首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 826 毫秒
1.
The discontinuous immunodominant region (IDR) recognized by autoantibodies directed against the thyroperoxidase (TPO) molecule, a major autoantigen in autoimmune thyroid diseases, has not yet been completely localized. By using peptide phage-displayed technology, we identified three critical motifs, LXPEXD, QSYP, and EX(E/D)PPV, within selected mimotopes which interacted with the human recombinant anti-TPO autoantibody (aAb) T13, derived from an antibody phage-displayed library obtained from thyroid-infiltrating TPO-selected B cells of Graves' disease patients. Mimotope sequence alignment on the TPO molecule, together with the binding analysis of the T13 aAb on TPO mutants expressed by Chinese hamster ovary cells, demonstrated that regions 353-363, 377-386, and 713-720 from the myeloperoxidase-like domain and region 766-775 from the complement control protein-like domain are a part of the IDR recognized by the recombinant aAb T13. Furthermore, we demonstrated that these regions were involved in the binding to TPO of sera containing TPO-specific autoantibodies from patients suffering from Hashimoto's and Graves' autoimmune diseases. Identification of the IDR could lead to improved diagnosis of thyroid autoimmune diseases by engineering "mini-TPO" as a target autoantigen or designing therapeutic peptides able to block undesired autoimmune responses.  相似文献   

2.
Human anti-thyroid peroxidase (TPO) autoantibodies (aAb) are generated during autoimmune thyroid diseases (AITD). Within recent years, increasing knowledge of the TPO-specific aAb repertoire, gained mainly by the use of combinatorial library methodology, has led to the cloning and sequencing of around 180 human anti-TPO aAb. Analysis of the immunoglobulin (Ig) variable (V) genes encoding the TPO aAb in the ImMunoGeneTics database (IMGT) (http://imgt.cines.fr) reveals major features of the TPO-directed aAb repertoire during AITD. Heavy chain VH domains of TPO-specific aAb from Graves' disease patients preferentially use D proximal IGHV1 genes, whereas those from Hashimoto's thyroiditis are characterized more frequently by IGHV3 genes, mainly located in the middle of the IGH locus. A large proportion of the anti-TPO heavy chain VH domains is obtained following a VDJ recombination process that uses inverted D genes. J distal IGKV1 and IGLV1 genes are predominantly used in TPO aAb. In contrast to the numerous somatic hypermutations in the TPO-specific heavy chains, there is only limited amino acid replacement in most of the TPO-specific light chains, particularly in those encoded by J proximal IGLV or IGKV genes, suggesting that a defect in receptor editing can occur during aAb generation in AITD. Among the predominant IGHV1 or IGKV1 TPO aAb, conserved somatic mutations are the hallmark of the TPO aAb repertoire. The aim of this review is to provide new insights into aAb generation against TPO, a major autoantigen involved in AITD.  相似文献   

3.
Thyroid peroxidase (TPO) autoantibody epitopes are largely restricted to an immunodominant region (IDR) on the extracellular region of the native molecule. Localization of the IDR has been a longstanding and difficult goal. The TPO extracellular region comprises a large myeloperoxidase-like domain, linked to the plasma membrane by two smaller domains with homology to complement control protein (CCP) and epidermal growth factor (EGF), respectively. Recent studies have focused on the CCP- and EGF-like domains as the putative location of the TPO autoantibody IDR. To address this issue, we attempted to express on the surface of transfected cells native TPO in which the CCP- and EGF-like domains were deleted, either together or individually. We used a quartet of human monoclonal autoantibodies that define the TPO IDR, as well as polyclonal TPO autoantibodies in patients' sera, to detect these mutated TPO molecules by flow cytometry. The combined CCP/EGF-like domain deletion did not produce a signal with TPO autoantibodies but did not traffic to the cell surface. In contrast, both monoclonal and polyclonal autoantibodies recognized TPO with the juxtamembrane EGF-like domain deleted equally as well as the wild-type TPO on the cell surface. TPO with the CCP-like domain deleted expressed normally on the cell surface, as determined using the polyclonal mouse antiserum. Nevertheless, this modified TPO molecule was recognized very poorly by both the human monoclonal autoantibodies and the polyclonal autoantibodies in patients' sera. In conclusion, we have clearly excluded the juxtamembrane EGF-like domain as being part of the IDR. In contrast, a component of the CCP-like domain does contribute to the IDR. These data, together with findings from other studies, localize the TPO autoantibody IDR to the junction of the CCP-like domain and the much larger myeloperoxidase-like domain on TPO.  相似文献   

4.
Autoantibodies directed against the thyroid peroxidase (TPO), the thyroid microsomal antigen, are widely used to diagnose human autoimmune thyroid disease. A cloned 3.088 kb cDNA coding for the entire mature human TPO was isolated from a cDNA library derived from a pathological thyroid gland of a Graves' disease patient and used further to generate a so-called TPO epitope cDNA library in order to map linear autoantigenic epitopes involving a recombinant molecular biology approach. The TPO epitope cDNA library consisting of randomly fragmented cDNA sequences inserted in the expression vector pGEX-2T was expressed in Escherichia coli and screened with characterized anti-TPO autoantisera from Hashimoto's disease patients. All the sera were positively tested with a purified thyroid microsomal antigen fraction (TMA/TPO). Only about 1% of examined autoantisera were able to recognize bacterial expressed recombinant TPO representing sequential antigenic determinants. A corresponding autoantigenic epitope with 61 amino acids in length was located at the C-terminus of human TPO.  相似文献   

5.
6.
The enzyme, thyroid peroxidase (TPO), is a dominant antigen in thyroid autoimmune diseases. Autoantibodies recognised two major dominant conformational epitopes termed A and B. The epitopes have been defined by mAbs, but the amino acid residues which constitute these determinants remain unknown. Using a model of TPO, built from the structure of myeloperoxidase (MPO), we have synthesised peptides corresponding to exposed loops and generated rabbit antibodies to the peptides. Antisera to peptide sequence 599-617 (peptide 14) representing a highly protrusive loop on the TPO, showed the highest inhibition in 65 sera from patients positive with anti-TPO antibodies. The inhibition was by 15-80% (mean 41%), and no other antibody showed any inhibition. Binding of hFabs to the B determinant on TPO was inhibited by anti-peptide 14 antibodies more then 85%, but not Fabs to the A determinant. In conclusion, the peptide 14 defines a sequence taking part in building up the B major conformational epitope. None of generated anti-peptide antibodies alone inhibited the binding of human Fabs to the A epitope, however a combination of four anti-peptide antibodies (P1, P12, P14 and P18) inhibits Fabs binding to the A determinant by more then 60% and autoantibodies binding from 65% to 94%. Combination of antibodies reacting with peptides outside the surface defined by those four antipeptide antibodies did not give any inhibition of Fabs to TPO. The inhibition of Fabs and auto Abs to TPO by this combination of anti-peptide Abs is the result of steric hindrance as none of these Abs individually inhibited auto Abs' or Fabs' binding to TPO. The four peptides define an area on the enzyme surface where the A and B major conformational epitopes are localised.  相似文献   

7.
We have previously determined that the C2-domain of human factor V (residues 2037-2196) is required for expression of cofactor activity and binding to phosphatidylserine (PS)-containing membranes. Naturally occurring factor V inhibitors and a monoclonal antibody (HV-1) recognized epitopes in the amino terminus of the C2-domain (residues 2037-2087) and blocked PS binding. We have now investigated the function of individual amino acids within the C2-domain using charge to alanine mutagenesis. Charged residues located within the C2-domain were changed to alanine in clusters of 1-3 mutations per construct. In addition, mutants W2063A, W2064A, (W2063, W2064)A, and L2116A were constructed as well. The resultant 30 mutants were expressed in COS cells using a B-domain deleted factor V construct (rHFV des B). All mutants were expressed efficiently based on the polyclonal antibody ELISA. The charged residues, Arg(2074), Asp(2098), Arg(2171), Arg(2174), and Glu(2189) are required for maintaining the structural integrity of the C2-domain of factor V. Four of these residues (Arg(2074), Asp(2098), Arg(2171), and Arg(2174)) correspond to positions in the factor VIII C-type domains that have been identified as point mutations in patients with hemophilia A. The epitope for the inhibitory monoclonal antibody HV-1 has been localized to Lys(2060) through Glu(2069) in the factor V C2-domain. The epitope for the inhibitory monoclonal antibody 6A5 is composed of amino acids His(2128) through Lys(2137). The PS-binding site in the factor V C2-domain includes amino acid residues Trp(2063) and Trp(2064). This site overlaps with the epitope for monoclonal antibody HV-1. These factor V C2-domain mutants should provide valuable tools for further defining the molecular interactions responsible for factor V binding to phospholipid membranes.  相似文献   

8.
Abstract

The enzyme, thyroid peroxidase (TPO), is a dominant antigen in thyroid autoimmune diseases. Autoantibodies recognised two major dominant conformational epitopes termed A and B. The epitopes have been defined by mAbs, but the amino acid residues which constitute these determinants remain unknown. Using a model of TPO, built from the structure of myeloperoxidase (MPO), we have synthesised peptides corresponding to exposed loops and generated rabbit antibodies to the peptides.

Antisera to peptide sequence 599–617 (peptide 14) representing a highly protrusive loop on the TPO, showed the highest inhibition in 65 sera from patients positive with anti-TPO antibodies. The inhibition was by 15–80% (mean 41%), and no other antibody showed any inhibition. Binding of hFabs to the B determinant on TPO was inhibited by anti-peptide 14 antibodies more then 85%, but not Fabs to the A determinant. In conclusion, the peptide 14 defines a sequence taking part in building up the B major conformational epitope.

None of generated anti-peptide antibodies alone inhibited the binding of human Fabs to the A epitope, however a combination of four anti-peptide antibodies (P1, P12, P14 and P18) inhibits Fabs binding to the A determinant by more then 60% and autoantibodies binding from 65% to 94%. Combination of antibodies reacting with peptides outside the surface defined by those four anti-peptide antibodies did not give any inhibition of Fabs to TPO.

The inhibition of Fabs and auto Abs to TPO by this combination of anti-peptide Abs is the result of steric hindrance as none of these Abs individually inhibited auto Abs' or Fabs' binding to TPO.

The four peptides define an area on the enzyme surface where the A and B major conformational epitopes are localised.  相似文献   

9.
In an attempt to explore the natural variable heavy and light chain (VH/VL) pairing of autoantibodies involved in Graves' disease, we constructed a phage-displayed Ab library obtained by in-cell PCR of thyroid-infiltrating cells. We report here the molecular cloning and characterization of human single-chain fragment variable regions (scFv) specific for thyroid peroxidase (TPO) generated from this library. On the basis of the nucleotide sequences, three different scFvs were obtained (ICA1, ICB7, and ICA5). All were encoded by genes derived from the VH1 and Vlambda1 gene families. Using BIACORE for epitope mapping and kinetic analysis, we showed that these scFvs exhibited high affinity (Kd = 1 nM) for TPO and recognized three different epitopes. The biological relevance of these scFvs as compared with serum anti-TPO autoantibodies was assessed by competition studies. Sera from all the 29 Graves' disease patients tested were able to strongly inhibit (60-100%) the binding of the 3 scFvs to TPO. These data demonstrate that the in-cell PCR library generated human anti-TPO scFvs that retained the VH/VL pairing found in vivo and that the different epitope specificities defined by these scFvs overlapped with those found in the sera of patients with autoimmune thyroid disease.  相似文献   

10.
Autoantibodies to thyroid peroxidase (TPO) are the hallmark of the humoral autoimmune response in human autoimmune thyroiditis (Hashimoto's thyroiditis). The majority of TPO autoantibodies in individual patients' sera interact with a restricted immunodominant region on TPO. Although this region can be mapped, previous studies have failed to localize its position on the TPO molecule. We, therefore, used a footprinting approach that can localize a highly conformational, discontinuous epitope on a very large molecule. Extensive biotinylation ( approximately 15 biotins/molecule protein) of lysine residues on the surface of purified, native TPO resulted in loss of multiple tryptic cleavage sites, as determined by analysis of tryptic polypeptide fragments on reverse-phase HPLC. TPO was then complexed with a monoclonal human autoantibody Fab (TR1.9) before biotinylation. After dissociation from TR1.9, TPO was recovered by gel filtration. A trypsin site, previously observed to be lost after TPO biotinylation, was restored when biotinylation was performed on the TPO-TR1.9 complex. The epitope-protected lysine (K) was present in a 30-aa TPO fragment that, by N-terminal sequencing, was found to be K713. Altered recognition by TR1.9 of a TPO-myeloperoxidase chimeric molecule involving this region supported the epitope protection data. In conclusion, we provide the first identification of an amino acid residue (K713) comprising part of an epitope within the TPO immunodominant region. This focal residue localizes the facet on the large, highly complex TPO molecule that contains the immunodominant region and provides the basis for rational guided mutagenesis studies to more fully characterize this region.  相似文献   

11.
Yong-Biao J  Islam MN  Sueda S  Kondo H 《Biochemistry》2004,43(19):5912-5920
To clarify the mechanism of carboxyl transfer from carboxylbiotin to pyruvate, the following conserved amino acid residues present in the carboxyl transferase domain of Bacillus thermodenitrificans pyruvate carboxylase were converted to homologous amino acids: Asp543, Glu576, Glu592, Asp649, Lys712, Asp713, and Asp762. The carboxylase activity of the resulting mutants, D543E, E576D, E576Q, E592Q, D649N, K712R, K712Q, D713E, D713N, D762E, and D762N, was generally less than that of the wild type from mutation, but it decreased the most to 5% or even less than that of the wild type with D543E, D576Q, D649N, K712R, and K712Q. The decrease in activity observed for Asp543, Asp649, and Lys712 mutants was not for structural reasons because their structures seemed to remain intact as assessed by gel filtration and circular dichroism. On the basis of these data, a mechanism is proposed where Lys712 and Asp543 serve as the key acid and base catalyst, respectively.  相似文献   

12.
We previously reported that, in human heat shock protein (Hsp) 90 (hHsp90), there are 4 highly immunogenic sites, designated sites Ia, Ib, Ic, and II. This study was performed to further characterize their epitopes and to identify the epitope that is potentially common to all members of the Hsp90 family. Panning of a bacterial library carrying randomized dodecapeptides revealed that Glu251-Ser-X-Asp254 constituted site Ia and Pro295-Ile-Trp-Thr-Arg299, site Ic. Site II (Asp701-Pro717) was composed of several epitopes. When 19 anti-hHsp90 monoclonal antibodies (mAbs) were subjected to immunoblotting against recombinant forms of 7 Hsp90-family members, 2 mAbs (K41110 and K41116C) that recognized site Ic bound to yeast Hsp90 with affinity identical to that for hHsp90, and 1 mAb (K3729) that recognized Glu222-Ala23, of hHsp90beta could bind to human 94-kDa glucose-regulated protein (Grp94), an endoplasmic reticulum paralog of Hsp90. Among the 5 amino acids constituting site Ic, Trp297 and Pro295 were essential for recognition by all anti-site-Ic mAbs, and Arg299 was important for most of them. The necessity of Ile296, Thr298, and Arg299, which are replaced by Leu, Met/Leu, and Lys, respectively, in some eukaryotic Hsp90, was dependent on the mAbs, and K41110 and K41116C could react with Hsp90s carrying these substitutions. From these data taken together, we propose that the pentapeptide Pro295-Ile-Trp-Thr-Arg299 of hHsp90 functions as an immunodominant epitope common to all eukaryotic Hsp90.  相似文献   

13.
The sequence of 10 amino acids (ICSDKTGTLT357) at the site of phosphorylation of the rabbit fast twitch muscle Ca2+-ATPase is highly conserved in the family of cation-transporting ATPases. We changed each of the residues flanking Asp351, Lys352, and Thr353 to an amino acid differing in size or polarity and assayed the mutant for Ca2+ transport activity and autophosphorylation with ATP or P1. We found that conservative changes (Ile----Leu, Thr----Ser, Gly----Ala) or the alteration of Cys349 to alanine did not destroy Ca2+ transport activity or phosphoenzyme formation, whereas nonconservative changes (Ile----Thr, Leu----Ser) did disrupt function. These results indicate that very conservative changes in the amino acids flanking Asp351, Lys352, and Thr353 can be accommodated. A number of mutations were also introduced into amino acids predicted to be involved in nucleotide binding, in particular those in the conserved sequences KGAPE519, RDAGIRVIMITGDNK629, and KK713. Our results indicate that amino acids KGAPE519, Arg615, Gly618, Arg620, and Lys712-Lys713 are not essential for nucleotide binding, although changes to Lys515 diminished Ca2+ transport activity but not phosphoenzyme formation. Changes of Gly626 and Asp627 abolished phosphoenzyme formation with both ATP and Pi, indicating that these residues may contribute to the conformation of the catalytic center.  相似文献   

14.
A distribution of immunoglobulin G (IgG) subclass of anti-thyroid peroxidase (TPO) autoantibodies was studied to know whether anti-TPO autoantibodies are closely implicated in the pathogenesis of human autoimmune thyroid diseases. As a result of analyzing 14 patients' sera, 7 with Graves' disease and 7 with Hashimoto's thyroiditis, anti-TPO autoantibodies were found to consist of mainly IgG1 subclass. Percentages of both IgG1 and IgG2 subclasses in IgG class of autoantibodies corresponded to those in the normal serum composition, whereas IgG3 subclass was scarcely contained in anti-TPO autoantibodies and IgG4 subclass markedly increased. It was thought that anti-TPO autoantibodies had a capability to lyse thyroid follicular cells by the mechanism of antibody-dependent complement-mediated cytolysis, because IgG1 and IgG2 subclasses of antibodies can fix complement and TPO locates in apical membrane surface of thyroid follicular cells. Comparing Graves' disease with Hashimoto's thyroiditis, mean percentages of both IgG1 and IgG2 subclasses of 2 groups were statistically different. Namely, sera of patients with Graves' disease had higher and lower mean percentages of IgG1 and IgG2 subclasses of autoantibodies, respectively, than those with Hashimoto's thyroiditis, though no plausible explanation for these differences can be offered at the present time.  相似文献   

15.
Computer analysis of the crystallographic structure of the A subunit of Escherichia coil heat-labile toxin (LT) was used to predict residues involved in NAD binding, catalysis and toxicity. Following site-directed mutagenesis, the mutants obtained could be divided into three groups. The first group contained fully assembled, non-toxic new molecules containing mutations of single amino acids such as Val-53 → Glu or Asp, Ser-63 → Lys, Val-97 → Lys, Tyr-104 → Lys or Asp, and Ser-14 → Lys or Glu. This group also included mutations in amino acids such as Arg-7, Glu-110 and Glu-112 that were already known to be important for enzymatic activity. The second group was formed by mutations that caused the collapse or prevented the assembly of the A subunit: Leu-41 → Phe, Ala-45 → Tyr or Glu, Val-53 → Tyr, Val-60 → Gly, Ser-68 → Pro, His-70 → Pro, Val-97 → Tyr and Ser-114 → Tyr. The third group contained those molecules that maintained a wild-type level of toxicity in spite of the mutations introduced: Arg-54 → Lys or Ala, Tyr-59 → Met, Ser-68 → Lys, Ala-72 → Arg, His or Asp and Arg-192 → Asn. The results provide a further understanding of the structure–function of the active site and new, non-toxic mutants that may be useful for the development of vaccines against diarrhoeal diseases.  相似文献   

16.
Thyroid peroxidase (TPO) is a 933 amino acid residue, heme-containing, integral membrane glycoprotein that catalyzes two steps in the maturation of the thyroid hormone precursor. As with other peroxidases, these reactions require hydrogen peroxide and initial enzyme oxidation. Previous researchers studied the oxidative state of the TPO heme moiety using spectrophotometric and catalytic analyses. We use a novel antiserum to 5,5-dimethyl-1-pyrroline N-oxide (DMPO) to detect radical-derived DMPO spin-trapped TPO. Our work reveals that TPO generates radical adducts in the presence of H2O2, but that the generation of these adducts can be suppressed by the addition of substrates and inhibitors. Chemical alteration of the tyrosine residues of TPO greatly reduces the generation of TPO-DMPO adducts. Iodide strongly suppresses the H2O2-generated production of TPO radical adducts and protects the enzyme from loss of enzyme activity. Because the normal catalytic mechanism of TPO involves the production of radical species, TPO is potentially more susceptible to oxidative damage than most enzymes which do not require H2O2 as a substrate. We hypothesize that oxidatively damaged TPO may trigger the production of anti-TPO autoantibodies, resulting in the development of autoimmune thyroid disorders. Evidence that correlates iodine deficiencies with development of thyroid autoimmune disorders supports this conjecture.  相似文献   

17.
Site-specific mutagenesis of the sarcoplasmic reticulum Ca(2+)-ATPase was used to investigate the functional roles of 18 amino acid residues located at or near the "hinge-domain," a highly conserved region of the cation-transporting ATPases. Mutation of Lys684 to arginine, alanine, histidine, and glutamine resulted in complete loss of calcium transport function and ATPase activity. For the Lys684----Ala, histidine, and glutamine mutants, this coincided with a loss of the ability to form a phosphorylated intermediate from ATP or Pi. The Lys684----Arg mutant retained the ability to phorphorylate from ATP with normal apparent affinity, demonstrating the importance of the positive charge. On the other hand, no phosphorylation was observed with Pi as substrate in this mutant. Examination of the partial reactions after phosphorylation from ATP in the Lys684----Arg mutant demonstrated a reduction of the rate of transformation of the ADP-sensitive phosphoenzyme intermediate (E1P) to the ADP-insensitive phosphoenzyme intermediate (E2P), which could account for the loss of transport function. Once accumulated, the E2P intermediate was able to decompose rapidly in the presence of K+ at neutral pH. These results may be interpreted in terms of a preferential destabilization of protein phosphate interactions in the E2P form of this mutant. The Asp703----Ala and Asn-Asp707----Ala-Ala mutants were completely inactive and unable to form phosphoenzyme intermediates from ATP or Pi. In these mutants as well as in the Lys684----Ala mutant, nucleotides were found to protect with normal affinity against intramolecular cross-linking induced with glutaraldehyde, indicating that the nucleotide binding site was intact. Mutation of Glu646, Glu647, Asp659, Asp660, Glu689, Asp695, Glu696, Glu715, and Glu732 to alanine did not affect the maximum rates of calcium transport and ATP hydrolysis or the apparent affinities for calcium and ATP. Mutation of the 2 highly conserved proline residues, Pro681 and Pro709, as well as Lys728, to alanine resulted in partially inhibited Ca(2+)-ATPase enzymes with retention of the ability to form a phosphoenzyme intermediate from ATP or Pi and with normal apparent affinities for ATP and calcium. The proline mutants retained the biphasic ATP concentration dependence of ATPase activity, characteristic of the wild-type, and therefore the partial inhibition of turnover could not be ascribed to a disruption of the low affinity modulatory ATP site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
A structure-activity relationship study of human interleukin-3 (huIL-3) was performed by functional analysis of huIL-3 deletion and substitution variants combined with epitope mapping of huIL-3 specific neutralizing monoclonal antibodies (mAb). Analysis of the huIL-3 variants was accomplished by defining their capacity to compete with wild-type huIL-3 for binding to the huIL-3 receptor and to induce the proliferation of the huIL-3 dependent cell line M-O7. HuIL-3 variants with either 14 amino acids (aa) deleted from the N-terminus or eight aa from the C-terminus retained full biological activity in vitro. An huIL-3 variant, with 18 N-terminal aa deleted, exhibited a greater than 7-fold reduced receptor binding capacity and proliferative activity. No biological activity could be detected with a variant where 22 C-terminal aa have been deleted. Neutralizing mAb recognizing presumed discontinuous epitopes failed to interact with the latter deletion variant indicating a possible location of their epitopes within the C-terminal region. Computer-aided structure prediction and sequence homology analysis of this region indicated the presence of an amphiphilic alpha-helix with highly conserved residues like Lys110 and Leu111. Substitution of Lys110 with either Glu or Ala resulted in variants with a 10-fold reduced activity in the receptor binding assay and the proliferation assay. Further variants, where Leu111 was substituted by Pro or Met, were totally inactive in these assays. Analysis of the binding of the two neutralizing mAb to these substitution variants showed that they did not bind to either of the Leu111 variants suggesting that Leu111 is part of an active site. Based on our results, a possible model for the structure of the huIL-3 molecule can be constructed with two active sites in close proximity.  相似文献   

19.
ObjectiveTo identify the prevalence of autoimmune thyroid disease (AITD) in Asian Indian patients with vitiligo and to compare the clinical profile between thyroid peroxidase (TPO) antibody-positive and TPO antibodynegative groups.MethodsIn this cross-sectional, case-controlled study, 50 patients with vitiligo (29 women and 21 men) were included. Patients with previous disorders, irradiation, or surgical procedures involving the thyroid were excluded from the study. All participants underwent a complete physical examination, and a single fasting blood sample was analyzed for thyroid function (triiodothyronine, thyroxine, thyroid-stimulating hormone, and TPO and thyroglobulin antibodies), inflammatory and immunologic markers (erythrocyte sedimentation rate, C-reactive protein, and rheumatoid factor), and serum calcium, phosphorus, and alkaline phosphatase concentrations. All patients underwent thyroid ultrasonography, and the data were analyzed by appropriate statistical methods.ResultsThe mean age of the study participants was 42.7 ± 17 years, and 14 of 50 patients (28%) had TPO antibody positivity. A goiter was present in 11 of 50 patients, and the thyroid volume by ultrasonography was similar between the 2 groups. Subclinical hypothyroidism was found in 14 of 50 patients (28%) but more frequently in the TPO antibody-positive group (8 of 14 or 57%) than in the TPO antibody-negative group (6 of 36 or 17%). The prevalence of AITD was 20 of 50 patients (40%) when the TPO antibody-positive group and those with subclinical hypothyroidism were considered collectively. None of the patients had overt hypothyroidism or hyperthyroidism. All other clinical, biochemical, and inflammatory variables did not differ significantly between the TPO antibody-positive and antibody-negative groups.ConclusionOur data showed a 40% prevalence of thyroid disease in patients with vitiligo in India. The risk is exacerbated in patients with thyroid autoimmunity; thus, regular screening of patients with vitiligo for AITD is needed. (Endocr Pract. 2012;18:194-199)  相似文献   

20.
Thymidylate synthase (TS) catalyzes methylation of dUMP to dTMP and is the target of cancer chemotherapeutic agents (e.g. 5-fluorouracil). Here, we used error-prone PCR to mutagenize the full-length human TS cDNA and then selected mutants resistant to 5-fluorodeoxyuridine in a bacterial complementation system. We found that resistant mutants contained 1-5 amino acid substitutions and that these substitutions were located along the entire length of the polypeptide. Mutations were frequent near the active site Cys(195) and in the catalytically important Arg(50) loop; however, many mutations were also distributed throughout the remainder of the cDNA. Mutants containing a single amino acid replacement identified the following 14 residues as unreported sites of resistance: Glu(23), Thr(51), Thr(53), Val(84), Lys(93), Asp(110), Asp(116), Pro(194), Ser(206), Met(219), His(250), Asp(254), Tyr(258), and Lys(284). Many of these residues are distant from the active site and/or have no documented function in catalysis or resistance. We conclude that mutations distributed throughout the linear sequence and three-dimensional structure of human TS can confer resistance to 5-fluorodeoxyuridine. Our findings imply that long range interactions within proteins affect catalysis at the active site and that mutations at a distance can yield variant proteins with desired properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号