C1 neurotoxin in ADP-ribosylation of the 21-24 kDa protein(s) in human platelet membranes. Antibodies raised against C3 blocked ADP-ribosylation of the 21-24 kDa protein by C3 and neurotoxin C1 but neither cross reacted with neurotoxin C1 immunoblots nor neutralized the toxicity of neurotoxin C1 in mice. The data indicate that the ADP-ribosylation of low molecular mass GTP-binding proteins in various eukaryotic cells is not caused by botulinum neurotoxins but is due to the action of botulinum ADP-ribosyltransferase C3. The weak enzymatic activities described for botulinum neurotoxins appear to be due to the contamination of C1 and D preparations with ADP-ribosyltransferase C3.  相似文献   

11.
Clostridium botulinum exoenzyme C3 inactivates the small GTPase Rho by ADP-ribosylation. We used a C3 fusion toxin (C2IN-C3) with high cell accessibility to study the kinetics of Rho inactivation by ADP-ribosylation. In primary cultures of rat astroglial cells and Chinese hamster ovary cells, C2IN-C3 induced the complete ADP-ribosylation of RhoA and concomitantly the disassembly of stress fibers within 3 h. Removal of C2IN-C3 from the medium caused the recovery of stress fibers and normal cell morphology within 4 h. The regeneration was preceded by the appearance of non-ADP-ribosylated RhoA. Recovery of cell morphology was blocked by the proteasome inhibitor lactacystin and by the translation inhibitors cycloheximide and puromycin, indicating that intracellular degradation of the C3 fusion toxin and the neosynthesis of Rho were required for reversal of cell morphology. Escherichia coli cytotoxic necrotizing factor CNF1, which activates Rho by deamidation of Gln(63), caused reconstitution of stress fibers and cell morphology in C2IN-C3-treated cells within 30-60 min. The effect of CNF1 was independent of RhoA neosynthesis and occurred in the presence of completely ADP-ribosylated RhoA. The data show three novel findings; 1) the cytopathic effects of ADP-ribosylation of Rho are rapidly reversed by neosynthesis of Rho, 2) CNF1-induced deamidation activates ADP-ribosylated Rho, and 3) inhibition of Rho activation but not inhibition of Rho-effector interaction is a major mechanism underlying inhibition of cellular functions of Rho by ADP-ribosylation.  相似文献   

12.
The enzymatic transfer of ADP-ribose from NAD to histone H1 (defined as trans-poly(ADP-ribosylation)) or to PARP I (defined as auto-poly(ADP-ribosylation)) was studied with respect to the nature of the DNA required as a coenzyme. Linear double-stranded DNA (dsDNA) containing the MCAT core motif was compared with DNA containing random nicks (discontinuous or dcDNA). The dsDNAs activated trans-poly(ADP-ribosylation) about 5 times more effectively than dcDNA as measured by V(max). Activation of auto-poly(ADP-ribosylation) by dcDNA was 10 times greater than by dsDNA. The affinity of PARP I toward dcDNA or dsDNA in the auto-poly(ADP-ribosylation) was at least 100-fold lower than in trans-poly(ADP-ribosylation) (K(a) = 1400 versus 3-15, respectively). Mg2+ inhibited trans-poly(ADP-ribosylation) and so did dcDNA at concentrations required to maximally activate auto-poly(ADP-ribosylation). Mg2+ activated auto-poly(ADP-ribosylation) of PARP I. These results for the first time demonstrate that physiologically occurring dsDNAs can serve as coenzymes for PARP I and catalyze preferentially trans-poly(ADP- ribosylation), thereby opening the possibility to study the physiologic function of PARP I.  相似文献   

13.
3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) lyase catalyzes the divalent cation-dependent cleavage of HMG-CoA to produce acetyl-CoA and acetoacetate. Arginine-41 is an invariant residue in HMG-CoA lyases. Mutation of this residue (R41Q) correlates with human HMG-CoA lyase deficiency. To evaluate the functional importance of arginine-41, R41Q and R41M recombinant mutant human HMG-CoA lyase proteins have been constructed, expressed, and purified. These mutant proteins retain structural integrity based on Mn(2+) binding and affinity labeling stoichiometry. R41Q exhibits a 10(5)-fold decrease in V(max); R41M activity is >or=10-fold lower than the activity of R41Q. Acetyldithio-CoA, an analogue of the reaction product, acetyl-CoA, has been employed to test the function of arginine-41, as well as other residues (e.g., aspartate-42 and histidine-233) implicated in catalysis. Acetyldithio-CoA supports enzyme-catalyzed exchange of the methyl protons of the acetyl group with solvent; exchange is dependent on the presence of Mg(2+) and acetoacetate. In comparison with wild-type human enzyme, D42A and H233A mutant enzymes exhibit 4-fold and 10-fold decreases, respectively, in the proton exchange rate. In contrast, R41Q and R41M mutants do not catalyze any substantial enzyme-dependent proton exchange. These results suggest a role for arginine-41 in deprotonation or enolization of acetyldithio-CoA and implicate this residue in the HMG-CoA cleavage reaction chemistry that leads to acetyl-CoA product formation. Assignment of arginine-41 as an active site residue is also supported by a homology model for HMG-CoA lyase based on the structure of 4-hydroxy-2-ketovalerate aldolase. This model suggests the proximity of arginine-41 to other amino acids (aspartate-42, glutamate-72, histidine-235) implicated as active site residues based on their function as ligands to the activator cation.  相似文献   

14.
K-252a, a protein kinase inhibitor isolated from the culture broth of Nocardiopsis sp., inhibits the nerve growth factor (NGF)-stimulated phosphorylation of microtubule-associated protein 2 (MAP2) and Kemptide (synthetic Leu-Arg-Arg-Ala-Ser-Leu-Gly) by blocking the activation of two independent kinases in PC12 cells: MAP2/pp250 kinase and Kemptide kinase. The NGF-stimulated activation of these kinases is inhibited in a dose-dependent manner following treatment of the cells with K-252a. Although these kinases also are activated by epidermal growth factor (EGF) and 12-O-tetradecanoyl-phorbol 13-acetate, K-252a has no inhibitory effect when these agents are used. Half-maximal inhibition of the activation of both kinases was observed at 10-30 nM K-252a. K-252a was shown to directly inhibit the activity of MAP2/pp250 kinase and Kemptide kinase when added to the phosphorylation reaction mixture in vitro; however, half-maximal inhibition under these conditions was observed at greater than or equal to 50 nM K-252a. These data suggest that K-252a exerts its effects at a step early in the cascade of events following NGF binding. The effects of K-252a are similar to those reported for 5'-S-methyladenosine (MTA) and other methyltransferase inhibitors. Treatment of PC12 cells with MTA inhibited NGF-, but not EGF-mediated activation of MAP2/pp250-kinase (Ki greater than 500 microM). MTA, when added to the phosphorylation reaction mixture in vitro, directly inhibited kinase activity (Ki = 50 microM), suggesting that the effects of MTA may be the result of its action on protein kinases rather than methyltransferases.  相似文献   

15.
The cytosolic fraction of insulin-treated adipocytes exhibits a 2-fold increase in protein kinase activity when Kemptide is used as a substrate. The detection of insulin-stimulated kinase activity is critically dependent on the presence of phosphatase inhibitors such as fluoride and vanadate in the cell homogenization buffer. The cytosolic protein kinase activity exhibits high sensitivity (ED50 = 2 X 10(-10) M) and a rapid response (maximal after 2 min) to insulin. Kinetic analyses of the cytosolic kinase indicate that insulin increases the Vmax of Kemptide phosphorylation and ATP utilization without affecting the affinities of this enzyme toward the substrate or nucleotide. Upon chromatography on anion-exchange and gel filtration columns, the insulin-stimulated cytosolic kinase activity is resolved from the cAMP-dependent protein kinase and migrates as a single peak with an apparent Mr = 50,000-60,000. The partially purified kinase preferentially utilizes histones, Kemptide, multifunctional calmodulin-dependent protein kinase substrate peptide, ATP citrate-lyase, and acetyl-coenzyme A carboxylase as substrates but does not catalyze phosphorylation of ribosomal protein S6, casein, phosvitin, phosphorylase b, glycogen synthase, inhibitor II, and substrate peptides for casein kinase II, protein kinase C, and cGMP-dependent protein kinase. Phosphoamino acid analyses of the 32P-labeled substrates reveal that the insulin-stimulated cytosolic kinase is primarily serine-specific. The insulin-activated cytosolic kinase prefers Mn2+ to Mg2+ and is independent of Ca2+. Unlike ribosomal protein S6 kinase and protease-activated kinase II, the insulin-sensitive cytosolic kinase is fluoride-insensitive. Taken together, these results indicate that a novel cytosolic protein kinase activity is activated by insulin.  相似文献   

16.
Botulinum C3 ADP-ribosyltransferase modifies a approximately 24 kDa membrane protein believed to bind guanine nucleotides. Cholera toxin ADP-ribosylation factors are approximately 19 kDa GTP-binding proteins that directly activate the toxin. To evaluate a possible relationship between C3 ADP-ribosyltransferase substrate and ADP-ribosylation factor, they were partially purified from bovine brain. ADP-ribosylation factor, but not C3 ADP-ribosyltransferase substrate, stimulated auto-ADP-ribosylation of the choleragen A1 subunit whereas C3 ADP-ribosyltransferase substrate, but not ADP-ribosylation factor, was ADP-ribosylated by C3 ADP-ribosyltransferase. Thus, although both may be GTP-binding proteins, no functional similarity between ADP-ribosylation factor and C3 ADP-ribosyltransferase substrate was found.  相似文献   

17.
Abstract. We studied ADP-ribosylation in the vegetative life cycle of the myxomycete Physarum polycephalum . Proliferating macroplasmodia are delayed in their progression through the cell cycle by the specific ADP-ribo-syltransferase inhibitor 3-methoxybenzamide. DNA and RNA synthesis is depressed. During the differentiation of microplasmodia into quiescent microsclerotia, ADP-ribosylation strongly increases in an early stage. The same stage is sensitive towards treatment with 3-methoxybenzamide, which delays the termination of the sclerotization process. The increase of ADP-ribosylation is not evenly distributed among all nuclear acceptor proteins. Histones H3 and H4 are modified to a lower extent in relation to H2A and H2B at the time of maximum ADP-ribosylation. Germination of microsclerotia into growing plasmodia is also repressed by 3-methoxybenzamide.  相似文献   

18.
The effects of Ca2+ and calmodulin on endogenously catalyzed ADP-ribosylation were investigated in adipocyte plasma membranes. Four specific proteins of 70, 65, 61 and 52 kDa were labeled with [32P]ADP-ribose and ADP-ribosylation of the proteins was highly dependent upon the conditions employed. ADP-ribosylation of the 70 kDa protein was observed only in membranes supplemented with Ca2+. Maximal incorporation of [32P] into the protein was achieved with free Ca2+ concentrations of 90 μM. Calcium-stimulated ADP-ribosylation of the 70 kDa protein was inhibited by calmodulin. Half-maximal inhibition was observed in membranes incubated with 1.2 μM calmodulin. The effect of calmodulin was characterized by an inhibition of the incorporation of [32P]ADP-ribose as opposed to a stimulation of its removal. ADP-ribosylation of the 61 kDa protein was not altered by added Ca2+ and/or calmodulin whereas ADP-ribosylation of the 65 kDa protein was partially (50%) inhibited by free Ca2+ concentrations between 10−6 – 10−5 M. These results provide evidence that the adipocyte plasma membrane contains ADP-ribosyltransferase activities and demonstrate that ADP-ribosylation of a 70 kDa protein is regulated by Ca2+ and calmodulin.  相似文献   

19.
SARS-CoV-2 nonstructural protein 3 (Nsp3) contains a macrodomain that is essential for coronavirus pathogenesis and is thus an attractive target for drug development. This macrodomain is thought to counteract the host interferon (IFN) response, an important antiviral signalling cascade, via the reversal of protein ADP-ribosylation, a posttranslational modification catalyzed by host poly(ADP-ribose) polymerases (PARPs). However, the main cellular targets of the coronavirus macrodomain that mediate this effect are currently unknown. Here, we use a robust immunofluorescence-based assay to show that activation of the IFN response induces ADP-ribosylation of host proteins and that ectopic expression of the SARS-CoV-2 Nsp3 macrodomain reverses this modification in human cells. We further demonstrate that this assay can be used to screen for on-target and cell-active macrodomain inhibitors. This IFN-induced ADP-ribosylation is dependent on PARP9 and its binding partner DTX3L, but surprisingly the expression of the Nsp3 macrodomain or the deletion of either PARP9 or DTX3L does not impair IFN signaling or the induction of IFN-responsive genes. Our results suggest that PARP9/DTX3L-dependent ADP-ribosylation is a downstream effector of the host IFN response and that the cellular function of the SARS-CoV-2 Nsp3 macrodomain is to hydrolyze this end product of IFN signaling, rather than to suppress the IFN response itself.  相似文献   

20.
The effects of various protoporphyrinogen oxidase (PPOX) mutations responsible for variegate porphyria (VP), the roles of the arginine-59 residue and the glycines in the conserved flavin binding site, in catalysis and/or cofactor binding, were examined. Wild-type recombinant human PPOX and a selection of mutants were generated, expressed, purified and partially characterised. All mutants had reduced PPOX activity to varying degrees. However, the activity data did not correlate with the ability/inability to bind flavin. The positive charge at arginine-59 appears to be directly involved in catalysis and not in flavin-cofactor binding alone. The K(m)s for the arginine-59 mutants suggested a substrate-binding problem. T(1/2) indicated that arginine-59 is required for the integrity of the active site. The dominant alpha-helical content was decreased in the mutants. The degree of alpha-helix did not correlate linearly with T(1/2) nor T(m) values, supporting the suggestion that arginine-59 is important for catalysis at the active site. Examination of the conserved dinucleotide-binding sequence showed that substitution of glycine in codon 14 was less disruptive than substitutions in codons 9 and 11. Ultraviolet melting curves generally showed a two-state transition suggesting formation of a multi-domain structure. All mutants studied were more resistant to thermal denaturation compared to wild type, except for R168C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号