首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 887 毫秒
1.
Prions are responsible for a heterogeneous group of fatal neurodegenerative diseases. They can be sporadic, genetic, or infectious disorders involving post-translational modifications of the cellular prion protein (PrPC). Prions (PrPSc) are characterized by their infectious property and intrinsic ability to convert the physiological PrPC into the pathological form, acting as a template. The “protein-only” hypothesis, postulated by Stanley B. Prusiner, implies the possibility to generate de novo prions in vivo and in vitro. Here we describe major milestones towards proving this hypothesis, taking into account physiological environment/s, biochemical properties and interactors of the PrPC.Key words: prion protein (PrP), prions, amyloid, recombinant prion protein, transgenic mouse, protein misfolding cyclic amplification (PMCA), synthethic prionPrions are responsible for a heterogeneous group of fatal neurodegenerative diseases (1 They can be sporadic, genetic or infectious disorders involving post-translational modifications of the cellular prion protein (PrPC).2 Prions are characterized by their infectious properties and by their intrinsic ability to encipher distinct biochemical properties through their secondary, tertiary and quaternary protein structures. In particular, the transmission of the disease is due to the ability of a prion to convert the physiological PrPC into the pathological form (PrPSc), acting as a template.3 The two isoforms of PrP appear to be different in terms of protein structures, as revealed by optical spectroscopy experiments such as Fourier-transform infrared and circular dichroism.4 PrPC contains 40% α-helix and 3% β-sheet, while the pathological isoform, PrPSc, presents approximately 30% α-helix and 45% β-sheet.4,5 PrPSc differs from PrPC because of its altered physical-chemical properties such as insolubility in non-denaturing detergents and proteinases resistance.2,6,7

Table 1

The prion diseases
Prion diseaseHostMechanism
iCJDhumansinfection
vCJDhumansinfection
fCJDhumansgenetic: octarepeat insertion, D178N-129V, V180I, T183A, T188K, T188R-129V, E196K, E200K, V203I, R208H, V210I, E211Q, M232R
sCJDhumans?
GSShumansgenetic: octarepeat insertion, P102L-129M, P105-129M, A117V-129V, G131V-129M, Y145*-129M, H197R-129V, F198S-129V, D202N-129V, Q212P, Q217R-129M, M232T
FFIhumansgenetic: D178-129M
Kurufore peopleinfection
sFIhumans?
Scrapiesheepinfection
BSEcattleinfection
TMEminkinfection
CWDmule deer, elkcontaminated soils?
FSEcatsinfection
Exotic ungulate encephalopathygreater kudu, nyala, oryxinfection
Open in a separate windowi, infective form; v, variant; f, familial; s, sporadic; CJD, Creutzfeldt-Jakob disease; GSS, Gerstmann-Straüssler-Sheinker disease; FFI, fatal familial insomnia; sFI, sporadic fatal insomnia; BSE, bovine spongiform encephalopathy; TME, transmissible mink encephalopathy; CWD, chronic wasting disease; FSE, feline spongiform encephalopathy.73,78The prion conversion occurring in prion diseases seems to involve only conformational changes instead of covalent modifications. However, Mehlhorn et al. demonstrated the importance of a disulfide bond between the two cysteine residues at position 179 and 214 (human (Hu) PrP numbering) to preserve PrP into its physiological form. In the presence of reducing conditions and pH higher than 7, recombinant (rec) PrP tends to assume high β-sheet content and relatively low solubility like PrPSc.8  相似文献   

2.
Many plant species can be induced to flower by responding to stress factors. The short-day plants Pharbitis nil and Perilla frutescens var. crispa flower under long days in response to the stress of poor nutrition or low-intensity light. Grafting experiments using two varieties of P. nil revealed that a transmissible flowering stimulus is involved in stress-induced flowering. The P. nil and P. frutescens plants that were induced to flower by stress reached anthesis, fruited and produced seeds. These seeds germinated, and the progeny of the stressed plants developed normally. Phenylalanine ammonialyase inhibitors inhibited this stress-induced flowering, and the inhibition was overcome by salicylic acid (SA), suggesting that there is an involvement of SA in stress-induced flowering. PnFT2, a P. nil ortholog of the flowering gene FLOWERING LOCUS T (FT) of Arabidopsis thaliana, was expressed when the P. nil plants were induced to flower under poor-nutrition stress conditions, but expression of PnFT1, another ortholog of FT, was not induced, suggesting that PnFT2 is involved in stress-induced flowering.Key words: flowering, stress, phenylalanine ammonia-lyase, salicylic acid, FLOWERING LOCUS T, Pharbitis nil, Perilla frutescensFlowering in many plant species is regulated by environmental factors, such as night-length in photoperiodic flowering and temperature in vernalization. On the other hand, a short-day (SD) plant such as Pharbitis nil (synonym Ipomoea nil) can be induced to flower under long days (LD) when grown under poor-nutrition, low-temperature or high-intensity light conditions.19 The flowering induced by these conditions is accompanied by an increase in phenylalanine ammonia-lyase (PAL) activity.10 Taken together, these facts suggest that the flowering induced by these conditions might be regulated by a common mechanism. Poor nutrition, low temperature and high-intensity light can be regarded as stress factors, and PAL activity increases under these stress conditions.11 Accordingly, we assumed that such LD flowering in P. nil might be induced by stress. Non-photoperiodic flowering has also been sporadically reported in several plant species other than P. nil, and a review of these studies suggested that most of the factors responsible for flowering could be regarded as stress. Some examples of these factors are summarized in 1214

Table 1

Some cases of stress-induced flowering
Stress factorSpeciesFlowering responseReference
high-intensity lightPharbitis nilinduction5
low-intensity lightLemna paucicostatainduction29
Perilla frutescens var. crispainduction14
ultraviolet CArabidopsis thalianainduction23
droughtDouglas-firinduction30
tropical pasture Legumesinduction31
lemoninduction3235
Ipomoea batataspromotion36
poor nutritionPharbitis nilinduction3, 4, 13
Macroptilium atropurpureumpromotion37
Cyclamen persicumpromotion38
Ipomoea batataspromotion36
Arabidopsis thalianainduction39
poor nitrogenLemna paucicostatainduction40
poor oxygenPharbitis nilinduction41
low temperaturePharbitis nilinduction9, 12
high conc. GA4/7Douglas-firpromotion42
girdlingDouglas-firinduction43
root pruningCitrus sp.induction44
Pharbitis nilinduction45
mechanical stimulationAnanas comosusinduction46
suppression of root elongationPharbitis nilinduction7
Open in a separate window  相似文献   

3.
The enzymes called lipoxygenases (LOXs) can dioxygenate unsaturated fatty acids, which leads to lipoperoxidation of biological membranes. This process causes synthesis of signaling molecules and also leads to changes in cellular metabolism. LOXs are known to be involved in apoptotic (programmed cell death) pathway, and biotic and abiotic stress responses in plants. Here, the members of LOX gene family in Arabidopsis and rice are identified. The Arabidopsis and rice genomes encode 6 and 14 LOX proteins, respectively, and interestingly, with more LOX genes in rice. The rice LOXs are validated based on protein alignment studies. This is the first report wherein LOXs are identified in rice which may allow better understanding the initiation, progression and effects of apoptosis, and responses to bitoic and abiotic stresses and signaling cascades in plants.Key words: apoptosis, biotic and abiotic stresses, genomics, jasmonic acid, lipidsLipoxygenases (linoleate:oxygen oxidoreductase, EC 1.13.11.-; LOXs) catalyze the conversion of polyunsaturated fatty acids (lipids) into conjugated hydroperoxides. This process is called hydroperoxidation of lipids. LOXs are monomeric, non-heme and non-sulfur, but iron-containing dioxygenases widely expressed in fungi, animal and plant cells, and are known to be absent in prokaryotes. However, a recent finding suggests the existence of LOX-related genomic sequences in bacteria but not in archaea.1 The inflammatory conditions in mammals like bronchial asthama, psoriasis and arthritis are a result of LOXs reactions.2 Further, several clinical conditions like HIV-1 infection,3 disease of kidneys due to the activation of 5-lipoxygenase,4,5 aging of the brain due to neuronal 5-lipoxygenase6 and atherosclerosis7 are mediated by LOXs. In plants, LOXs are involved in response to biotic and abiotic stresses.8 They are involved in germination9 and also in traumatin and jasmonic acid biochemical pathways.10,11 Studies on LOX in rice are conducted to develop novel strategies against insect pests12 in response to wounding and insect attack,13 and on rice bran extracts as functional foods and dietary supplements for control of inflammation and joint health.14 In Arabidopsis, LOXs are studied in response to natural and stress-induced senescence,15 transition to flowering,16 regulation of lateral root development and defense response.17The arachidonic, linoleic and linolenic acids can act as substrates for different LOX isozymes. A hydroperoxy group is added at carbons 5, 12 or 15, when arachidonic acid is the substrate, and so the LOXs are designated as 5-, 12- or 15-lipoxygenases. Sequences are available in the database for plant lipoxygenases (EC:1.13.11.12), mammalian arachidonate 5-lipoxygenase (EC:1.13.11.34), mammalian arachidonate 12-lipoxygenase (EC:1.13.11.31) and mammalian erythroid cell-specific 15-lipoxygenase (EC:1.13.11.33). The prototype member for LOX family, LOX-1 of Glycine max L. (soybean) is a 15-lipoxygenase. The LOX isoforms of soybean (LOX-1, LOX-2, LOX-3a and LOX-3b) are the most characterized of plant LOXs.18 In addition, five vegetative LOXs (VLX-A, -B, -C, -D, -E) are detected in soybean leaves.19 The 3-dimensional structure of soybean LOX-1 has been determined.20,21 LOX-1 was shown to be made of two domains, the N-terminal domain-I which forms a β-barrel of 146 residues, and a C-terminal domain-II of bundle of helices of 693 residues21 (Fig. 1). The iron atom was shown to be at the centre of domain-II bound by four coordinating ligands, of which three are histidine residues.22Open in a separate windowFigure 1Three-dimensional structure of soybean lipoxygenase L-1. The domain I (N-terminal) and domain II (C-terminal) are indicated. The catalytic iron atom is embedded in domain II (PDB ID-1YGE).21This article describes identification of LOX genes in Arabidopsis and rice. The Arabidopsis genome encodes for six LOX proteins23 (www.arabidopsis.org) (
LocusAnnotationNomenclatureA*B*C*
AT1G55020lipoxygenase 1 (LOX1)LOX185998044.45.2049
AT1G17420lipoxygenase 3 (LOX3)LOX3919103725.18.0117
AT1G67560lipoxygenase family proteinLOX4917104514.68.0035
AT1G72520lipoxygenase, putativeLOX6926104813.17.5213
AT3G22400lipoxygenase 5 (LOX5)LOX5886101058.86.6033
AT3G45140lipoxygenase 2 (LOX2)LOX2896102044.75.3177
Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.Interestingly, the rice genome (rice.plantbiology.msu.edu) encodes for 14 LOX proteins as compared to six in Arabidopsis (and22). Of these, majority of them are composed of ∼790–950 aa with the exception for loci, LOC_Os06g04420 (126 aa), LOC_Os02g19790 (297 aa) and LOC_Os12g37320 (359 aa) (Fig. 2).Open in a separate windowFigure 2Protein alignment of rice LOXs and vegetative lipoxygenase, VLX-B,28 a soybean LOX (AA B67732). The 14 rice LOCs are indicated on left and sequence position on right. Gaps are included to improve alignment accuracy. Figure was generated using ClustalX program.

Table 2

Genes encoding lipoxygenases in rice
ChromosomeLocus IdPutative functionA*B*C*
2LOC_Os02g10120lipoxygenase, putative, expressed9271035856.0054
2LOC_Os02g19790lipoxygenase 4, putative29733031.910.4799
3LOC_Os03g08220lipoxygenase protein, putative, expressed9191019597.4252
3LOC_Os03g49260lipoxygenase, putative, expressed86897984.56.8832
3LOC_Os03g49380lipoxygenase, putative, expressed87898697.57.3416
3LOC_Os03g52860lipoxygenase, putative, expressed87197183.56.5956
4LOC_Os04g37430lipoxygenase protein, putative, expressed79889304.610.5125
5LOC_Os05g23880lipoxygenase, putative, expressed84895342.97.6352
6LOC_Os06g04420lipoxygenase 4, putative12614054.76.3516
8LOC_Os08g39840lipoxygenase, chloroplast precursor, putative, expressed9251028196.2564
8LOC_Os08g39850lipoxygenase, chloroplast precursor, putative, expressed9421044947.0056
11LOC_Os11g36719lipoxygenase, putative, expressed86998325.45.3574
12LOC_Os12g37260lipoxygenase 2.1, chloroplast precursor, putative, expressed9231046876.2242
12LOC_Os12g37320lipoxygenase 2.2, chloroplast precursor, putative, expressed35940772.78.5633
Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.

Table 3

Percent homology of rice lipoxygenases against Arabidopsis
Loci (Os)Homolog (At)Identity/similarity (%)No. of aa compared
LOC_Os02g10120LOX260/76534
LOC_Os02g19790LOX554/65159
LOC_Os03g08220LOX366/79892
LOC_Os03g49260LOX556/73860
LOC_Os03g49380LOX560/75861
LOC_Os03g52860LOX156/72877
LOC_Os04g37430LOX361/75631
LOC_Os05g23880LOX549/66810
LOC_Os06g04420LOX549/62114
LOC_Os08g39840LOX249/67915
LOC_Os08g39850LOX253/70808
LOC_Os11g36719LOX552/67837
LOC_Os12g37260LOX253/67608
LOC_Os12g37320LOX248/60160
Open in a separate windowOs, Oryza sativa L.; At, Arabidopsis thaliana L.; aa, amino acids.In plants, programmed cell death (PCD) has been linked to different stages of development and senescence, germination and response to cold and salt stresses.24,25 To conclude, this study indicates that rice genome encodes for more LOX proteins as compared to Arabidopsis. The LOX members are not been thoroughly investigated in rice. The more advanced knowledge on LOXs function might spread light on the significant role of LOXs in PCD, biotic and abiotic stress responses in rice.  相似文献   

4.
The interplay of lipid acyl hydrolases in inducible plant defense     
Etienne Grienenberger  Pierrette Geoffroy  Jérome Mutterer  Michel Legrand  Thierry Heitz 《Plant signaling & behavior》2010,5(10):1181-1186
  相似文献   

5.
Long antisense non-coding RNAs and their role in transcription and oncogenesis     
Kevin V Morris  Peter K Vogt 《Cell cycle (Georgetown, Tex.)》2010,9(13):2544-2547
  相似文献   

6.
Aluminum induced proteome changes in tomato cotyledons     
Suping Zhou  Roger Sauve  Theodore W Thannhauser 《Plant signaling & behavior》2009,4(8):769-772
Cotyledons of tomato seedlings that germinated in a 20 µM AlK(SO4)2 solution remained chlorotic while those germinated in an aluminum free medium were normal (green) in color. Previously, we have reported the effect of aluminum toxicity on root proteome in tomato seedlings (Zhou et al.1). Two dimensional DIGE protein analysis demonstrated that Al stress affected three major processes in the chlorotic cotyledons: antioxidant and detoxification metabolism (induced), glyoxylate and glycolytic processes (enhanced), and the photosynthetic and carbon fixation machinery (suppressed).Key words: aluminum, cotyledons, proteome, tomatoDifferent biochemical processes occur depending on the developmental stages of cotyledons. During early seed germination, before the greening of the cotyledons, glyoxysomes enzymes are very active. Fatty acids are converted to glucose via the gluconeogenesis pathway.2,3 In greening cotyledons, chloroplast proteins for photosynthesis and leaf peroxisomal enzymes in the glycolate pathway for photorespiration are metabolized.24 Enzymes involved in regulatory mechanisms such as protein kinases, protein phosphatases, and mitochondrial enzymes are highly expressed.3,5,6The chlorotic cotyledons are similar to other chlorotic counterparts in that both contains lower levels of chlorophyll, thus the photosynthetic activities are not as active. In order to understand the impact of Al on tomato cotyledon development, a comparative proteome analysis was performed using 2D-DIGE following the as previously described procedure.1 Some proteins accumulated differentially in Al-treated (chlorotic) and untreated cotyledons (Fig. 1). Mass spectrometry of tryptic digestion fragments of the proteins followed by database search has identified some of the differentially expressed proteins (Open in a separate windowFigure 1Image of protein spots generated by Samspot analysis of Al treated and untreated tomato cotyledons proteomes separated on 2D-DIGE.

Table 1

Proteins identified from tomato cotyledons of seeds germinating in Al-solution
Spot No.Fold (treated/ctr)ANOVA (p value)AnnotationSGN accession
12.340.00137412S seed storages protein (CRA1)SGN-U314355
22.130.003651unidentified
32.00.006353lipase class 3 familySGN-U312972
41.960.002351large subunit of RUBISCOSGN-U346314
51.952.66E-05arginine-tRNA ligaseSGN-U316216
61.950.003343unidentified
71.780.009219Monodehydroascorbate reductase (NADH)SGN-U315877
81.780.000343unidentified
91.754.67E-05unidentified
121.700.002093unidentified
131.680.004522unidentified
151.660.019437Glutamate dehydrogenase 1SGN-U312368
161.660.027183unidentified
171.622.01E-08Major latex protein-related, pathogenesis-relatedSGN-U312368
18−1.610.009019RUBisCo activaseSGN-U312543
191.610.003876Cupin family proteinSGN-U312537
201.600.000376unidentified
221.590.037216unidentified
0.003147unidentified
29−1.560.001267RUBisCo activaseSGN-U312543
351.520.001955unidentified
401.470.007025unidentified
411.470.009446unidentified
451.450.001134unidentified
59−1.405.91E-0512 S seed storage proteinSGN-U314355
611.391.96E-05MD-2-related lipid recognition domain containing proteinSGN-U312452
651.370.000608triosephosphate isomerase, cytosolicSGN-U312988
681.360.004225unidentified
811.320.001128unidentified
82−1.310.00140833 kDa precursor protein of oxygen-evolving complexSGN-U312530
871.300.002306unidentified
89−1.30.000765unidentified
921.290.000125superoxide dismutaseSGN-U314405
981.280.000246triosephosphate isomerase, cytosolicSGN-U312988
Open in a separate window  相似文献   

7.
Allelic frequency and genotypes of prion protein at codon 136 and 171 in Iranian Ghezel sheep breeds     
Siamak Salami  Reza Ashrafi Zadeh  Mir Davood Omrani  Fatemeh Ramezani  Amir Amniattalab 《朊病毒》2011,5(3):228-231
PrP genotypes at codons 136 and 171 in 120 Iranian Ghezel sheep breeds were studied using allele-specific PCR amplification and compared with the well-known sheep breeds in North America, the United States and Europe. The frequency of V allele and VV genotype at codon 136 of Ghezel sheep breed was significantly lower than AA and AV. At codon 171, the frequency of allele H was significantly lower than Q and R. Despite the similarities of PrP genotypes at codons 136 and 171 between Iranian Ghezel sheep breeds and some of the studied breeds, significant differences were found with others. Planning of effective breeding control and successful eradication of susceptible genotypes in Iranian Ghezel sheep breeds will not be possible unless the susceptibility of various genotypes in Ghezel sheep breeds to natural or experimental scrapie has been elucidated.Key words: scrapie, Ghezel sheep breed, PrP genotyping, allele specific amplification, codon 136, codon 171Scrapie was first described in England in 1732,1 and it is an infectious neurodegenerative fatal disease of sheep and goats belonging to the group of transmissible subacute spongiform encephalopathies (TSEs), along with bovine spongiform encephalopathy (BSE), chronic wasting disease and Creutzfeldt-Jakob disease.2,3 The term prion, proteinaceous infectious particles, coined by Stanley B. Prusiner, was introduced, and he presents the idea that the causal agent is a protein.4 Prion proteins are discovered in two forms, the wild-type form (PrPc) and the mutant form (PrPSc).5 Although scrapie is an infectious disease, the susceptibility of sheep is influenced by genotypes of the prion protein (PrP) gene.2,6 Researchers have found that the PrP allelic variant alanine/arginine/arginine (ARR) at codons 136, 154 and 171 is associated with resistance to scrapie in several breeds.714 Most of the sheep populations in the Near East and North African Region (84% of the total population of 255 million) are raised in Iran, Turkey, Pakistan, Sudan, Algeria, Morocco, Afghanistan, Syria and Somalia.15 In 2003, the Iranian sheep population was estimated at 54,000,000 head. The Ghezel sheep breed, which also is known as Kizil-Karaman, Mor-Karaman, Dugli, Erzurum, Chacra, Chagra, Chakra, Gesel, Gezel, Kazil, Khezel, Khizel, Kizil, Qezel, Qizil and Turkish Brown, originated in northwestern Iran and northeastern Turkey. By considering sheep breeds as one of the main sources of meat, dairy products and related products, a global screening attempt is started in different areas. In compliance with European Union Decision 2003/100/EC, each member state has introduced a breeding program to select for resistance to TSEs in sheep populations to increase the frequency of the ARR allele. A similar breeding program is established in United States and Canada. The Near East and North African Region still needs additional programs to help the global plan of eradication of scrapie-susceptible genotypes. The current study was the first to assess the geographical and molecular variation of codons 136 and 171 polymorphism between Iranian Ghezel sheep breed and well-known sheep breeds.Polymorphism at codon 136 is associated with susceptibility to scrapie in both experimental and natural models.10,11,13,16 17 and Austrian Carynthian sheep.18 Swiss White Alpine showed higher frequency of allele V at position 136 than Swiss Oxford Down, Swiss Black-Brown Mountain and Valais Blacknose.19 Comparison of polymorphism at codon 136 in the current study with some of other breeds (20 some flock of Hampshire sheep21 with current study, but the frequency of it is higher than that of some other breeds.

Table 1

Comparison of PrP allelic and genotype frequencies at codon 136 in different breeds
BreedA (%)V (%)AA (%)AV (%)VV (%)Reference
Iranian Ghezel breeds (n = 120)77.5022.565.0025.0010.00Current study
Oklahoma sheep (n = 334)De Silva, et al.27
Suffolk99.240.7698.481.520.00
Hampshire1000.001000.000.00
Dorset92.67.9487.309.523.17
Montadale77.6622.3459.5736.174.26
Hampshire (n = 48)93.756.2588.0012.000.00Youngs, et al.21
German Sheep Breeds (n = 660)92.897.1187.8010.471.73Kutzer, et al.28
Bleu du Maine83.4716.5369.5627.832.61
Friesian Milk S.1000.001000.000.00
Nolana90.139.8785.908.465.64
Suffolk1000.001000.000.00
Texel90.879.1382.1617.410.43
Swiss Sheep (n = 200)92.57.5Gmur, et al.19
Swiss Oxford Down93.007.00---
Swiss Black-Brown M.99.001.00---
Valais Blacknose1000.00---
Swiss White Alpine88.0022.00---
Austrian Sheep (n = 112)98.951.0598.950.001.05Sipos, et al.18
Tyrolean mountain sheep1000.001000.000.00
Forest sheep1000.001000.000.00
Tyrolean stone sheep1000.001000.000.00
Carynthian sheep95.804.2095.800.004.20
Open in a separate windowIt has been found that a polymorphism at codon 171 also is associated with susceptibility to experimental scrapie in Cheviot sheep16 and natural scrapie in Suffolk sheep.22 As shown in 23 They also found that different breeds show different predominant genotypes in ewes and rams.23 Different PrP genotypes were found at codon 171 in Austrian sheep breeds, but QQ has higher frequency than others.18 In some kinds of Swiss breeds, allelic frequencies of allele Q was higher than R.19 Distribution of prion protein codon 171 genotypes in Hampshire sheep revealed that different flocks shows different patterns.21 The frequency of PrP genotypes at codon 171 in Iranian Ghezel breeds was similar to some sheep breeds, like the Suffolk breed of Oklahoma sheep, but it was completely different from others (PrP genotypes at codon 172BreedAllelic frequencyGenotypesReferenceQRHRRQRQQQHRHHHIranian Iranian Ghezel breeds (n = 120)55.0043.331.6723.3336.6736.670.003.330.00Current studyOklahoma sheep (n = 334)De Silva, et al.20Suffolk40.9559.050.0037.0743.9718.970.000.000.00Hampshire51.8948.110.0021.7052.8325.470.000.000.00Dorset67.7531.250.007.9546.5945.450.000.000.00Montadale62.9637.040.0014.8144.4440.740.000.000.00Hampshire (n = 201)72.1426.601.265.0042.0050.002.001.000.00Youngs, et al.21German Sheep Breeds (n = 660)Kutzer, et al.28Bleu du Maine37.862.20.0046.9630.4422.60.000.000.00Friesian Milk S.90.458.90.651.2715.382.80.000.000.64Nolana42.357.80.0036.6242.2621.130.000.000.00Suffolk68.427.64.016.121.8455.174.61.151.15Texel55.3529.714.912.5626.8336.3611.257.365.63Swiss Sheep (n = 200)Gmur, et al.19Swiss Oxford Down32.0068.00-------Swiss Black-Brown M.70.0030.00-------Valais Blacknose85.0015.00-------Swiss White Alpine27.0073.00-------Austrian Sheep (n = 112)Sipos, et al.18Tyrolean mountain sheep74.3025.800.002.9045.7051.400.000.000.00Forest sheep77.0019.203.8011.5015.4069.200.000.003.80Tyrolean stone sheep81.5014.803.700.0029.6062.907.400.000.00Carynthian sheep72.8023.004.204.2041.7013.008.400.000.00Open in a separate windowThe association between scrapie susceptibility and polymorphism at codon154 is unclear, and fewer evidences were found that support it.24,25 So the frequency of different genotypes at codon 154 in Iranian Sheep breeds has not been included in the current study.In addition to difference in number of included animals and methodology of genotyping, the apparent discrepancies among reported allelic frequency might be caused by the difference in geographical dissemination of sheep breeds and related purity.26 The deviations from Hardy-Weinberg equilibrium, which were assumed in the current study, were checked using Pearson''s chi-squared test or Fisher''s exact test. Although the number of animals in this study is acceptable, a population study is still suggested. In conclusion, fairly different patterns of PrP genotypes in this common Near eastern sheep breed are an evidence for geographical variation of molecular susceptibility to scrapie. Because other report from Turkey also has shown a prevalence of genotypes, which is different from western countries,26 and no reports have been published yet to show which of the genotypes in that breed are actually resistant or susceptible to natural or experimental scrapie, our results is an authentic platform to motivate further studies. Actually, extrapolation of the existing general pattern of susceptibility or resistance for all breeds and current plan of elimination would not be successful unless the susceptible genotypes in the Near East with numerous breeds will be identified. Hence, the current study could be used as an important pilot study for further investigation.Genomic DNA was isolated from fresh EDTA-treated blood of 120 healthy, randomly chosen sheep of Iranian Ghezel sheep breeds using a mammalian blood DNA isolation kit (Bioflux, Japan). The allelic frequencies of prion protein codons 171 and 136 were determined by allele-specific PCR amplifications using scrapie susceptibility test kit (Elchrom Scientific AG). Primer sets were designed by manufacturer to amplify specific gene targets according to possible genotypes of positions 136 and 171.The amplification reactions were performed using iCycler™ (BioRad Inc.,), and PCR products (PositionGenotypeFragment size136A133136V139171H170171Q247171R155Open in a separate window  相似文献   

8.
Snail: More than EMT     
Yadi Wu  Binhua P. Zhou 《Cell Adhesion & Migration》2010,4(2):199-203
  相似文献   

9.
Genome-wide analysis of thioredoxin fold superfamily peroxiredoxins in Arabidopsis and rice     
Pavan Umate 《Plant signaling & behavior》2010,5(12):1543-1546
A broad range of peroxides generated in subcellular compartments, including chloroplasts, are detoxified with peroxidases called peroxiredoxins (Prx). The Prx are ubiquitously distributed in all organisms including bacteria, fungi, animals and also in cyanobacteria and plants. Recently, the Prx have emerged as new molecules in antioxidant defense in plants. Here, the members which belong to Prx gene family in Arabidopsis and rice are been identified. Overall, the Prx members constitute a small family with 10 and 11 genes in Arabidopsis and rice respectively. The prx genes from rice are assigned to their functional groups based on homology search against Arabidopsis protein database. Deciphering the Prx functions in rice will add novel information to the mechanism of antioxidant defense in plants. Further, the Prx also forms the part of redox signaling cascade. Here, the Prx gene family has been described for rice.Key words: antioxidant defense, chloroplast, gene family, oxidative stress, reactive oxygen speciesThe formation of free radicals and reactive oxygen species (ROS) occur in several enzymatic and non-enzymatic reactions during cellular metabolism. The accumulation of these reactive and deleterious intermediates is suppressed by antioxidant defense mechanism comprised of low molecular weight antioxidants and enzymes. In photosynthetic organisms, the defense against the damage from free radicals and oxidative stress is crucial. For instance, the ROS production occurs in photosystem II with generation of singlet oxygen (1O2) and hydrogen peroxide (H2O2),1,2 photosystem I from superoxide anion radicals (O2),3 and during photorespiration with generation of H2O2.4 ROS production may exceed under environmental stress conditions like excess light, low temperature and drought.5The antioxidant defense mechanism is activated by antioxidant metabolities and enzymes which detoxify ROS and lipid peroxides. The detoxification of ROS can occur in various cellular compartments such as chloroplasts, mitochondria, peroxisomes and cytosol.6 The enzymes like ascorbate peroxidase, catalase, glutathione peroxidase and superoxide dismutase are prominent antioxidant enzymes.6 The peroxiredoxins (Prx) emerged as new components in the antioxidant defense network of barley.7,8 Later, Prx were studied in other plants.914Prx can be classified into four different functional groups, PrxQ, 1-Cys Prx, 2-Cys Prx and Type-2 Prx.15,16 They are members of the thioredoxin fold superfamily.17,18 In this study, the prx genes found in Arabidopsis and rice genomes are been identified. The Arabidopsis genome encodes 10 prx genes classified into four functional categories, 1-Cys Prx, 2-Cys Prx, PrxQ and Type-2 Prx.13 Of these, one each of 1-Cys Prx and PrxQ, two of 2-Cys Prx (2-Cys PrxA and 2-Cys PrxB) and six Type-2 Prx (PrxA–F) are identified13 (LocusAnnotationSynonymA*B*C*AT1G481301-Cysteine peroxiredoxin 1 (ATPER1)1-Cys Prx21624081.36.603AT1G60740Peroxiredoxin type 2Type-2 PrxD16217471.95.2297AT1G65970Thioredoxin-dependent peroxidase 2 (TPX2)Type-2 PrxC16217413.95.2297AT1G65980Thioredoxin-dependent peroxidase 1 (TPX1)Type-2 PrxB16217427.84.9977AT1G65990Type 2 peroxiredoxin-relatedType-2 PrxA55362653.66.4368AT3G06050Peroxiredoxin IIF (PRXIIF)Type-2 PrxF20121445.29.3905AT3G116302-Cys Peroxiredoxin A (2CPA, 2-Cys PrxA)2-Cys PrxA26629091.77.5686AT3G26060ATPRX Q, periredoxin QPrxQ21623677.810.0565AT3G52960Peroxiredoxin type 2Type-2 PrxE23424684.09.572AT5G062902-Cysteine Peroxiredoxin B (2CPB, 2-Cys PrxB)2-Cys PrxB27329779.55.414Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.In rice (rice.plantbiology.msu.edu/), there are 11 genomic loci which encode for Prx proteins (and33). Interestingly, a new prx gene (LOC_Os07g15670) annotated as “peroxiredoxin, putative, expressed” is identified making the tally of prx genes to eleven in rice as compared to ten in Arabidopsis (and22). The BLAST search has identified its counterpart in Arabidopsis which has been annotated as “antioxidant/oxidoreductase” (AT1G21350) in the TAIR database (www.arabidopsis.org). The rice LOC_Os07g15670 and Arabidopsis AT1G21350 share protein homology %68/78 for 236 amino acids (ChromosomeLocus IdPutative function/AnnotationA*B*C*1LOC_Os01g16152peroxiredoxin, putative, expressed19920873.68.22091LOC_Os01g24740peroxiredoxin-2E-1, chloroplast precursor, putative10711591.56.79061LOC_Os01g48420peroxiredoxin, putative, expressed16317290.85.68282LOC_Os02g09940peroxiredoxin, putative, expressed22623179.56.5352LOC_Os02g33450peroxiredoxin, putative, expressed26228096.95.77094LOC_Os04g339702-Cys peroxiredoxin BAS1, chloroplast precursor, putative, expressed12213410.24.37056LOC_Os06g09610peroxiredoxin, putative, expressed2662892610.50976LOC_Os06g42000peroxiredoxin, putative, expressed23323688.39.20597LOC_Os07g15670peroxiredoxin, putative, expressed25327684.69.85457LOC_Os07g44440peroxiredoxin, putative, expressed22124232.65.36187LOC_Os07g44430peroxiredoxin, putative25627785.36.8544Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.

Table 3

Identification of rice homologs of peroxiredoxins in A. thaliana
Locus Id (Os*)Homolog (At*)NomenclatureIdentitity/Similarity (%)No. of aa* compared
LOC_Os01g16152AT3G06050Type-2 PrxF73/84201
LOC_Os01g24740AT1G65980Type-2 PrxB42/5977
LOC_Os01g48420AT1G65970Type-2 PrxC74/86162
LOC_Os02g09940AT1G60740Type-2 PrxD56/72166
LOC_Os02g33450AT5G062902-Cys Prx B74/82272
LOC_Os04g33970AT3G116302-Cys PrxA92/9688
LOC_Os06g09610AT3G26060PrxQ78/89159
LOC_Os06g42000AT3G52960Type-2 PrxE61/74240
LOC_Os07g15670AT1G21350Antioxidant68/78236
LOC_Os07g44440AT1G65990Type-2 PrxA27/4483
LOC_Os07g44430AT1G481301-Cys Prx69/83221
Open in a separate window*Os, Oryza sativa L.; At, Arabidopsis thaliana L.; aa, amino acids.The protein alignment study of Prx members in rice with the canonical Prx2-B and Prx2-E of Arabidopsis is shown in Figure 1. The Type-2 Prx proteins are characterized by the presence of catalytic cysteine (Cys) residues (Fig. 1). The alignment of rice Prx proteins shows that the Cys residue is well conserved in members like LOC_Os02g09940 (Type-2 PrxD), LOC_Os06g42000 (Type-2 Prx E), LOC_Os01g48420 (Type-2 Prx C), LOC_Os01g16152 (Type-2 Prx F), LOC_Os02g33450 (2-Cys Prx B), LOC_Os07g44440 (Type-2 Prx A), LOC_Os07g44430 (1-Cys Prx) and LOC_Os06g09610 (PrxQ) (Fig. 1). However, LOC_Os01g24740 (Type-2 PrxB) and LOC_Os04g33970 (2-Cys PrxA) which contain a chloroplast precursor do not have the catalytic Cys residues (Fig. 1). The newly identified LOC_Os07g15670 and AT1G21350 with annotations “peroxiredoxin, putative, expressed” and “antioxidant/oxidoreductase” respectively do not have catalytic Cys residues as well (Fig. 1).Open in a separate windowFigure 1Amino acid alignment of peroxiredoxins (Prx) in rice. The rice proteins are aligned with the canonical Arabidopsis Prx2-B and Prx2-E. The conserved cysteine residues are indicated by arrows on top of the alignment. Note the sequence conservation between the newly identified LOC_Os07g15670 and AT1G21350. The rice locus Ids are identified on left and amino acid positions on right. The alignment was made with ClustalX.Taken together, the results demonstrate that like Arabidopsis, the Prx constitute a small gene family in rice. However, the functional role of Prx in rice is not clearly understood.  相似文献   

10.
Heritability and role for the environment in DNA methylation in AXL receptor tyrosine kinase     
Carrie V Breton  Muhammad T Salam  Frank D Gilliland 《Epigenetics》2011,6(7):895-898
  相似文献   

11.
Tomato BRI1 and systemin wound signalling     
Nicholas Holton  Kate Harrison  Takao Yokota  Gerard J Bishop 《Plant signaling & behavior》2008,3(1):54-55
Brassinosteroids (BRs) are perceived by Brassinosteroid Insensitive 1 (BRI1), that encodes a leucine-rich repeat receptor kinase. Tomato BRI1 has previously been implicated in both systemin and BR signalling. The role of tomato BRI1 in BR signalling was confirmed, however it was found not to be essential for systemin/wound signalling. Tomato roots were shown to respond to systemin but this response varied according to the species and growth conditions. Overall the data indicates that mutants defective in tomato BRI1 are not defective in systemin-induced wound signalling and that systemin perception can occur via a non-BRI1 mechanism.Key words: tomato BRI1, brassinosteroids, systemin, wound signallingBrassinosteroids (BRs) are steroid hormones that are essential for normal plant growth. The most important BR receptor in Arabidopsis is BRASSINOSTERIOD INSENSITIVE 1 (BRI1), a serine/threonine kinase with a predicted extracellular domain of ∼24 leucine-rich repeats (LRRs).1,2 BRs bind to BRI1 via a steroid-binding domain that includes LRR 21 and a so-called “island” domain.2,3 In tomato a BRI1 orthologue has been identified that when mutated, as in the curl3 (cu3) mutation, results in BR-insensitive dwarf plants.4 Tomato BRI1 has also been purified as a systemin-binding protein.5 Systemin is an eighteen amino acid peptide, which is produced by post-translational cleavage of prosystemin. Systemin has been implicated in wound signalling and is able to induce the production of jasmonate, protease inhibitors (PIN) and rapid alkalinization of cell suspensions (reviewed in ref. 6).To clarify whether tomato BRI1 was indeed a dual receptor it was important to first confirm its role in BR signalling. Initially this was carried out by genetic complementation of the cu3 mutant phenotype.7 Overexpression of tomato BRI1 restored the dwarf phenotype and BR sensitivity and normalized BR levels (35S:TomatoBRI1 complemented lineWt*cu3*6-deoxocathasterone5669646766-deoxoteasteronend47483-dehydro-6-deoxoteasterone8762696-deoxotyphasterolnd5884226-deoxocastasterone1,7556,24726,210castasterone25563717,428brassinolidendndndOpen in a separate windowBR content ng/kg fw.*Montoya et al.4 nd, not detected.To show the role of tomato BRI1 in systemin signalling tomato BR mutants and the complemented line were tested for their systemin response. Tomato cu3 mutants were shown not to be defective in systemin-induced proteinase inhibitor (PIN) gene induction, nor were they defective in PIN gene induction in response to wounding. Cell suspensions made from cu3 mutant tissue exhibited an alkalinization of culture medium similar to wild-type cell suspension. These data taken together indicated that BRI1 was not essential for systemin signalling. However, Scheer et al.8 demonstrated that the overexpression of tomato BRI1 in tobacco suspension cultures results in an alkalinization in response to systemin, which was not observed in untransformed cultures. This suggests that BRI1 is capable of eliciting systemin responsiveness and that in tomato BRI1 mutants another mechanism is functioning to enable systemin signalling.Root elongation is a sensitive bioassay for BR action with BRs inhibiting root growth. Solanum pimpinellifolium roots elongate in response to systemin, in a BRI1-dependent fashion. In Solanum lycopersicum root length was reduced in response to systemin and BR and jasmonate synthesis mutants indicated that the inhibition did not require jasmonates or BRs. Normal ethylene signalling was required for the root response to systemin. When a tobacco, Nicotiana benthamiana, BRI1 orthologue was transformed into cu3 both the dwarfism and systemin-induced root elongation was restored to that of wild type. Tobacco plants however do not respond to systemin. This is puzzling as the introduction of tomato BRI1 into tobacco enabled systemin responsiveness.8 Further investigation as to how tomato BRI1 elicits this response is therefore required.Systemin has been demonstrated to bind to two tomato proteins BRI1/SR1605 and SBP50.9 The data presented by Holton et al.7 indicates that tomato BRI1 is not essential for systemin-induced wound responses and that a non-BRI1 pathway is present that is able to facilitate a systemin response. Whether this is via a related LRR receptor kinase or by another protein remains to be elucidated.  相似文献   

12.
Interactions of meniscal cells with extracellular matrix molecules: Towards the generation of tissue engineered menisci     
Guak-Kim Tan  Justin J Cooper-White 《Cell Adhesion & Migration》2011,5(3):220-226
  相似文献   

13.
Expression,localization and interaction of SNARE proteins in Arabidopsis are selectively altered by the dark     
Naohiro Kato  Huancan Bai 《Plant signaling & behavior》2010,5(11):1470-1472
  相似文献   

14.
Dementia screening, biomarkers and protein misfolding: Implications for public health and diagnosis     
James E Galvin 《朊病毒》2011,5(1):16-21
Misfolded proteins are at the core of many neurodegenerative diseases, nearly all of them associated with cognitive impairment. For example, Creutzfeldt-Jacob disease is associated with aggregation of prion protein,1,2 Lewy body dementia and Parkinson disease with α-synuclein3,4 and forms of frontotemporal dementia with tau, TDP43 and a host of other proteins.5,6 Alzheimer disease (AD), the most common cause of dementia,7 and its prodromal syndrome mild cognitive impairment (MCI)8 are an increasing public health problem and a diagnostic challenge to many clinicians. AD is characterized pathologically by the accumulation of amyloid β-protein (Aβ)9,10 as senile plaques and in the walls of blood vessels as amyloid angiopathy.11,12 Additionally, there are accumulations of tau-protein as neurofibrillary tangles and dystrophic neurites.11,12 Biological markers of AD and MCI can serve as in vivo diagnostic indicators of underlying pathology, particularly when clinical symptoms are mild1315 and are likely present years before the onset of clinical symptoms.1619 Research to discover and refine fluid and imaging biomarkers of protein aggregation has undergone a rapid evolution2022 and combined analysis of different modalities may further increase diagnostic sensitivity and specificity.2326 Multi-center trials are now investigating whether imaging and/or cerebrospinal fluid (CSF) biomarker candidates can be used as outcome measures for use in phase III clinical trials for AD.2729Key words: dementia, screening, biomarkers, amyloid, tau, Alzheimer disease, preclinical, presymptomaticCurrently, the diagnosis of AD is based on exclusion of other forms of impairment with definitive diagnosis requiring autopsy confirmation.30 Thus, there is a strong need to find easily measurable in vivo AD biomarkers that could facilitate early and accurate diagnosis31 as well as prognostic data to assist in monitoring therapeutic efficacy.32 Although biological markers such as MRI, PET scans and CSF increase the diagnostic likelihood that AD is present,9,1820,33,34 biomarkers are invasive, uncomfortable, expensive and may not be readily available to rural areas, underserved communities, underinsured individuals or developing countries, making them impractical for broad use. However, the lessons learned from biomarkers can be applied to increase the likelihood that clinicians will be able to detect disease at earlier stages in the form of dementia screening.Public health may be best defined as the organized efforts of society to improve health, often framed in terms of primary, secondary and tertiary prevention. Prevention encompasses an understanding of causation, alteration of natural history of disease and understanding of pathophysiological mechanisms.35 The clearest application of this from a public health perspective is in the setting of secondary prevention (i.e., screening)—early detection as a core element, coupled with treatments or preventative actions to reduce the burden of disease.35 In this instance we seek to identify individuals in whom a disease has already begun and who may be experiencing very mild clinical symptoms but have not yet sought out medical care. The objective of effective screening is to detect the disease earlier than it would have been detected with usual care. Recent healthcare reform (Accountable Care Act)36 proposes a Personalized Prevention Plan including screening for cognitive disorders, reimbursable through Medicare. Thus tying knowledge about dementia screening with underlying biology of protein misfolding associated with neurodegenerative disease can have enormous implications.A review of the natural history of dementia illustrates this point (Fig. 1). The timeline of disease from presumptive start to the patient demise is plotted. Stage I marks the biologic onset of disease; however this point often cannot be identified and may begin years to decades before any evidence is apparent (represented by dashed lines). As this stage is subclinical, it is difficult to study in humans but lends itself nicely to animal models. At some point in the progression of the biology, stage II begins heralding the first pathologic evidence of disease could be obtained—in the case of AD this could include CSF measurements of amyloid and tau22,26,27 or PET imaging with amyloid ligands.18,37 Subsequently, the first signs and symptoms of disease develop (stage III). Till this point, the disease process has been entirely presymptomatic. Beginning with the onset of symptoms, the patient may seek medical care (stage IV) and eventually be diagnosed (stage V). From stage III onwards, the patient enters the symptomatic phase of disease. From this point, the patient is typically treated with various pharmacologic and nonpharmacologic approaches towards some outcome. Another way to envision the disease spectrum is from the biological onset to the seeking of medical attention as the preclinical phase of disease with the clinical phase beginning with the initial clinical investigations into the cause of the patients'' symptoms.Open in a separate windowFigure 1Model of the natural history of AD. Timeline from presumptive start of AD through patient diagnosis is plotted. The initiation of biological changes (stage I) marks the onset of disease and begins years to decades before any evidence is apparent (represented by dashed lines). At some point the first pathologic evidence of disease (stage II) begins and in theory can be detected with biomarkers such as CSF measurements of amyloid and tau or PET imaging with amyloid ligands. Subsequently, the first signs and symptoms of disease develop (stage III) followed by the patient seeking medical attention (stage IV) and finally a diagnosis is established (stage V). This timeline can be clustered into a presymptomatic phase (stages I–III) and a symptomatic phase (stages III–V). An alternative way to envision the disease spectrum is from the biological onset to the seeking of medical attention (stages I–IV) as the preclinical phase of disease with the clinical phase beginning with the initial clinical investigations into the cause of the patients'' symptoms (stages IV and V). Stage III is the ideal time for dementia screening.What is the value of thinking about disease in this fashion? Such models allow researchers and clinicians to model the approach to finding and applying new diagnostics and offering new interventions. From stage I to stage III, the patient is the presymptomatic, preclinical phase of disease. The only means of detection would be with a biological marker that reflected protein misfolding or some proxy marker of these events. Although longitudinal evidence of cognitive change exist from 1–3 years before clinical diagnosis, raw scores on neuropsychological testing during this time remains in the normal range.38 After stage IV, the patient is in the symptomatic, clinical phase of disease. Testing here is centered on confirming the suspected diagnosis, correctly staging the disease and initiating the appropriate therapies. Basic scientific approaches focusing on the presymptomatic, preclinical phase and clinical care approaches focusing on the symptomatic, clinical phase are well established and will continue to benefit from additional research.However, if we focus only on these two phases, an opportunity will be missed to make a decidedly important impact in the patient''s well-being. From stage III to stage IV, the patient enters symptomatic, preclinical phase of disease; symptomatic because the patient or family is beginning to detect some aspect of change, but preclinical because these signs and symptoms have not yet been brought to medical attention. In the case of AD (and the other forms of dementia) this period may go for an extended length of time as patients, families and clinicians dismiss early cognitive symptoms as part of the normal aging process. Thus, the rationale for screening is that if we can identify disease earlier in its natural history than would ordinarily occur, intervention measures (those currently available and those that are being developed) would be more effective. Dementia screening therefore would be best suited to detect cognitive impairment at the beginning of disease signs (stage III), particularly if these screening measures reflect what is known about the symptomatic, clinical phase of disease and correlate with the pathologic changes occurring in the brain during the pre-symptomatic, preclinical phase of disease.In a recent paper, we evaluated the relationship between several dementia screening tests and biomarkers of AD.40 We tested whether a reliable and validated informant-based dementia screening test (the AD8)41,42 correlates with changes in AD biomarkers and, if positive, screening with the AD8 clinically supports an AD clinical phenotype, superior to a commonly used performance-based screening tests including the Mini Mental State Exam (MMSE)43 and the Short Blessed Test (SBT).44 A total of 257 participants were evaluated, administered a comprehensive clinical and cognitive evaluation with the Clinical Dementia Rating scale (CDR)45 used as the gold standard. Participants consented to and completed a variety of biomarker studies including MRI, amyloid imaging using the Pittsburgh Compound B (PiB)37,46 and CSF studies of Aβ42, tau and phosphorylated tau at Serine 181 (p-tau181).23,24 The sample had a mean age of 75.4 ± 7.3 years with 15.1 ± 3.2 years of education. The sample was 88.7% Caucasian and 45.5% male with a mean MMSE score of 27.2 ± 3.6. The formal diagnoses of the sample was 156 CDR 0 cognitively normal, 23 CDR 0.5 MCI, 53 CDR 0.5 very mild AD and 25 CDR 1 mild AD. Participants with positive AD8 scores (graded as a score of 2 or greater) exhibited the typical AD fluid biomarker phenotype characterized by significantly lower mean levels of CSF Aβ42, greater CSF tau, p-tau181 and the tau(s)/Aβ42 ratios.26,27 They also exhibited smaller temporal lobe volumes and increased mean cortical binding potential (MCBP) for PiB imaging similar to studies of individuals with AD.18,19 These findings support that informant-based assessments may be superior to performance-based screening measures such as the MMSE or SBT in corresponding to underlying AD pathology, particularly at the earliest stages of decline. The use of a brief test such as the AD8 may improve strategies for detecting dementia in community settings where biomarkers may not be readily available and also may enrich clinical trial recruitment by increasing the likelihood that participants have underlying biomarker abnormalities.40To gain a better understanding of changes in biomarkers in the symptomatic, preclinical phase, a post hoc evaluation of the 156 individuals who were rated as CDR 0 no dementia at the time of their Gold Standard assessment was completed. Some of these nondemented individuals have abnormal AD biomarkers, but in the absence of performing lumbar punctures or PET scans, is it possible to detect evidence of change? AD8 scores for 132 individuals were less than 2; thus their screening test suggests no impairment (mean AD8 score = 0.30 ± 0.46). However 25 of these individuals had AD8 scores (≥2) suggesting impairment (mean AD8 score = 2.4 ± 0.91). Applying the model described in Figure 1, some of these individuals are hypothesized to be in the symptomatic, preclinical phase of disease. No difference in age, education, gender or brief performance tests (MMSE or SBT) were detected between groups (45 is increased in the individuals with higher AD8 scores supporting that informants were noticing and reporting changes in the participants cognitive function. A review of the individual AD8 questions that were first reported to change suggest that informants endorsement of subtle changes in memory (repeats questions, forgets appointments) and executive ability (trouble with judgment, appliances, finances) are valuable early signs. This is consistent with previous reports that changes in memory and judgment/problem solving CDR boxscores in nondemented individuals correlate with findings of AD pathology at autopsy.17 Although biomarkers do not reach significance in this small sample, the direction of change in favor of “Alzheimerization” of this group suggests that some of these individuals may be in the symptomatic, preclinical phase of disease. More research with larger sample sizes and longitudinal follow-up is needed to confirm this hypothesis. It should be also noted that not all individuals with an AD8 score of 2 or greater have AD. The AD8 was designed to detect cognitive impairment from all causes, and as such, these mildly affected individuals may have other causes for their cognitive change such as depression, Lewy body dementia or vascular cognitive impairment.41,42

Table 1

Characteristics of nondemented CDR 0 individuals stratified by AD8 scores
VariableAD8 <2AD8 ≥2p value
Clinical Characteristics
Age, y75.2 (7.1)76.5 (8.4)0.41
Education, y15.4 (3.2)15.9 (2.7)0.47
Gender, % Men42.136.40.45
ApoE status, % at least 1 e4 allele25.834.40.08
Dementia Ratings
CDR sum boxes0.04 (0.13)0.12 (0.22)0.01
MMSE28.6 (1.5)29.2 (1.1)0.07
SBT2.4 (3.1)2.3 (2.9)0.82
AD8 Questions Endorsed “Yes,” %
Problems with judgment12.972.0<0.001
Reduced interest04.00.02
Repeats8.340.0<0.001
Trouble with appliances1.540.0<0.001
Forgets month/year0.800.66
Trouble with finances0.816.00.002
Forgets appointments2.328.0<0.001
Daily problems with memory20.066.70.008
Biomarkers
MCBP, units0.12 (0.23)0.26 (0.39)0.06
CSF Aβ42, pg/ml596.7 (267.9)591.9 (249.9)0.95
CSF tau, pg/ml300.3 (171.5)316.7 (155.0)0.76
CSF p-tau181, pg/ml51.9 (24.0)56.9 (22.6)0.49
Open in a separate windowApoE, apolipoprotein E; CDR, Clinical Dementia Rating; MMSE, Mini Mental State Exam; SBT, Short Blessed Test; MCBp, mean cortical binding potential; CSF, cerebrospinal fluidTo explore this further, changes in AD biomarkers (CSF Aβ42, Tau and PiB-PET) were plotted against the age of the participant (Fig. 2). Previous research suggest that biomarker changes are more commonly seen in older populations47 and increasing age is the greatest risk factor for developing AD.7 AD8 scores of 0 or 1 (no impairment) are depicted as filled circles while AD8 scores of 2 or greater (impairment) are depicted as open squares. Regression lines are plotted for the entire cohort (dashed black line) and for each subset (black for AD8 no impairment; gray for AD8 Impairment). The top row (Parts A–C) represents biomarker profiles for the entire sample of 257 individuals divided by their AD8 scores. With age, there are changes in biomarkers with decreasing CSF Aβ42 (A), increasing CSF Tau (B) and increased PiB-PET binding potential (C). The effect of age on CSF biomarkers is most marked in the AD8 No Impairment group (black line) while changes in PiB binding is seen only in the AD8 Impaired group (gray line). The second row in Figure 2 (Parts D–F) represents biomarker profiles for the 156 individuals who were rated as CDR 0 no dementia at the time of their Gold Standard, 25 of whom had AD8 scores in the impaired range. Some of these individuals are hypothesized to be in the symptomatic, preclinical phase of AD. Similar age-related changes in CSF Aβ42 and PiB binding are seen with CSF Aβ42 having the greatest rate of decline in the AD8 no impairment group and PiB binding having the greatest rate of change in the AD8 impairment group. Increases in CSF Tau are seen as a function of age regardless of group.Open in a separate windowFigure 2Changes in AD biomarkers by age and AD8 scores. AD biomarkers are plots as a function of age (x-axis) and AD8 scores. AD8 scores of 0 or 1 (no impairment) are depicted as filled circles while AD8 scores of 2 or greater (impairment) are depicted as open squares. Regression lines are plotted for the entire cohort (dashed black line) and for each subset (black for AD8 no impairment; gray for AD8 impairment). The top row (A–C) represents biomarker profiles for the entire cohort (n = 257) divided by their AD8 scores. With age, there are changes in biomarkers with decreasing CSF Aβ42 (A), increasing CSF Tau (B) and increased PiB-PET binding potential (C). The effect of age on CSF biomarkers is most marked in the AD8 no impairment group (black line) while changes in PiB binding is seen only in the AD8 impaired group (gray line). The bottom row (D–F) represents biomarker profiles for the individuals rated CDR 0 no dementia (n = 156), 25 of whom had AD8 scores in the impaired range. Similar age-related changes in CSF Aβ42 and PiB binding are seen with CSF Aβ42 having the greatest rate of decline in the AD8 no impairment group and PiB binding having the greatest rate of change in the AD8 impairment group. Increases in CSF Tau are seen as a function of age regardless of group.While a number of interpretations are possible from this type of data, if one considers the model of disease in Figure 1 it appears that CSF changes in Aβ42 and Tau precede PiB binding changes in the presymptomatic, preclinical phase of disease consistent with previous attempts at modeling AD.25 Even with sensitive measurements, this phase is unlikely to be detected without some biological evaluation. At the start of the symptomatic, preclinical phase of AD, PiB binding increases and this may be detected by careful evaluation of the patient and a knowledgeable informant with a validated dementia screening instrument such as the AD8. As patients move into the symptomatic, clinical phase of disease, biomarkers are markedly abnormal as is most cognitive testing permitting careful staging and prognostication.AD and related disorders will become a public health crisis and a severe burden on Medicare in the next two decades unless actions are taken to (1) develop disease modifying medications,48 (2) provide clinicians with valid and reliable measures to detect disease at the earliest possible stage and (3) reimburse clinicians for their time to do so. While this perspective does not address development of new therapeutics, it should be clear that regardless of what healthcare reform in the US eventually looks like,1 dementia screening is a viable means to detect early disease as it enters its symptomatic phase. Dementia screening with the AD8 offers the additional benefit of corresponding highly with underlying disease biology of AD that includes alteration of protein conformation, protein misfolding and eventual aggregation of these misfolded proteins as plaques and tangles.  相似文献   

15.
Arabidopsis thaliana overexpressing glycolate oxidase in chloroplasts: H2O2-induced changes in primary metabolic pathways     
Holger Fahnenstich  Ulf-Ingo Flügge  Verónica G Maurino 《Plant signaling & behavior》2008,3(12):1122-1125
Reactive oxygen species (ROS) represent both toxic by-products of aerobic metabolism as well as signaling molecules in processes like growth regulation and defense pathways. The study of signaling and oxidative-damage effects can be separated in plants expressing glycolate oxidase in the plastids (GO plants), where the production of H2O2 in the chloroplasts is inducible and sustained perturbations can reproducibly be provoked by exposing the plants to different ambient conditions. Thus, GO plants represent an ideal non-invasive model to study events related to the perception and responses to H2O2 accumulation. Metabolic profiling of GO plants indicated that under high light a sustained production of H2O2 imposes coordinate changes on central metabolic pathways. The overall metabolic scenario is consistent with decreased carbon assimilation, which results in lower abundance of glycolytic and tricarboxylic acid cycle intermediates, while simultaneously amino acid metabolism routes are specifically modulated. The GO plants, although retarded in growth and flowering, can complete their life cycle indicating that the reconfiguration of the central metabolic pathways is part of a response to survive and thus, to adapt to stress conditions imposed by the accumulation of H2O2 during the light period.Key words: Arabidopsis thaliana, H2O2, oxidative stress, reactive oxygen species, signalingReactive oxygen species (ROS) are key molecules in the regulation of plant development, stress responses and programmed cell death. Depending on the identity of ROS species or its subcellular production site, different cellular responses are provoked.1 To assess the effects of metabolically generated H2O2 in chloroplasts, we have recently generated Arabidopsis plants in which the peroxisomal GO was targeted to chloroplasts.2 The GO overexpressing plants (GO plants) show retardation in growth and flowering time, features also observed in catalase, ascorbate peroxidase and MnSOD deficient mutants.35 The analysis of GO plants indicated that H2O2 is responsible for the observed phenotype. GO plants represent an ideal non-invasive model system to study the effects of H2O2 directly in the chloroplasts because H2O2 accumulation can be modulated by growing the plants under different ambient conditions. By this, growth under low light or high CO2 concentrations minimizes the oxygenase activity of RubisCO and thus the flux through GO whereas the exposition to high light intensities enhances photorespiration and thus the flux through GO.Here, we explored the impact of H2O2 production on the primary metabolism of GO plants by assessing the relative levels of various metabolites by gas chromatography coupled to mass spectrometry (GC-MS)6 in rosettes of plants grown at low light (30 µmol quanta m−2 s−1) and after exposing the plants for 7 h to high light (600 µmol quanta m−2 s−1). The results obtained for the GO5 line are shown in After 1 h at 30 µEAfter 7 h at 600 µEAlanine0.88 ± 0.052.83 ± 0.68Asparagine1.39 ± 0.123.64 ± 0.21Aspartate0.88 ± 0.031.65 ± 0.10GABA1.14 ± 0.051.13 ± 0.05Glutamate0.97 ± 0.041.51 ± 0.07Glutamine1.06 ± 0.111.87 ± 0.06Glycine1.23 ± 0.070.30 ± 0.02Isoleucine3.52 ± 0.403.00 ± 0.15Leucine1.36 ± 0.220.57 ± 0.06Lysine1.49 ± 0.130.38 ± 0.02Methionine0.96 ± 0.054.54 ± 0.51Phenylalanine0.95 ± 0.030.94 ± 0.04Proline1.32 ± 0.221.60 ± 0.13Serine1.05 ± 0.041.49 ± 0.15Threonine4.74 ± 0.175.51 ± 0.34Valine0.91 ± 0.130.29 ± 0.02Citrate/Isocitrate0.65 ± 0.020.64 ± 0.022-oxoglutarate0.95 ± 0.110.76 ± 0.05Succinate0.78 ± 0.040.72 ± 0.02Fumarate0.64 ± 0.030.31 ± 0.01Malate0.74 ± 0.030.60 ± 0.02Pyruvate1.19 ± 0.280.79 ± 0.04Ascorbate1.13 ± 0.142.44 ± 0.45Galactonate-γ-lactone1.81 ± 0.401.62 ± 0.28Fructose1.20 ± 0.130.37 ± 0.01Glucose1.38 ± 0.170.30 ± 0.01Mannose0.90 ± 0.271.34 ± 0.28Sucrose1.04 ± 0.070.49 ± 0.02Fructose-6P0.82 ± 0.151.20 ± 0.15Glucose-6P0.87 ± 0.061.25 ± 0.183-PGA1.13 ± 0.110.35 ± 0.02DHAP1.38 ± 0.091.26 ± 0.08Glycerate0.99 ± 0.040.67 ± 0.01Glycerol1.07 ± 0.041.12 ± 0.05Shikimate1.18 ± 0.040.35 ± 0.01Salicylic acid1.04 ± 0.180.66 ± 0.18Open in a separate windowPlants were grown at 30 µmol m−2 sec−1 (30 µE). The samples were collected 1 h after the onset of the light period and after 7 h of exposure to 600 µmol m−2 sec−1 (600 µE), respectively. The values are relative to the respective wild-type (each metabolite = 1) and represent means ± SE of four determinations of eight plants. (*) indicates the value is significantly different from the respective wild-type as determined by the Student''s t test (p < 0.05).At the beginning of the light period in low light conditions, some significant deviations in the levels of metabolites tested were observed in GO plants when compared to the wild-type (2 the transgenic GO activity is sufficient to induce a characteristic metabolic phenotype (Fig. 1). The levels of the tricarboxylic acid (TCA) cycle intermediates, citrate/isocitrate, succinate, fumarate and malate were lower in the GO plants (7 In consequence, OAA might not freely enter the TCA cycle and is redirected to the synthesis of Lys, Thr and Ile, which accumulate in the GO plants (Open in a separate windowFigure 1Simplified scheme of the primary metabolism showing the qualitative variations in metabolite abundance in GO plants obtained by GC-MS analysis (2 Blue boxes indicate a significant increase in the content of the particular metabolite compared to the wild-type, while red boxes indicate a significant decrease. Metabolites without boxes have not been determined. The arrows do not always indicate single steps. Adapted from Baxter et al., 2007.High light treatment induced massive changes in the metabolic profile of GO plants (Fig. 1). The OAA-derived amino acids Asp, Asn, Thr, Ile and Met as well as the 2-oxoglutarate-derived amino acids Glu and Gln accumulated. On the contrary, the levels of the Pyr-derived amino acids Val and Leu and the OAA-derived amino acid Lys decreased. A rational explanation for these metabolic changes is difficult to assess, but these changes could be a consequence of a metabolic reconfiguration in response to high light leading to required physiological functions and thus ensuring continued cellular function and survival, e.g., production of secondary metabolites to mitigate photooxidative damage. The higher levels of Glu observed in the GO plants could be attributed to alternative pathways of glyoxylate metabolism that may occur during photorespiration.8 It has been shown earlier that isocitrate derived from glyoxylate and succinate is decarboxylated by cytosolic isocitrate dehydrogenase producing 2-oxoglutarate and further glutamate.8In GO plants grown under low light conditions (minimized photorespiratory conditions), the levels of Gly were similar to those of the wild-type whereas, after exposure to high light (photorespiratory conditions), the Gly levels were extremely low, indicating that the GO activity diverts a significant portion of flux from the photorespiratory pathway (7 and also the levels of the lipoic acid-containing subunits of the pyruvate- and 2-oxoglutarate dehydrogenases were shown to be significantly reduced under oxidative stress conditions.9,10 Similarly, the contents of the soluble sugars sucrose, fructose and glucose and those of 3-PGA and glycerate were lower. In addition, the GO plants showed an impairment in the accumulation of starch under high light conditions, a feature that was not observed if the plants were grown under non-photorespiratory conditions.2Together, these results indicate that the low photosynthetic carbon assimilation in the GO plants exposed to high light is most probably due to enhanced photoinhibition,2 the repression of genes encoding photosynthetic components by H2O2,1113 and the direct damage or inhibition of enzyme activities involved in CO2 assimilation and energy metabolism by H2O2.7,10,14,15 Moreover, Scarpeci and Valle13 showed that in plants treated with the superoxid anion radical producing methylviologen (MV) most of the genes involved in phosphorylytic starch degradation, e.g., the trioseP/Pi translocator and genes involved in starch and sucrose synthesis were repressed, while genes involved in hydrolytic starch breakdown and those involved in sucrose degradation were induced. In line with this, the contents of carbohydrates were also lower in MV-treated plants. Together, these observations can also explain the lower growth rates of the GO plants in conditions where the oxygenase activity of RubisCO becomes important and thus, the flux through GO increases.2The levels of shikimate were lower in GO plants (2,16 and the low levels of substrates available, as anthocyanins are ultimately synthesized from photosynthates and the GO plants showed a diminished photosynthetic performance.2As expected, the levels of ascorbate and its precursor, galactonate-γ-lactone, were enhanced in the GO plants clearly showing the activation of the cellular antioxidant machinery (10 described the metabolic response to oxidative stress of heterotrophic Arabidopsis cells treated with menadione, which also generates superoxide anion radicals. This oxidative stress was shown to induce metabolic inhibition of flux through the TCA cycle and sectors of amino acid metabolism together with a diversion of carbon into the oxidative pentose phosphate pathway.Signaling and oxidative-damage effects are difficult to separate by manipulating the enzymes of antioxidant systems. In this regard, the GO plants represent a challenging inducible model that avoid acclimatory and adaptative effects. Moreover, it is possible to control the H2O2 production in the chloroplasts of GO plants without inducing oxidative damage by changing the conditions of growth.2 Further exploration of metabolic changes imposed by different ROS at the cellular and whole organ levels will allow to address many intriguing questions on how plants can rearrange metabolism to cope with oxidative stresses.  相似文献   

16.
Towards elucidating the differential regulation of floral and extrafloral nectar secretion     
Venkatesan Radhika  Christian Kost  Wilhelm Boland  Martin Heil 《Plant signaling & behavior》2010,5(7):924-926
  相似文献   

17.
Gene silencing to investigate the roles of receptor-like proteins in Arabidopsis     
Ursula Ellendorff  Zhao Zhang  Bart PHJ Thomma 《Plant signaling & behavior》2008,3(10):893-896
  相似文献   

18.
Natural Infection of Burkholderia pseudomallei in an Imported Pigtail Macaque (Macaca nemestrina) and Management of the Exposed Colony     
Crystal H Johnson  Brianna L Skinner  Sharon M Dietz  David Blaney  Robyn M Engel  George W Lathrop  Alex R Hoffmaster  Jay E Gee  Mindy G Elrod  Nathaniel Powell  Henry Walke 《Comparative medicine》2013,63(6):528-535
Identification of the select agent Burkholderia pseudomallei in macaques imported into the United States is rare. A purpose-bred, 4.5-y-old pigtail macaque (Macaca nemestrina) imported from Southeast Asia was received from a commercial vendor at our facility in March 2012. After the initial acclimation period of 5 to 7 d, physical examination of the macaque revealed a subcutaneous abscess that surrounded the right stifle joint. The wound was treated and resolved over 3 mo. In August 2012, 2 mo after the stifle joint wound resolved, the macaque exhibited neurologic clinical signs. Postmortem microbiologic analysis revealed that the macaque was infected with B. pseudomallei. This case report describes the clinical evaluation of a B. pseudomallei-infected macaque, management and care of the potentially exposed colony of animals, and protocols established for the animal care staff that worked with the infected macaque and potentially exposed colony. This article also provides relevant information on addressing matters related to regulatory issues and risk management of potentially exposed animals and animal care staff.Abbreviations: CDC, Centers for Disease Control and Prevention; IHA, indirect hemagglutination assay; PEP, postexposure prophylacticBurkholderia pseudomallei, formerly known as Pseudomonas pseudomallei, is a gram-negative, aerobic, bipolar, motile, rod-shaped bacterium. B. pseudomallei infections (melioidosis) can be severe and even fatal in both humans and animals. This environmental saprophyte is endemic to Southeast Asia and northern Australia, but it has also been found in other tropical and subtropical areas of the world.7,22,32,42 The bacterium is usually found in soil and water in endemic areas and is transmitted to humans and animals primarily through percutaneous inoculation, ingestion, or inhalation of a contaminated source.8, 22,28,32,42 Human-to-human, animal-to-animal, and animal-to-human spread are rare.8,32 In December 2012, the National Select Agent Registry designated B. pseudomallei as a Tier 1 overlap select agent.39 Organisms classified as Tier 1 agents present the highest risk of deliberate misuse, with the most significant potential for mass casualties or devastating effects to the economy, critical infrastructure, or public confidence. Select agents with this status have the potential to pose a severe threat to human and animal health or safety or the ability to be used as a biologic weapon.39Melioidosis in humans can be challenging to diagnose and treat because the organism can remain latent for years and is resistant to many antibiotics.12,37,41 B. pseudomallei can survive in phagocytic cells, a phenomenon that may be associated with latent infections.19,38 The incubation period in naturally infected animals ranges from 1 d to many years, but symptoms typically appear 2 to 4 wk after exposure.13,17,35,38 Disease generally presents in 1 of 2 forms: localized infection or septicemia.22 Multiple methods are used to diagnose melioidosis, including immunofluorescence, serology, and PCR analysis, but isolation of the bacteria from blood, urine, sputum, throat swabs, abscesses, skin, or tissue lesions remains the ‘gold standard.’9,22,40,42 The prognosis varies based on presentation, time to diagnosis, initiation of appropriate antimicrobial treatment, and underlying comorbidities.7,28,42 Currently, there is no licensed vaccine to prevent melioidosis.There are several published reports of naturally occurring melioidosis in a variety of nonhuman primates (NHP; 2,10,13,17,25,30,31,35 The first reported case of melioidosis in monkeys was recorded in 1932, and the first published case in a macaque species was in 1966.30 In the United States, there have only been 7 documented cases of NHP with B. pseudomallei infection.2,13,17 All of these cases occurred prior to the classification of B. pseudomallei as a select agent. Clinical signs in NHP range from subclinical or subacute illness to acute septicemia, localized infection, and chronic infection. NHP with melioidosis can be asymptomatic or exhibit clinical signs such as anorexia, wasting, purulent drainage, subcutaneous abscesses, and other soft tissue lesions. Lymphadenitis, lameness, osteomyelitis, paralysis and other CNS signs have also been reported.2,7,10,22,28,32 In comparison, human''s clinical signs range from abscesses, skin ulceration, fever, headache, joint pain, and muscle tenderness to abdominal pain, anorexia, respiratory distress, seizures, and septicemia.7,9,21,22

Table 1.

Summary of reported cases of naturally occurring Burkholderia pseudomalleiinfections in nonhuman primates
CountryaImported fromDate reportedSpeciesReference
AustraliaBorneo1963Pongo sp.36
BruneiUnknown1982Orangutan (Pongo pygmaeus)33
France1976Hamlyn monkey (Cercopithecus hamlyni) Patas monkey (Erythrocebus patas)11
Great BritainPhilippines and Indonesia1992Cynomolgus monkey (Macaca fascicularis)10
38
MalaysiaUnknown1966Macaca spp.30
Unknown1968Spider monkey (Brachytelis arachnoides) Lar gibbon (Hylobates lar)20
Unknown1969Pig-tailed macaque (Macaca nemestrina)35
Unknown1984Banded leaf monkey (Presbytis melalophos)25
SingaporeUnknown1995Gorillas, gibbon, mandrill, chimpanzee43
ThailandUnknown2012Monkey19
United StatesThailand1970Stump-tailed macaque (Macaca arctoides)17
IndiaPig-tailed macaque (Macaca nemestrina)
AfricaRhesus macaque (Macaca mulatta) Chimpanzee (Pan troglodytes)
Unknown1971Chimpanzee (Pan troglodytes)3
Malaysia1981Pig-tailed macaque (Macaca nemestrina)2
Wild-caught, unknown1986Rhesus macaque (Macaca mulatta)13
Indonesia2013Pig-tailed macaque (Macaca nemestrina)Current article
Open in a separate windowaCountry reflects the location where the animal was housed at the time of diagosis.Here we describe a case of melioidosis diagnosed in a pigtail macaque (Macaca nemestrina) imported into the United States from Indonesia and the implications of the detection of a select agent identified in a laboratory research colony. We also discuss the management and care of the exposed colony, zoonotic concerns regarding the animal care staff that worked with the shipment of macaques, effects on research studies, and the procedures involved in reporting a select agent incident.  相似文献   

19.
Over-represented promoter motifs in abiotic stress-induced DREB genes of rice and sorghum and their probable role in regulation of gene expression     
Amrita Srivastav  Sameet Mehta  Angelica Lindlof  Sujata Bhargava 《Plant signaling & behavior》2010,5(7):775-784
  相似文献   

20.
Sources of floral scent variation: Can environment define floral scent phenotype?     
Cassie J Majetic  Robert A Raguso  Tia-Lynn Ashman 《Plant signaling & behavior》2009,4(2):129-131
Studies of floral scent generally assume that genetic adaptation due to pollinator-mediated natural selection explains a significant amount of phenotypic variance, ignoring the potential for phenotypic plasticity in this trait. In this paper, we assess this latter possibility, looking first at previous studies of floral scent variation in relation to abiotic environmental factors. We then present data from our own research that suggests among-population floral scent variation is determined, in part, by environmental conditions and thus displays phenotypic plasticity. Such an outcome has strong ramifications for the study of floral scent variation; we conclude by presenting some fundamental questions that should lead to greater insight into our understanding of the evolution of this trait, which is important to plant-animal interactions.Key words: abiotic factors, aromatics, floral scent, GxE interaction, phenotypic plasticity, pollination, terpenoids, volatilesFloral scent is thought to function as a major non-visual attractive cue for many pollinators in a large number of plant systems1,2 and therefore most research on this plant trait has proceeded in the context of pollination ecology. Such studies have revealed the physiological and behavioral responses of pollinators to various floral volatiles (reviewed in refs. 3 and 4), convergent evolution of odor phenotypes attractive to specific pollinator classes (reviewed in refs. 5 and 6), reproductive isolation of plant species due to differences in pollinator attraction by scent,7 and instances of deception in which flowers mimic insect pheromones to effect pollination.8 Together, this body of evidence suggests that specific floral scent profiles can have important implications for the reproductive potential of many plant species.This pollinator-centered viewpoint has carried through to research on floral scent variation, including our most recent work on the insect-pollinated species Hesperis matronalis (Brassicaceae).9 Such studies usually suggest that the floral scent variation commonly found within and among individuals, populations and species (reviewed in ref. 2) is due to genetic differentiation as a result of selection by pollinators over time (reviewed in ref. 10). But an organism''s genes are only one factor determining phenotype. Both biotic (living) and abiotic (non-living) environmental conditions can profoundly affect phenotype expression, leading to significant variation. For plants, abiotic factors such as climate and soil chemistry can have particularly strong effects on phenotypes. When these environmental conditions cause changes in phenotype, we would say that a trait displays phenotypic plasticity.1113 A number of studies have uncovered phenotypic plasticity for many different plant traits.12 However, while phenotypic variation in floral scent has been well-documented1,2 and correlated with variation in biotic factors like pollinator behavior,1417 these studies were decidedly focused on natural selection, rather than phenotypic plasticity, as an organizational framework.However, in examining the scientific literature on floral scent, we found four studies in which the effects of naturally variable abiotic factors on floral scent profiles were examined, three of which were performed by the same research group (1821 (21). Moreover, these studies are decidedly not analyzed and interpreted using standard protocols for phenotypic plasticity studies.13

Table 1

A survey of previous studies examining changes in floral scent phenotype due to abiotic factors
StudySpeciesEnvironmental characteristicPlant materialStudy locationChange in volatile emissions?Direction of change
Loper and Berdel 1978Medicago sativa L.IrrigationClonesExperimental farmNon/a
CuttingClonesExperimental farmNon/a
Hansted et al. 1994Ribes nigrumTemperatureTwo varietiesGrowth chamberYes+ temperature, + ER*
Jakobsen and Olsen 1994Trifolium repens L.TemperatureCultivarGrowth chamberYes+ temperature, + ER
IrradianceCultivarGrowth chamberYes+ irradiance, + ER
Air HumidityCultivarGrowth chamberYes+ humidity, − ER
Nielsen et al. 1995Hesperis matronalis L.TemperatureWild seedsGrowth chamberYes+ temperature,
+ monoterpene ER
This study, 2009Hesperis matronalisGrowingWild plantsWild vs.YesWild—different ER,
EnvironmentCommon GardenSC between populations;
Garden—similar ER,
SC between populations
Open in a separate window*Plus signs indicate a numerical increase, minus signs indicate a decrease; ER = floral scent emission rate, SC = scent composition.Research we have conducted in conjunction with our recently published work on the floral scent of H. matronalis9 suggests that some of the natural variation in the odor of this species may be attributable to phenotypic plasticity. We reared potted H. matronalis rosettes from two populations (PA1 and PA2) in northwestern Pennsylvania in a common garden environment and upon flowering, collected scent from these individuals using dynamic headspace extractions (reviewed in ref. 9). We then compared floral scent composition and emission rates of potted plants with each other (between populations in a common garden), as well as with the floral scent profiles of plants reared in their source population (i.e., between individuals from the same population reared in different environments). The results were striking. Analysis of scent composition using non-metric multidimensional scaling and analysis of similarity (NMDS and ANOSIM, respectively: reviewed in ref. 9) suggested that the scent composition of plant populations reared in their native environments differ significantly from each other in terms of two major biosynthetic classes of volatiles—aromatics and terpenoids (Fig. 1, filled symbols only). This was especially true for the aromatic eugenol and derivatives of the terpenoid linalool (furanoid linalool oxides and linalool epoxide). In contrast, common-garden reared plants from different populations did not differ in floral scent composition, regardless of their original source population. Perhaps even more interestingly, while both populations showed changes due to rearing environment, the degree of change differed: in only one population (PA1) did scent composition change significantly between native and garden reared plants (Fig. 1).Open in a separate windowFigure 1NMDS (non-metric multidimensional scaling) plots of scent composition for purple morphs from two populations of Hesperis matronalis—(A) Aromatics and (B) Terpenoids. Filled symbols represent scent from home environment in situ plants, which are significantly different from one another as determined by analysis of similarity (ANOSIM: aromatics—p = 0.03, R = 0.22; terpenoids—p = 0.01, R = 0.25). Open symbols represent scent from plants reared in a common environment. Population PA1 is represented by triangles and population PA2 is represented by squares. Arrows indicate the direction of shift from home environment to common garden floral scent composition; black arrows represent a significant difference between groups determined by ANOSIM (Aromatics—p = 0.01, R = 0.30; Terpenoids—p = 0.06; R = 0.20) and gray arrows represent a non-significant difference.Floral scent emission rate also showed environmentally induced differences. While wild plants from our two populations differed significantly in the amount of scent emitted in situ, with PA1 emitting more total scent, total aromatics and total terpenoids,9 we found that rearing plants from these sites in a common garden environment either significantly reverses the direction of differences in emission rates seen between natural populations, with PA2 now emitting more aromatic scent (Analysis of Variance: F = 4.09; p = 0.05; Fig. 2A), or homogenizes the quantity of scent emitted (i.e., no significant differences in emission rates between populations; Fig. 2B and C).Open in a separate windowFigure 2Box plots of scent emission rates for purple Hesperis matronalis plants grown in common garden environments in terms of (A) Aromatics, (B) Terpenoids and (C) Total Scent. The edges of each box represent the range of data between the 25th percentile and the 75th percentile, while the horizontal bar indicates the median for each population. The error bars on each box extend to the 5th and 95th percentile of the data range respectively. To the right of each box plot, the mean is presented as a horizontal line, with standard error bars. Mean values not sharing letters are significantly different as determined by analysis of variance (ANOVA).Together, these results suggest that rearing environment can have a profound effect on floral scent composition and emission rate, such that plants from the same maternal environment can have radically different floral scent phenotypes in response to differential growing conditions. If our work effectively incorporates a random genetic sample from each population into each growing environment, then at least some of the phenotypic variation we describe here could be interpreted as phenotypic plasticity. This experiment does not allow us to pinpoint the exact environmental conditions associated with phenotypic differences in floral scent (although variation in nutrient or water availability between wild and common-garden settings is likely), nor does it completely conform to the traditional “reactionnorm” studies associated with plasticity research which would allow detection of genetic variation in scent plastiticy.12,13 However, our results suggest that floral scent of plants grown in wild populations may be plastic, which provides some additional insight into our recently published work uncovering significant among-population variation in floral scent.9 For researchers that study phenotypic plasticity, such an outcome is probably not a surprise, nor is our finding that populations respond differently to environmental conditions (i.e., potential GxE interaction, reflecting genetic variability in plasticity).However, if floral scent can be plastic, this raises a number of biologically relevant questions that should be addressed in floral scent research, including: (1) Is there truly a canonical floral scent blend that can be attributed to a given plant species, as is normally supposed by those studying floral scent from an evolutionary perspective? (2) Which environmental conditions exert the strongest influence on floral scent profiles in a species? (3) How do such conditions interact with genetic variation in the factors responsible for scent biosynthesis and emission? (4) Are floral scent profiles plastic within a single flowering period; if so, what impact does this have on pollinator behavior and therefore plant fitness? (5) At what scale do biotic agents such as pollinators and herbivores respond to quantitative and qualitative variation in floral scent? Studies that address these questions should lead us to a more mature understanding of the causes and consequences of natural variation in floral scent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号