首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Within Spiralia, Gnathifera may represent the deepest branching lineage comprising the jaw worms Gnathostomulida and their sister group Micrognathozoa + Syndermata. Yet, very few nervous system studies have been conducted on this lineage of microscopic, jaw-bearing worms, limiting our understanding of the evolution of this organ system in Spiralia. The nervous system of representatives from all major groups of Gnathostomulida was here mapped using confocal laser scanning microscopy and immunohistochemistry. Their intra-epidermal, unsegmented nervous systems comprise an anterior brain and three to five ventral and two to four dorsal longitudinal nerves, connected by few transverse commissures. Neurites of the stomatogastric nervous system were found lining the pharynx and connecting to a prominent buccal ganglion. Supposedly, sensory ciliated cells in the pharynx and the gut were documented for the first time. Based on these morphological results, primary homologies of neural structures in Gnathostomulida and other Gnathifera were hypothesized and thereafter tested using parsimony. This first neurophylogeny of Gnathostomulida resulted in a topology congruent with molecular data, supporting the monophyly of Bursovaginoidea, Conophoralia, and Scleroperalia. From this topology, the evolution of the gnathostomulid nervous system was reconstructed. It suggests a specialization and diversification of cords and serotonin-like immunoreactive cell patterns from a plesiomorphic neuroarchitecture of three unsegmented nerve cords and a compact anterior brain and buccal ganglion. These plesiomorphic states resemble the nervous system of Micrognathozoa, and possibly the ancestral states of Spiralia.  相似文献   

2.
Sørensen, M. V. (2002). Phylogeny and jaw evolution in Gnathostomulida, with a cladistic analysis of the genera. — Zoologica Scripta, 31, 461–480.
The relationships between the genera in Gnathostomulida were investigated in a computerized cladistic analysis. The data matrix comprised 55 morphological characters of sensory structures, the reproductive systems, and the hard mouthparts. The cladistic analysis produced four almost identical most parsimonious trees. The four trees differed by having different topologies within the family Gnathostomulidae. Based on the obtained trees, the following was concluded: (1) Filospermoidea and Bursovaginoidea are both monophyletic; (2) Scleroperalia is paraphyletic; (3) all known families except Onychognathiidae (Sterrer 1972) are monophyletic; (4) Onychognathiidae emend. comprises the genera Nanognathia, Onychognathia, Rastrognathia, Valvognathia and Vampyrognathia ; (5) Paucidentulidae and Onychognathiidae emend. branch off in the lower part of Bursovaginoidea; (6) the following two clades are monophyletic and appear as sister groups: Problognathiidae−Gnathostomulidae−Austrognathiidae and Gnathostomariidae− Goannagnathia −Mesognathariidae−Clausognathiidae−Agnathiellidae. Based on the character optimization it was suggested that the gnathostomulid jaw evolved from a relatively simple ancestral jaw belonging to the compact type or the open lamellar type. The fused lamellar type evolved from the open lamellar type. The ancestral dentarium resembled the arc type and evolved along two different evolutionary paths into the basket type and the row type.  相似文献   

3.
Although morphological characters distinguishing echiniscid genera and species are well understood, the phylogenetic relationships of these taxa are not well established. We thus investigated the phylogeny of Echiniscidae, assessed the monophyly of Echiniscus, and explored the value of cuticular ornamentation as a phylogenetic character within Echiniscus. To do this, DNA was extracted from single individuals for multiple Echiniscus species, and 18S and 28S rRNA gene fragments were sequenced. Each specimen was photographed, and published in an open database prior to DNA extraction, to make morphological evidence available for future inquiries. An updated phylogeny of the class Heterotardigrada is provided, and conflict between the obtained molecular trees and the distribution of dorsal plates among echiniscid genera is highlighted. The monophyly of Echiniscus was corroborated by the data, with the recent genus Diploechiniscus inferred as its sister group, and Testechiniscus as the sister group of this assemblage. Three groups that closely correspond to specific types of cuticular design in Echiniscus have been found with a parsimony network constructed with 18S rRNA data. © 2013 The Linnean Society of London  相似文献   

4.
Volker Lammert 《Zoomorphology》1985,105(5):308-316
Summary The fine structure of the protonephridia of Haplognathia rosea (Filospermoidea) and Gnathostomula paradoxa (Bursovaginoidea) is described. Each protonephridium consists of three different cells: (1) a monociliated terminal cell which constitutes the filtration area, (2) a nonciliated canal cell showing a special protonephridial outlet system, and (3) an intraepidermal cell — the nephroporus cell — constituting the nephroporus. The protonephridia are arranged serially. There is no canal system connecting the protonephridial units.Protonephridial characters in other Bilateria are considered. The pattern of characters in the protonephridia in the last common gnathostomulid stem species and presumed apomorphies in the protonephridia of the Gnathostomulida investigated are discussed.Abbreviations used in figures ac acessory centriole - AC additional epidermal cell - bb basal body - bl basal lamina - bm bundle of microvilli - c cilium - cc cilium duct cell - cd cilium duct - cr ciliary rootlet - crs structures resembling ciliary rootlets - di diplosome - ds desmosome - dy dictyosome - f filtration area - g granules - m mitochondrium - mv microvillus - n nucleus - NC nephroporus cell - np nephroporus - oc outlet canal - TC terminal cell - tl tubules of lacunar system  相似文献   

5.
Reconstructing the phylogeny of the Sipuncula   总被引:9,自引:0,他引:9  
Sipunculans are marine spiralian worms with possible close affinities to the Mollusca or Annelida. Currently 147 species, 17 genera, 6 families, 4 orders and 2 classes are recognized. In this paper we review sipunculan morphology, anatomy, paleontological data and historical affiliations. We have conducted cladistic analyses for two data sets to elucidate the phylogenetic relationships among sipunculan species. We first analyzed the relationships among the 45 species of Phascolosomatidea with representatives of the Sipunculidea as outgroups, using 35 morphological characters. The resulting consensus tree has low resolution and branch support is low for most branches. The second analysis was based on DNA sequence data from two nuclear ribosomal genes (18S rRNA and 28S rRNA) and one nuclear protein-coding gene, histone H3. Outgroups were chosen among representative spiralians. In a third analysis, the molecular data were combined with the morphological data. Data were analyzed using parsimony as the optimality criterion and branch support evaluated with jackknifing and Bremer support values. Branch support for outgroup relationships is low but the monophyly of the Sipuncula is well supported. Within Sipuncula, the monophyly of the two major groups, Phascolosomatidea and Sipunculidea is not confirmed. Of the currently recognized families, only Themistidae appears monophyletic. The Aspidosiphonidae, Phascolosomatidae and Golfingiidae would be monophyletic with some adjustments in their definition. The Sipunculidae is clearly polyphyletic, with Sipunculus nudus as the sister group to the remaining Sipuncula, Siphonosoma cumanense the sister group to a clade containing Siphonosoma vastumand the Phascolosomatidea, and Phascolopsis gouldi grouping within the Golfingiiformes, as suggested previously by some authors. Of the genera with multiple representatives, only Phascolosoma and Themiste are monophyletic as currently defined. We are aiming to expand our current dataset with more species in our molecular database and more detailed morphological studies.  相似文献   

6.
The concept of monophyly of Plathelminthes and Plathelminthomorpha (Plathelminthes and Gnathostomulida) is critically re-analysed. Based on new morphological and molecular evidence, it is concluded that both taxa are paraphyletic assemblages. The Acoelomorpha (Xenoturbellida?, Nemertodermatida and Acoela) are considered as the earliest offshoot of the bilaterian stem line, primarily lacking paired cerebral ganglia, an orthogonal nervous system and ultrafiltration nephridia. They are followed by Plathelminthes sensu stricto (i.e. the rhabditophoran turbellarians and Neodermata), Catenulida, and Gnathostomulida, the latter group is probably the sister group of the Syndermata (Rotifera and Acanthocephala). The respective characters, as well as the implication for the proposed stem species of the Bilateria are outlined and discussed.  相似文献   

7.
The sturgeon subfamily Scaphirhynchinae contains two genera of obligate freshwater sturgeon: Scaphirhynchus and Pseudoscaphirhynchus, from North America and Central Asia, respectively. Both genera contain morphologically variable species. A novel data set containing multiple individuals representing four diagnosable morphological variants for two species of Pseudoscaphirhynchus, P. hermanni and P. kaufmanni, was generated. These data were used to test taxonomic hypotheses of monophyly for the subfamily Scaphirhynchinae, monophyly of both Scaphirhynchus and Pseudoscaphirhynchus, monophyly of P. hermanni and P. kaufmanni, and monophyly of the recognized morphological variants. Monophyly of the subfamily Scaphirhynchinae is consistently rejected by all phylogenetic reconstruction methodologies with the molecular character set while monophyly of both river sturgeon genera is robustly supported. The molecular data set also rejects hypotheses of monophyly for sampled species of Pseudoscaphirhynchus as well as monophyly for the recognized intraspecific morphological variants. Interestingly both Scaphirhynchus and Pseudoscaphirhynchus demonstrate the same general pattern in reconstructed topologies; a lack of phylogenetic structure in the clade with respect to recognized diversity. Despite rejection of monophyly for the subfamily Scaphirhynchinae with molecular data, reconstructed hypotheses from morphological character sets consistently support monophyly for this subfamily. Disparities among the data sets, as well as reasons for rejection of monophyly for Scaphirhynchinae and species of Scaphirhynchus and Pseudoscaphirhynchus with molecular characters are examined and a decreased rate of molecular evolution is found to be most consistent with the data.  相似文献   

8.
Relationships within Chilopoda (centipedes) are assessed based on 222 morphological characters, complete 18S rRNA sequences for 70 chilopod terminals, the D3 region of 28S rRNA for 65 terminals, 16S rRNA sequences for 54 terminals and cytochrome c oxidase subunit I sequences for 45 terminals. Morphological and molecular data for seven orders of Diplopoda are used to root cladograms for Chilopoda. Analyses use direct character optimization for 15 gap and substitution models. The Pleurostigmophora and Epimorpha s.l. hypotheses are largely stable to parameter variation for the combined data; the latter clade is formalized as the new taxon Phylactometria. The combined data include parameter sets that support either the monophyly of Epimorpha s.str. (=Scolopendromorpha + Geophilomorpha) or Craterostigmus + Geophilomorpha; the former derives its support from morphology and the nuclear ribosomal genes. Monophyly of Lithobiomorpha and the sister group relationship between Lithobiidae and Henicopidae are stable for morphological and combined data, and are also resolved for the molecular data for 14 of 15 parameter sets. The fundamental split in Scolopendromorpha is between Cryptopidae and Scolopendridae sensu Attems. Blind scolopendromorphs unite as a clade in most molecular and combined analyses, including those that minimize incongruence between data partitions. Geophilomorpha divides into Placodesmata and Adesmata under nine of 15 explored parameter sets.  相似文献   

9.
Molecular studies based on small subunit (SSU) rDNA sequences addressing euglenid phylogeny hitherto suffered from the lack of available data about phagotrophic species. To extend the taxon sampling, SSU rRNA genes from species of seven genera of phagotrophic euglenids were investigated. Sequence analyses revealed an increasing genetic diversity among euglenid SSU rDNA sequences compared with other well‐known eukaryotic groups, reflecting an equally broad diversity of morphological characters among euglenid phagotrophs. Phylogenetic inference using standard parsimony and likelihood approaches as well as Bayesian inference and spectral analyses revealed no clear support for euglenid monophyly. Among phagotrophs, monophyly of Petalomonas cantuscygni and Notosolenus ostium, both comprising simple ingestion apparatuses, is strongly supported. A moderately supported clade comprises phototrophic euglenids and primary osmotrophic euglenids together with phagotrophs, exhibiting a primarily flexible pellicle composed of numerous helically arranged strips and a complex ingestion apparatus with two supporting rods and four curved vanes. Comparison of molecular and morphological data is used to demonstrate the difficulties to formulate a hypothesis about how the ingestion apparatus evolved in this group.  相似文献   

10.
The phylogenetic relationships of 39 species of Eneopterinae crickets are reconstructed using four molecular markers (16S rRNA, 12S rRNA, cytochrome b, 18S rRNA) and a large morphological data set. Phylogenetic analysis via direct optimisation of DNA sequence data using parsimony as optimality criterion is done for six combinations of weighting parameter sets in a sensitivity analysis. The results are discussed in a twofold purpose: first, in term of significance of the molecular markers for phylogeny reconstruction in Ensifera, as our study represents the first molecular phylogeny performed for this insect suborder at this level of diversity; second, in term of corroboration of a previous phylogeny of Eneopterinae, built on morphological data alone. The four molecular markers all convey phylogenetic signal, although variously distributed on the tree. The monophyly of the subfamily, that of three over five tribes, and of 10 over 13 genera, are recovered. Finally, previous hypotheses on the evolution of acoustic devices and signals in the Eneopterinae clade are briefly tested, and supported, by our new data set.  相似文献   

11.
Partial 18S rRNA gene sequences of four macrodasyid and one chaetonotid gastrotrichs were obtained and compared with the available sequences of other gastrotrich species and representatives of various metazoan phyla. Contrary to the earlier molecular data, the gastrotrich sequences did not comprise a monophyletic group but formed two distinct clades, corresponding to the Macrodasyida and Chaetonotida, with the basal position occupied by the sequences of Tetranchyroderma sp. and Xenotrichula sp., respectively. Depending on the taxon sampling and methods of analysis, the two clades were separated by various combinations of clades Rotifera, Gnathostomulida, and Platyhelminthes, and never formed a clade with Nematoda. Thus, monophyly of the Gastrotricha is not confirmed by analysis of the presently available molecular data.  相似文献   

12.
Phylogenetic relationships within the Sclerosomatidae, the largest family of harvestmen, are explored using molecular data from four nuclear genes (28S and 18S rRNA, Histone 3 and Elongation factor-1α) and two mitochondrial gene regions (COI-COII, 16S and 12S rRNA). The taxon sample includes representative species from all families in Phalangioidea and all subfamilies of Sclerosomatidae (Gagrellinae, Gyinae, Leiobuninae, Sclerosomatinae). Our results solve several major taxonomic problems, including placement of Gyinae sensu stricto in Phalangiidae, the monophyly of the Metopilio group and its exclusion from Sclerosomatidae, and reaffirmation of the familial rank of Protolophidae. However, most major groups of sclerosomatids (Leiobuninae, Gagrellinae, Leiobunum, Nelima) are recovered as polyphyletic, although with a phylogenetic structure suggesting a strong association between geography and monophyly as well as notable morphological convergence in traditional diagnostic characters. Phylogenetic affinities between biotas of the New World and Asian tropics, as well as between temperate North American and East Asia, suggest that sclerosmatid historical biogeography may conform with the Boreotropic Concept. Finally, we discuss how the many problems that remain in sclerosomatid systematics might be addressed.  相似文献   

13.
A combined approach to the phylogeny of Cephalopoda (Mollusca)   总被引:2,自引:0,他引:2  
Cephalopoda represents a highly diverse group of molluscs, ranging in habitat from coastal regions to deep benthic waters. While cephalopods remain at the forefront of modern biology, in providing insight into fields such as neurobiology and population genetics, little is known about the relationships within the group. This study provides a comprehensive phylogenetic analysis of Cephalopoda (Mollusca) using a combination of molecular and morphological data. Four loci (three nuclear 18S rRNA, fragments of 28S rRNA and histone H3 and one mitochondrial cytochrome c oxidase subunit I) were combined with 101 morphological characters to test the relationships of 60 species of cephalopods, with emphasis within Decabrachia (squids and cuttlefishes). Individual and combined data sets were analyzed using the direct optimization method, with parsimony as the optimality criterion. Analyses were repeated for 12 different parameter sets accounting for a range of indel/change and transversion/transition cost ratios. Most analyses support the monophyly of Cephalopoda, Nautiloidea, Coleoidea and Decabrachia, however, the monophyly of Octobrachia was refuted due to the lack of support for a Cirroctopoda + Octopoda group. When analyzing all molecular evidence in combination and for total evidence analyses, Vampyromorpha formed the sister group to Decabrachia under the majority of parameters, while morphological data and some individual data sets supported a sister relationship between Vampyromorpha and Octobrachia. Within Decabrachia, a relationship between the sepioids Idiosepiida, Sepiida, Sepiolida and the teuthid Loliginidae was supported. Spirulida fell within the teuthid group in most analyses, further rendering Teuthida paraphyletic. Relationships within Decabrachia and specifically Oegopsida were found to be highly parameter‐dependent. © The Willi Hennig Society 2004.  相似文献   

14.
A phylogenetic and systematic study of Orius species (Heteroptera: Anthocoridae) from Korea has been conducted using both morphological and molecular characters. Thirty morphological character states were coded for 10 strains of 9 species. Five molecular markers, partial cytochrome c oxidase I (COI), cytochrome b (CytB), 16S rRNA (16S), 18S rRNA (18S), and 28S rRNA (28S), from mitochondrial and nuclear genes, were tested. Phylogenetic analyses based on molecular data were conducted by minimum evolution, maximum parsimony, maximum likelihood, and Bayesian phylogenetic (BP) analyses. Analysis of morphological data was performed using the parsimony programs NONA, and the combined dataset of morphological and molecular data was analyzed using BP analyses. The results of this study indicate that use of COI and CytB enabled relatively effective identification of species, whereas the sequences of 16S, 18S and 28S did not enable identification of closely related species such as Orius minutus and O. strigicollis. We discuss the usefulness of the five molecular markers for determining phylogenetic relationships and identifying the species.  相似文献   

15.
We have examined the molecular-phylogenetic relationships between nonmulberry and mulberry silkworm species that belong to the families Saturniidae, Bombycidae and Lasiocampidae using 16S ribosomal RNA (16S rRNA) and cytochrome oxidase subunit I (coxI) gene sequences. Aligned nucleotide sequences of 16S rRNA andcoxI from 14 silk-producing species were used for construction of phylogenetic trees by maximum likelihood and maximum parsimony methods. The tree topology on the basis of 16S rRNA supports monophyly for members of Saturniidae and Bombycidae. Weighted parsimony analysis weighted towards transversions relative to transitions (ts, tv4) forcoxI resulted in more robust bootstrap support over unweighted parsimony and favours the 16S rRNA tree topology. Combined analysis reflected clear biogeographic pattern, and agrees with morphological and cytological data.  相似文献   

16.
The existing taxonomy of Euryalida, one of the two orders of the Ophiuroidea (Echinodermata), is uncertain and characterized by controversial delimitation of taxonomic ranks from genus to family-level. Their phylogeny was not studied in detail until now. We investigated a dataset of sequence from a mitochondrial gene (16S rRNA) and two nucleic genes (18S rRNA and 28S rRNA) for 49 euryalid ophiuroids and four outgroup species from the order Ophiurida.The monophyly of the order Euryalida was supported as was the monophyly of Asteronychidae, Gorgonocephalidae and an Asteroschematidae + Euryalidae clade. However, the group currently known as the Asteroschematidae was paraphyletic with respect to the Euryalidae. The Asteroschematidae + Euryalidae clade, which we recognise as an enlarged Euryalidae, contains three natural groups: the Asteroschematinae (Asteroschema and Ophiocreas), a new subfamily Astrocharinae (Astrocharis) and the Euryalinae with remaining genera. These subfamilies can be distinguished by internal ossicle morphology.  相似文献   

17.
Suiformes (Artiodactyla) traditionally includes three families: Suidae, Tayassuidae, and Hippopotamidae but the monophyly of this suborder has recently been questioned from molecular data. A maximum parsimony analysis of molecular, morphological, and combined data was performed on the same set of taxa including representatives of the three Artiodactyla suborders (Suiformes, Ruminantia, and Tylopoda) and Perissodactyla as outgroup. Mitochondrial (cytochromeband 12S rRNA) sequence comparisons support the monophyly of Suina (Suidae and Tayassuidae) and Ancodonta (Hippopotamidae) but not the monophyly of Suiformes. Inversely, our preliminary morphological analysis supports the monophyly of Suiformes whereas relationships among the three families are not resolved. The combined data set does not resolve the relationships between Suina, Ancodonta, and Ruminantia. These results are discussed in relation to morphological characters and paleontological data. Some improvements are suggested to clarify the morphological definition of Suiformes and relationships among them.  相似文献   

18.
The phylogenetic relationships among the Japanese members of the genus Eubrianax (Coleoptera: Psephenidae) were examined using the mitochondrial cytochrome oxidase subunit I (COI) gene and nuclear 28S rRNA gene sequences. Based on the molecular phylogeny as well as morphological features, the species status of Eubrianax brunneicornis Nakane, 1952 was proposed. The phylogenetic analyses recovered monophyly of the previously proposed pellucidus species group with four Japanese species, whereas a single Japanese species of the granicollis group was included in the lineage of the ramicornis group with five Japanese species. The divergence times of the species were estimated by dating the phylogenetic tree against the fossil record and a molecular clock based on the COI gene. The divergence of the Japanese species was inferred to have occurred during the Pliocene epoch.  相似文献   

19.
The Thoosidae (Porifera, Demospongiae, Tetractinellida) currently includes the genera Thoosa, Alectona, and Delectona. To this date, molecular data are only available for Alectona. In this study, the phylogenetic affinities of the genera Thoosa and Alectona have been investigated with the species T. mismalolli, T. calpulli, and T. purpurea from the Mexican Pacific using morphology and three molecular loci: the mitochondrial cytochrome oxidase subunit 1 (CO1 mtDNA), 28S rRNA (fragment D2), and 18S rRNA. Morphology and embryology showed that these genera are quite different from the rest of the tetractinellids because larvae of Alectona and Thoosa have unique features in sponges, such as the presence of monaxonic discs in Thoosa and tetraxonic discs in Alectona which disappear in the adult stages. A phylogenetic analysis using selected species from the order Tetractinellida revealed that Thoosa groups with Alectona thus confirming morphological studies. The peculiarities in spiculation and embryology of the Thoosa and Alectona larvae, which are markedly different from species belonging to the suborders Astrophorina and Spirophorina and their distant phylogenetic position (based on three molecular loci), suggest that Thoosidae could be placed in the new suborder Thoosina.  相似文献   

20.
The genus Jesogammarus contains 16 species in two subgenera, Jesogammarus and Annanogammarus. To examine relationships among species in the genus, a molecular phylogenetic study including eight species of the former subgenus and four of the latter was conducted using partial DNA sequences of the mitochondrial COI and 12S rRNA genes. MP, NJ, and ML trees based on the combined COI and 12S data indicated monophyly of the subgenus Annanogammarus, though the monophyly of Jesogammarus was left unresolved. Consistent with few morphological differences, Jesogammarus (A.) naritai and J. (A.) suwaensis showed low genetic differentiation and did not show reciprocal monophyly, which suggests a close affinity of these taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号