首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metallothioneins in human tumors and potential roles in carcinogenesis   总被引:19,自引:0,他引:19  
  相似文献   

2.
3.
Metallothionein (MT), a major zinc-binding intracellular protein thiol, has been associated with cytoprotection from heavy metals, antineoplastic drugs, mutagens, and cellular oxidants. Despite its small mass (7 kDa), nuclear partitioning of MT has been observed in both normal and malignant tissues. The factors controlling MT sequestration are unknown. Thus, we examined the regulation of MT subcellular distribution in human cancer cell lines that exhibit prominent nuclear MT. The nuclear disposition of MT was unaltered during cell cycle passage in synchronized cells. MT redistributed to the cytoplasm when cells were exposed to reduced temperature. Cytoplasmic redistribution was also seen in DU-145 and HPC36M prostatic cancer cells after ATP depletion, but not in PC3-MA2 and SCC25/CP cells. Pretreatment with 10 μMCdCl2did not significantly alter MT distribution but did render all cells sensitive to cytoplasmic redistribution after either reduced temperature or ATP depletion. Thus, nuclear retention of MT is energy requiring and this ability of MT to accumulate in subcellular compartments against its concentration gradient may be important in the capacity of MT to supply Zn or other metals to target sites within the cell.  相似文献   

4.
Metallothionein (MT) bound to zinc and copper was detected in high concentration in fetal and newborn rat livers by a cadmium saturation method. The levels of both hepatic zinc and MT remained high for the first 14 days after birth and decreased to adult levels by 24 days of age. There was a direct linear relationship between hepatic metallothionein and zinc concentrations during the first 31 days after birth. The ratio of MT to zinc levels also decreased with age suggesting a rapid degradation of MT during postnatal development. Immunohistochemical localization of MT by peroxidase-antiperoxidase technique, using a specific antibody to MT, showed intense intranuclear staining for MT in fetal and newborn rat liver which persisted until Day 9. The nuclear MT staining decreased with age; at 11 days it was equal both in nucleus and cytoplasm and at 14 days, MT was localized mainly in the cytoplasm, similar to adult rat liver pattern. The intranuclear localization of MT in neonates could be considered as a typical fetal-neonatal morphological pattern and its subsequent presence in the cytoplasm, an adult pattern.  相似文献   

5.
6.
Although the translocation of metallothionein (MT) from cytoplasm to nucleus has been demonstrated in liver during times of high requirement for zinc (fetal development and the neonatal period), the role of MT in cellular growth is not well understood. In this study, a potential role of MT in liver regeneration was investigated in wild type (WT) and MT-I and MT-II gene knockout (MT-null) mice after 35% partial hepatectomy (PH) or sham laparotomy. Hepatic MT levels and proliferation index were measured at 0, 5, 15, 24, 36, 48, and 60 hrs after PH and 48 hrs after sham laparotomy (control). MT levels were increased in WT mice (peak at 24 hrs after PH) and declined to normal levels by 60 hrs after PH. Immunohistochemical staining for MT in WT mice indicated the presence of MT in both nucleus and cytoplasm of hepatocytes at 24 hrs after PH, whereas MT was present mainly in the cytoplasm at 36-60 hrs after PH and 48 hrs after sham laparotomy. Hepatic proliferation index in both WT and MT-null mice, as determined by argyrophilic nucleolar organizing region staining and proliferating cell nuclear antigen immunohistochemical staining, reached a peak at 48 hrs and declined by 60 hrs after PH. Cell proliferation was significantly less in MT-null mice as compared to WT mice during liver regeneration after PH. These results suggest that MT may play a positive role in hepatic regeneration after PH.  相似文献   

7.
Metallothionein and liver cell regeneration   总被引:2,自引:0,他引:2  
  相似文献   

8.
A novel role for zinc mediated by metallothionein (MT) is found in the process of differentiation of 3T3L1 mouse fibroblasts to adipocytes. Twenty-four hours after the stimulation of differentiation by hormones, the cells enter into a phase of synchronous proliferation. In this phase the cellular contents of zinc and metallothionein rise rapidly to fivefold and threefold levels, respectively. Simultaneously MT is translocated from the cytoplasm to the nucleus. The rise of intracellular zinc is essential for the transition from G0/G1- to S-phase of the cell cycle. Deprivation of zinc with N,N,N', N'-tetrakis[2-pyridyl]ethylenediamine, a membrane-permeable zinc chelator, inhibited hormonal induced proliferation. After the short phase of proliferation a slower stage of actual differentiation to adipocytes begins. The elevated levels of MT and zinc decline quickly to start levels, and a rapid redistribution of MT to the cytoplasm occurs. We propose that the nuclear translocation of MT mediates the transfer of zinc to nuclear factors in the mitogenic process. The redistribution of MT to the cytoplasm and the decrease of the zinc content are postulated to be required for the start of the actual differentiation.  相似文献   

9.
Metallothioneins (MTs) have an important role in zinc homeostasis and may counteract the impact of oversupply. Both intracellular zinc and MT expression have been implicated in proliferation control and resistance to cellular stress, although the interdependency is unclear. The study addresses the consequences of a steady-state overexpression of MT-1 for intracellular zinc levels, cell cycle progression, and protection from zinc toxicity using a panel of cell lines with differential expression of MT-1. The panel comprised parental Chinese hamster ovary-K1 cells with low endogenous expression of MT and transfectants with enhanced expression of mouse MT-1 on an autonomously replicating expression vector with a noninducible promoter. Cell cycle progression, determined by flow cytometry and time-lapse microscopy, revealed that enhanced cytoplasmic expression of MT-1 does not impact on normal cell cycle operation, suggesting that basal levels of MT-1 expression are not limiting for background levels of oxidative stress. MT-1 overexpression correlated with a steady-state increase in cytoplasmic free Zn(2+), assessed using the fluorescent zinc-sensor Zinquin, particularly at high levels of overexpression, further suggesting that zinc availability is normally not limiting for cell cycle progression. Enhanced MT-1 expression, over a 10-fold range, had a clear impact on resistance to Cd(2+) and Zn(2+) toxicity. In the case of Zn(2+), the degree of protection afforded was less, indicating that MT-1 has a limited range and saturable capacity for effecting resistance. The results have implications for the use of cellular stress responses to exogenously supplied zinc and zinc-based systemic therapies.  相似文献   

10.
The changes in subcellular localization of metallothionein during differentiation were studied in two myoblast cell lines, L6 and H9C2. Addition of insulin like growth factor-I or lowering foetal bovine serum to 1% can induce differentiation of myoblasts to myotubes. Metallothionein and zinc were localized mainly in the cytoplasm in myoblasts but were translocated into the nucleus of newly formed myotubes during early differentiation. In fully differentiated myotubes, metallothionein content was decreased with a cytoplasmic localization. Addition of an inhibitor of mitogen-activated protein kinase, PD 98059, did not affect differentiation but blocked nuclear translocation of metallothionein. LY 294092, an inhibitor of PI3 kinase, and rapamycin, an inhibitor of p70S6 serine/threonine kinase, abolished insulin-like growth factor-I induced differentiation of myoblasts, retained metallothionein in the cytoplasm, and decreased metallothionein content. These results demonstrate that the cytoplasmic-nuclear translocation of metallothionein occurs during the early stage of differentiation of myoblasts to myotubes and can be blocked by inhibition of certain signal transduction pathways. The transient nuclear localization of metallothionein and zinc may be related to a high requirement for zinc for metabolic activities during the early stage of differentiation.  相似文献   

11.
Metallothionein (MT) is thought to have an antioxidant function and is strongly expressed during activation of thermogenesis and increased oxidative stress in brown adipose tissue (BAT). Localization and regulation of MT expression in BAT was therefore investigated in rats and mice. Immunohistochemical analysis of BAT from rats exposed to 4 degrees C for 24 h showed that MT and uncoupling protein 1 (UCP1) were coexpressed in differentiated adipocytes, and both cytoplasmic and nuclear localization of MT was observed. Cold induction of MT-1 expression in BAT was also observed in mice. Administration of norepinephrine to rats and isoproterenol to mice stimulated MT and UCP1 expression in BAT, implying a sympathetically mediated pathway for MT induction. In mice, zinc, and particularly dexamethasone, induced MT-2 expression in BAT and liver. Surprisingly, zinc also induced UCP1 in BAT, suggesting that elevated zinc may induce thermogenesis. We conclude that expression of MT in mature brown adipocytes upon beta-adrenoceptor activation is consistent with a role in protecting against physiological oxidative stress or in facilitating the mobilization or utilization of energy reserves.  相似文献   

12.
Mrnp41 (hRae1p) is an evolutionarily highly conserved protein, which is a potential component of mRNP particles and plays a role in nuclear mRNA export. The protein is mainly localized at the nuclear pore complex, but is also associated with distinct nuclear domains and with a meshwork of numerous small particles in the cytoplasm (Kraemer and Blobel (1997): Proc. Natl. Acad. Sci. USA 91, 1519-1523). We show that the cytoplasmic pattern of mrnp41 is sensitive to treatment with the microtubule (MT)-depolymerizing drug nocodazole which causes disappearance of mrnp41 from the cell periphery and concentration around the nucleus. By immunofluorescence we demonstrate that mrnp41 colocalizes with MT in HeLa cells and displays an MT-like distribution in cultured neurons. Association of mrnp41 with MT is further demonstrated by copurification with MT from pig brain throughout several steps of polymerization and depolymerization. Separation of MT-associated proteins (MAPs) by phosphocellulose (PC) chromatography showed copurification of mrnp41 with MAPs. These data show an association of mrnp41 with MT and, moreover, demonstrate that an intact MT system is necessary for dispersion of mrnp41-containing particles to the cellular periphery. The essential role of mrnp41 in spindle pole separation and cell cycle progression may also be related to its ability to bind to MTs.  相似文献   

13.
Humans have seven APOBEC3 DNA cytosine deaminases. The activity of these enzymes allows them to restrict a variety of retroviruses and retrotransposons, but may also cause pro-mutagenic genomic uracil lesions. During interphase the APOBEC3 proteins have different subcellular localizations: cell-wide, cytoplasmic or nuclear. This implies that only a subset of APOBEC3s have contact with nuclear DNA. However, during mitosis, the nuclear envelope breaks down and cytoplasmic proteins may enter what was formerly a privileged zone. To address the hypothesis that all APOBEC3 proteins have access to genomic DNA, we analyzed the localization of the APOBEC3 proteins during mitosis. We show that APOBEC3A, APOBEC3C and APOBEC3H are excluded from condensed chromosomes, but become cell-wide during telophase. However, APOBEC3B, APOBEC3D, APOBEC3F and APOBEC3G are excluded from chromatin throughout mitosis. After mitosis, APOBEC3B becomes nuclear, and APOBEC3D, APOBEC3F and APOBEC3G become cytoplasmic. Both structural motifs as well as size may be factors in regulating chromatin exclusion. Deaminase activity was not dependent on cell cycle phase. We also analyzed APOBEC3-induced cell cycle perturbations as a measure of each enzyme’s capacity to inflict genomic DNA damage. AID, APOBEC3A and APOBEC3B altered the cell cycle profile, and, unexpectedly, APOBEC3D also caused changes. We conclude that several APOBEC3 family members have access to the nuclear compartment and can impede the cell cycle, most likely through DNA deamination and the ensuing DNA damage response. Such genomic damage may contribute to carcinogenesis, as demonstrated by AID in B cell cancers and, recently, APOBEC3B in breast cancers.  相似文献   

14.
Nuclear/cytoplasmic localization of Akt activity in the cell cycle   总被引:1,自引:0,他引:1  
Summary. The serine/threonine protein kinase Akt (also known as PKB) is a proto-oncogene and one of the most frequently hyperactivated kinases in human cancer. Its activation downstream of growth-factor-stimulated phosphatidylinositide-3′-OH kinase activity plays a role in the control of cell cycle, cell growth, apoptosis and cell energy metabolism. Akt phosphorylates some thousand downstream substrates, including typical cytoplasmic as well as nuclear proteins. Accordingly, it is not surprising that Akt activity can be found in both, the cytoplasm and the nucleus. Here we report the cell cycle regulation of nuclear and cytoplasmic Akt activity in mammalian cells. These data provide new insights into the regulation of Akt activity and have implications for future studies on the regulation of the wide variety of different nuclear and cytoplasmic Akt substrates.  相似文献   

15.
1. Dramatic interdependent changes in the intracellular concentrations of copper (Cu), zinc (Zn) and metallothionein (MT) in the liver of bank voles during the first 30 days of their life were observed.2. The post-mitochondrial Cu, Zn and MT (ZnMT) abruptly decreased between 1 and 3 days following birth but the nuclear MT (CuMT) and Cu increased at the same time, suggesting that Cu displaced Zn already bound to MT in the cytoplasm and subsequently the complex CuMT was translocated to the nuclei.3. The nuclear Cu concentration reached the highest level (62–71% of the total tissue Cu) in the period from day 3 to day 20 post-partum, just prior to and during a rapidly growing liver.4. The data indicate that MT and Cu may be involved in the hepatocyte proliferation.  相似文献   

16.
17.
1. The administration of dihydrotestosterone to rats orchidectomized 7 days previously stimulated the synthesis of nuclear receptor in prostatic cells several hours in advance of DNA synthesis and mitosis. 2. The synthesis of nuclear receptor is tightly coupled to cell proliferation; consequently, in resting cells, there is no further net synthesis of nuclear receptor above the maximum of approx. 8000 molecules/cell. 3. After orchidectomy a rapid decline in the concentration of free androgen in the nuceus and a slower decline in the concentration of nuclear receptor are observed. 4. Owing to the apparent scarcity of receptor-inactivating factors in the nucleus, and the inverse relationship between amounts of nuclear and cytoplasmic receptors, it is concluded that the nuclear receptor is discharged into the cytoplasm after orchidectomy. 5. The formation of the cytoplasmic receptor is an early event preceding the onset of cellular autolysis. 6. Regressing prostate develops the capacity to eliminate cytoplasmic receptor, and this capacity is retained by the regenerating prostate for at least 14 days. 7. The synthesis of nuclear receptor in early G1 phase may control the entry of cells into the cell cycle and the prolonged retention of receptor in the nucleus may prevent the activation of autophagic processes.  相似文献   

18.
Although generally regarded as functional in the cytoplasm, a number of microRNAs (miRNAs) have been found in the nucleus, possibly with a role in gene regulation. Here we report that, in fact, a substantial fraction of all human miRNAs are present in the nucleus of neural stem cells. Further, subsets of these miRNAs display consistently higher standardized rank in the nucleus than in the cytoplasm of these cells, as identified with an RT-qPCR technology and confirmed by microarray analysis. Likewise, other miRNAs display higher cytoplasmic standardized ranks. Three samples were partitioned into nuclear and cytoplasmic fractions in six assays for 373 miRNAs. From the 100 most highly expressed miRNAs, standard scores of nuclear and cytoplasmic concentrations were determined. Among those, 21 miRNAs had all three nuclear standard scores higher than all three cytoplasmic scores; likewise, 31 miRNAs had consistently higher cytoplasmic scores. Random concentrations would result in only five in each set. Remarkably, if one miRNA has a high standard score in a compartment, then other miRNAs having the same 5' seeds and certain similar 3' end patterns are also highly scored in the same way. That is, in addition to the seed sequence, 3' sequence similarity criteria identify families of mature miRNAs with consistently high nuclear or cytoplasmic expression.  相似文献   

19.
Utani K  Okamoto A  Shimizu N 《PloS one》2011,6(11):e27233
Micronucleation, mediated by interphase nuclear budding, has been repeatedly suggested, but the process is still enigmatic. In the present study, we confirmed the previous observation that there are lamin B1-negative micronuclei in addition to the positive ones. A large cytoplasmic bleb was found to frequently entrap lamin B1-negative micronuclei, which were connected to the nucleus by a thin chromatin stalk. At the bottom of the stalk, the nuclear lamin B1 structure appeared broken. Chromatin extrusion through lamina breaks has been referred to as herniation or a blister of the nucleus, and has been observed after the expression of viral proteins. A cell line in which extrachromosomal double minutes and lamin B1 protein were simultaneously visualized in different colors in live cells was established. By using these cells, time-lapse microscopy revealed that cytoplasmic membrane blebbing occurred simultaneously with the extrusion of nuclear content, which generated lamin B1-negative micronuclei during interphase. Furthermore, activation of cytoplasmic membrane blebbing by the addition of fresh serum or camptothecin induced nuclear budding within 1 to 10 minutes, which suggested that blebbing might be the cause of the budding. After the induction of blebbing, the frequency of lamin-negative micronuclei increased. The budding was most frequent during S phase and more efficiently entrapped small extrachromosomal chromatin than the large chromosome arm. Based on these results, we suggest a novel mechanism in which cytoplasmic membrane dynamics pulls the chromatin out of the nucleus through the lamina break. Evidence for such a mechanism was obtained in certain cancer cell lines including human COLO 320 and HeLa. The mechanism could significantly perturb the genome and influence cancer cell phenotypes.  相似文献   

20.
Zinc has been shown to have antioxidant actions, which may be due, in part, to induction of metallothionein (MT). Such induction can protect tissues against various forms of oxidative injury because MT can function as an antioxidant. The objective of this study was to investigate if zinc or MT induction by zinc could afford protection against CYP2E1-dependent toxicity. HepG2 cells overexpressing CYP2E1 (E47cells) were treated with 60 microM arachidonic acid (AA), which is known to be toxic to these cells by a mechanism dependent on CYP2E1, oxidative stress, and lipid peroxidation. E47 cells were preincubated overnight in the absence or presence of metals such as zinc or cadmium that can induce MT. The culture medium containing the metals was removed, AA was added, and cell viability determined after 24 h incubation. Preincubation overnight with 150 microM zinc sulfate or 5 microM cadmium chloride induced a 20- to 30-fold increase of MT2A mRNA; high levels of MT2A mRNA were maintained during the subsequent challenge period with AA, even after the zinc was removed. MT protein levels were increased about 4- to 5-fold during the overnight preincubation with zinc and a 20- to 30-fold increase was observed 24 h after zinc removal during the AA challenge. The treatment with zinc was associated with significant protection against the loss of cell viability caused by AA in E47 cells. The zinc pretreatment protected about 50% against the DNA fragmentation, cell necrosis, the enhanced lipid peroxidation and increased generation of reactive oxygen species, and the loss of mitochondrial membrane potential induced by AA treatment in E47 cells. CYP2E1 catalytic activity and components of the cell antioxidant defense system such as glutathione (GSH), glutathione-S-transferase (GST), glutathione peroxidase (GPX), catalase, Cu,Zn superoxide dismutase (SOD), and MnSOD were not altered under these conditions. Zinc preincubation also protected the E47 cells against BSO-dependent toxicity. When E47 cells were coincubated with zinc plus AA for 24 h (i.e., zinc was not removed, nor was there a preincubation period prior to challenge with AA), AA toxicity was increased. Thus, zinc had a direct pro-oxidant effect in this model and an indirect antioxidant effect, perhaps via induction of MT. MT may have potential clinical utility for the prevention or improvement of liver injury produced by agents known to be metabolized by CYP2E1 to reactive intermediates and to cause oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号