首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From 1996 to 2002, we measured litterfall, standing litter crop, and litter turnover rates in scrub, basin, fringe and riverine forests in two contrasting mangrove ecosystems: a carbonate-dominated system in the Southeastern Everglades and a terrigenous-dominated system in Laguna de Terminos (LT), Mexico. We hypothesized that litter dynamics is driven by latitude, geomorphology, hydrology, soil fertility and soil salinity stress. There were significant temporal patterns in LT with litterfall rates higher during the rainy season (2.4 g m−2 day−1) than during the dry season (1.8 g m−2 day−1). Total annual litterfall was significantly higher in the riverine forest (12.8 Mg ha−2 year−1) than in the fringe and basin forests (9.7 and 5.2 Mg ha−2 year−1, respectively). In Southeastern Everglades, total annual litterfall was also significantly higher during the rainy season than during the dry season. Spatially, the scrub forest had the lowest annual litterfall (2.5 Mg ha−2 year−1), while the fringe and basin had the highest (9.1 and 6.5 Mg ha−2 year−1, respectively). In LT, annual standing litter crop was 3.3 Mg ha−1 in the fringe and 2.2 Mg ha−1 in the basin. Litter turnover rates were significantly higher in the fringe mangrove forest (4.1 year−1) relative to the basin forests (2.2 year−1). At Southeastern Everglades there were significant differences in annual standing litter crop: 1.9, 3.3 and 4.5 Mg ha−1 at scrub, basin and fringe mangrove sites, respectively. Furthermore, turnover rates were similar at both basin and fringe mangrove types (2.1 and 2.0 year−1, respectively) but significantly higher than scrub mangrove forest (1.3 year−1). These findings suggest that litter export is important in regulating litter turnover rates in frequently flooded riverine and fringe forests, while in infrequently flooded basin forests, in situ litter decomposition controls litter turnover rates.  相似文献   

2.
Tropical upper montane forests usually comprise trees of small stature with a relatively low aboveground productivity. In contrast to this rule, in the Cordillera de Talamanca (Costa Rica), tall trees (>35 m in height and more than 60 cm in diameter) are characteristic for the upper montane old-growth oak forests which are growing at an altitude of almost 3,000 m close to the alpine timberline. For these exceptional forests, productivity data are not yet available. In this study, we analyzed litterfall and its components (tree leaves, litter of epiphytic vascular and non-vascular plants, mistletoes, twigs and other canopy debris) in three forest stands belonging to different successional stages and related seasonal changes in litterfall to micrometeorological variables. The studied stands were early-successional forest (10–15-year-old), mid-successional forest (40-year-old), and old-growth forest. The stands are dominated by Quercus copeyensis and are located at 2,900-m altitude. Total litterfall was highest in the mid-successional forest (1,720 g m−2 y−1), and reached 1,288 g m−2 y−1 in the old-growth forest and 934 g m−2 y−1 in the early-successional forest. Litter mass was dominated by leaves in all stages (56–84% of total litterfall). In the old-growth forest, however, twigs and small canopy debris particles (33%), epiphytes (6%), and mistletoes (5%) also contributed substantially to litter mass. Leaf litterfall showed a clear seasonal pattern with a negative correlation to monthly precipitation and highest values in the dry season (January–April). However, the strongest correlation existed with minimum air temperature (negative), probably because temperatures already dropped at the end of the rainy season, when precipitation had not yet declined and leaf shedding already increased. In contrast, litterfall of epiphyte mass, and twigs and other debris was mostly dependent on occasional strong winds. We conclude that the upper montane oak forests of the Cordillera de Talamanca are exceptional with respect to the large tree size and the relatively high productivity as indicated by litterfall. Litter mass was especially high in the mid-successional and old-growth forests, where the observed annual totals are among the highest recorded for tropical forests so far.  相似文献   

3.
中亚热带4种森林凋落物量、组成、动态及其周转期   总被引:7,自引:0,他引:7  
郭婧  喻林华  方晰  项文化  邓湘雯  路翔 《生态学报》2015,35(14):4668-4677
为研究亚热带次生林保护对森林生态系统养分循环等功能过程的影响。采用凋落物直接收集法,比较湘中丘陵区3种次生林(马尾松+石栎针阔混交林、南酸枣落叶阔叶林、石栎+青冈常绿阔叶林)和杉木人工林的凋落物量、组成特征及其周转期。结果表明:4种林分年凋落物量在414.4—818.2 g m-2a-1之间,3种次生林显著高于杉木人工林,3种次生林两两之间差异不显著,落叶对林分凋落物量的贡献最大,占林分凋落物量的59.9%—66.6%。杉木人工林和南酸枣落叶阔叶林的凋落物量月动态变化呈"双峰型",马尾松+石栎针阔混交林、石栎+青冈常绿阔叶林呈"不规则型"。优势树种的凋落物量对其林分凋落物量的贡献随林分树种多样性的增加而下降,杉木、马尾松凋落物量的月动态与其林分凋落物量的月动态基本呈一致变化趋势,但南酸枣、青冈、石栎没有一致的变化趋势。杉木人工林凋落物分解率最低(0.31),周转期最长(3.2 a),南酸枣落叶阔叶林分解率最高(0.45),周转期最低(2.2 a),凋落物的分解速率和周转随林分树种多样性增加而加快。可见,次生林凋落物量大,且分解快,周转期短,有利于养分归还和具有良好地力维持的能力。  相似文献   

4.
Evaluation of litterfall production is important for understanding nutrient cycling, forest growth, successional pathways, and interactions with environmental variables in forest ecosystems. Litterfall was intensively studied during the period of 1982–2001 in two subtropical monsoon vegetation gradients in the Dinghushan Biosphere Reserve, Guangdong Province, China. The two gradients include: (1) a successional gradient composed of pine forest (PF), mixed pine and broadleaved forest (MF) and monsoon evergreen broadleaved forest (BF), and (2) an altitudinal gradient composed of Baiyunci ravine rain forest (BRF), Qingyunci ravine rain forest (QRF), BF and mountainous evergreen broadleaved forest (MMF). Mean annual litterfall production was 356, 861 and 849 g m−2 for PF, MF and BF of the successional gradient, and 1016, 1061, 849 and 489 g m−2 for BRF, QRF, BF and MMF of the altitudinal gradient, respectively. As expected, mean annual litterfall of the pioneer forest PF was the lowest, but rapidly increased over the observation period while those in other forests were relatively stable, confirming that forest litterfall production is closely related to successional stages and growth patterns. Leaf proportions of total litterfall in PF, MF, BF, BRF, QRF and MMF were 76.4%, 68.4%, 56.8%, 55.7%, 57.6% and 69.2%, respectively, which were consistent with the results from studies in other evergreen broadleaved forests. Our analysis on litterfall monthly distributions indicated that litterfall production was much higher during the period of April to September compared to other months for all studied forest types. Although there were significant impacts of some climate variables (maximum and effective temperatures) on litterfall production in some of the studied forests, the mechanisms of how climate factors (temperature and rainfall) interactively affect litterfall await further study.  相似文献   

5.
The objective of this study was to investigate litter production, litter standing crop and nutrient return to soil in a semi-arid southern African savanna in Bulawayo, Zimbabwe. We used a randomized block design with five blocks of 100 × 100 m demarcated in a 10-ha pocket of Colophospermum mopane-dominated open woodland protected from grazing and fire. Litter traps were installed beneath large (8.3 m crown diameter) and small mopane trees (2.7 m crown diameter) and in the intercanopy area, representing 27, 3 and 62% of the woodland area, respectively. Mean annual total litterfall over 2 years of observations was 197, 83 and 35 g m−2 yr−1 beneath large and small trees as well as in the intercanopy area, respectively. Leaf proportions of total litterfall beneath large and small trees and in the intercanopy area were 68.6, 73.0 and 75.3%, respectively. Litterfall followed a uni-modal distribution pattern and was much higher during the period of May–September (dry period) compared to other months. The total potential annual element inputs via litterfall beneath large trees were 2 and 5 times greater than beneath small trees and in the intercanopy area, respectively. Total litter standing crop was 405, 177 and 67 g m−2 beneath large and small trees and in the intercanopy area, respectively. Concentrations of N, P and K in litterfall and surface soil were closely correlated with each other. At all sampling sites, element accession to soil through litterfall followed the decreasing sequence C > Ca > N > Mg > K > P. These results suggest that litterfall is a major process responsible for soil organic matter and nutrient enrichment beneath isolated trees in semi-arid savannas.  相似文献   

6.
This study compared litter production, litter decomposition and nutrient return in pure and mixed species plantations. Dry weight and N, P, K, Ca, Mg quantities in the litterfall were measured in one pure Cunninghamia lanceolata plantation (PC) and two mixed-species plantations of C. lanceolata with Alnus cremastogyne (MCA) and Kalopanax septemlobus (MCK) in subtropical China. Covering 6 years of observations, mean annual litter production of MCA (4.97 Mg·ha−1) and MCK (3.97 Mg·ha−1) was significantly higher than that of PC (3.46 Mg·ha−1). Broadleaved trees contributed 42% of the total litter production in MCA and 31% in MCK. Introduction of broadleaved tree species had no significant effect on litterfall pattern. Total litterfall was greatest in the dry season from November to March. Nutrient returns to the forest floor through leaf litter were significantly higher in both MCA and MCK than in PC (P < 0.05). The amounts of N, K, and Mg returned to the forest floor through leaf litter were highest in the MCA, and P and Ca returns were highest in the MCK. Percent contribution of broadleaf litter to total nutrient returns ranged from 41.7% to 86.9% in MCA and from 49.3% to 74.8% in MCK. The decomposition rate of individual leaf litter increased in the order: C. lanceolata < K. septemlobus < A. cremastogyne. Litter mixing had a positive effect on decomposition rate of the more recalcitrant litter and promoted nutrient return. Relative to mass loss of A. cremastogyne decomposing alone, higher mass loss of the mixture of C. lanceolata and A. cremastogyne was observed after 330 days of decomposition. These results indicate that mixed plantations of different tree species have advantages over monospecific plantations with regards to nutrient fluxes and these advantages have relevance to restoration of degraded sites. Responsible Editor: Alfonso Escudero.  相似文献   

7.
Dynamics of fine roots in five Chinese temperate forests   总被引:1,自引:0,他引:1  
We used a minirhizotron method to investigate spatial and temporal dynamics of fine roots (diameter ≤2 mm) in five Chinese temperate forests: Mongolian oak forest, aspen-birch forest, hardwood forest, Korean pine plantation and Dahurian larch plantation. Fine root dynamics were significantly influenced by forest type, soil layer, and sampling time. The grand mean values varied from 1.99 to 3.21 mm cm−2 (root length per minirhizotron viewing area) for the fine root standing crop; from 6.7 to 11.6 μm cm−2 day−1 for the production; and from 3.2 to 6.1 μm cm−2 day−1 for the mortality. All forests had a similar seasonal “sinusoidal” pattern of standing crop, and a “unimodal” pattern of production. However, the seasonal dynamics of the mortality were largely unsynchronized with those of the production. The minimum values of standing crop, production and mortality occurred in March for all forests, whereas the maximum values and occurrence time differed among forest types. The standing crop, production and mortality tended to decrease with soil depth. The different spatiotemporal patterns of fine roots among the forests highlight the need for forest-specific measurements and modeling of fine root dynamics and forest carbon allocation.  相似文献   

8.
Summary Measurements of litter fall and litter removal by crabs, in conjunction with estimates of litter decay by microbes and tidal export of litter from three high-intertidal mangrove forests were made during a year-long study in tropical northeastern Australia. In forests dominated by Ceriops tagal and Bruguiera exaristata, litter standing stocks remained low on the forest floor (mean 6 g·m-2), although litter fall was high; 822 and 1022 g·m-2·y-1, respectively. Sesarmid crabs removed 580 (Ceriops) and 803 (Bruguiera) g·m-2·y-1, or 71 and 79%, of the total annual litter fall from the forest floor. Relative to the rate of litter removal by crabs, microbial turnover of whole, unshredded litter was insignificant, accounting for <1% of annual litter fall. Export of litter by tides was estimated to remove 194 (Ceriops) and 252 (Bruguiera) g·m-2·y-1 or 24 and 25% of annual litter fall. In a forest dominated by Avicenniamarina, in which an ocypodid crab was more abundant than sesarmids, litter standing stocks were higher (mean 84 g·m-2) and crabs removed less litter; 173 g·m-2·y-1 or 33% of the annual litter fall of 519 g·m-2·y-1. Microbial turnover of intact litter was more important in the Avicennia forest (168 g·m-2·y-1 or 32% of annual litter fall), and tides exported 107 g·m-2·y-1 or 21% of litter production. In areas where sesarmid crabs were absent or rare in Ceriops forests, there were significantly higher standing stocks of litter and slower rates of leaf removal. Taking into account the probable assimilation efficiencies of sesarmid crabs feeding on mangrove leaves, we estimate that in Ceriops and Bruguiera forests leaf processing by crabs turns litter over at >75 times the rate of microbial decay alone, thus facilitating the high sediment bacterial productivity in these forests. The importance of litter processing by crabs increases with height in the intertidal in tropical Australia, in contrast to New World mangrove forests, where the reverse is true.Contribution No. 445 from the Australian Institute of Marine Science  相似文献   

9.
Understanding the spatial variability in plant litter processes is essential for accurate comprehension of biogeochemical cycles and ecosystem function. We assessed spatial patterns in litter processes from local to regional scales, at sites throughout the wet tropical rain forests of northern Australia. We aimed to determine the controls (e.g., climate, soil, plant community composition) on annual litter standing crop, annual litterfall rate and in situ leaf litter decomposability. The level of spatial variance in these components, and leaf litter N, P, Ca, lignin, α‐cellulose and total phenolics, was determined from within the scale of subregion, to site (1 km transects) to local/plot (~30 m2). Overall, standing crop was modeled with litterfall and its chemical composition, in situ decomposability, soil Na, and topography (r= 0.69, 36 plots). Litterfall was most closely aligned with plant species richness and stem density (negative correlation); leaf decomposability with leaf‐P and lignin, soil Na, and dry season moisture (r= 0.89, 40 plots). The predominant scale of variability in litterfall rates was local (plot), while litter standing crop and α‐cellulose variability was more evenly distributed across spatial scales. Litter decomposability, N, P and phenolics were more aligned with subregional differences. Leaf litter C, lignin and Ca varied most at the site level, suggesting more local controls. We show that variability in litter quality and decomposability are more easily accounted for spatially than litterfall rates, which vary widely over short distances possibly in response to idiosyncratic patterns of disturbance.  相似文献   

10.
The aim of this study was to determine the litterfall production and macronutrient (Ca, K, Mg, N, and P) deposition through leaf litter in four sites with different types of vegetation. Site one (Bosque Escuela) was located at 1600 m a.s.l. in a pine forest mixed with deciduous trees, second site (Crucitas at 550 m a.s.l.) in the ecotone of a Quercus spp. forest and the Tamaulipan thornscrub and third and fourth sites (Campus at 350 m a.s.l. and Cascajoso at 300 m a.s.l., respectively) were in the Tamaulipan thornscrub. Litter constituents (leaves, reproductive structures, twigs, and miscellaneous residues) were collected at 15-day intervals from December 21, 2006, throughout December 20, 2007. Collections were carried out in ten litter traps (1.0 × 1.0 m) randomly situated at each site of approximately 2,500 m2. Total annual litterfall deposition was 4407, 7397, 6304, and 6527 kg ha−1 y−1 for Bosque Escuela, Crucitas, Campus and Cascajoso, respectively. Of total annual litter production, leaves were higher varying from 74 (Bosque Escuela) to 86% (Cascajoso) followed by twigs from 4 (Cascajoso) to 14% (Crucitas), reproductive structures from 6 (Bosque Escuela) to 10% (Crucitas), and miscellaneous litterfall from <1 (Campus) to 12% (Bosque Escuela). The Ca annual deposition was significantly higher in Cascajoso (232.7 kg ha−1 y−1), followed by Campus (182.3), Crucitas (130.5) and Bosque Escuela (30.3). The K (37.5, 32.5, 24.8, 7.2, respectively), Mg (22.6, 17.7, 13.7, 4.5, respectively) followed the same pattern as Ca. However, N was higher in Campus (85.8) followed by Crucitas (85.1), Cascajoso (68.3), and Bosque Escuela (18.3). The P was higher in Campus and Crucitas (4.0) followed by Cascajoso (3.4) and Bosque Escuela (1.4). On an annual basis for all sites, the order of nutrient deposition through leaf litter was Ca > N> K > Mg > P, whereas on site basis of total nutrient deposition (Ca + N + K + Mg + P), the order was Cascajoso > Campus > Crucitas > Bosque Escuela. Ca, K, Mg, N, and P nutrient use efficiency values in leaf litter were higher in Bosque Escuela, while lower figures were acquired in Cascajoso and Crucitas sites. It seems that the highest litterfall deposition was found in the ecotone of a Quercus spp. forest and the Tamaulipan thornscrub; however, the Tamaulipan thornscrub vegetation alone had better leaf litter nutrient return.  相似文献   

11.
This study evaluated the effects of forest fertilization on the forest carbon (C) dynamics in a 36-year-old larch (Larix leptolepis) plantation in Korea. Above- and below-ground C storage, litterfall, root decomposition and soil CO2 efflux rates after fertilization were measured for 2 years. Fertilizers were applied to the forest floor at rates of 112 kg N ha−1 year−1, 75 kg P ha−1 year−1 and 37 kg K ha−1 year−1 for 2 years (May 2002, 2003). There was no significant difference in the above-ground C storage between fertilized (41.20 Mg C ha−1) and unfertilized (42.25 Mg C ha−1) plots, and the C increment was similar between the fertilized (1.65 Mg C ha−1 year−1) and unfertilized (1.52 Mg C ha−1 year−1) plots. There was no significant difference in the soil C storage between the fertilized and unfertilized plots at each soil depth (0–15, 15–30 and 30–50 cm). The organic C inputs due to litterfall ranged from 1.57 Mg C ha−1 year−1 for fertilized to 1.68 Mg C ha−1 year−1 for unfertilized plots. There was no significant difference in the needle litter decomposition rates between the fertilized and unfertilized plots, while the decomposition of roots with 1–2 mm diameters increased significantly with the fertilization relative to the unfertilized plots. The mean annual soil CO2 efflux rates for the 2 years were similar between the fertilized (0.38 g CO2 m−2 h−1) and unfertilized (0.40 g CO2 m−2 h−1) plots, which corresponded with the similar fluctuation in the organic carbon (litterfall, needle and root decomposition) and soil environmental parameters (soil temperature and soil water content). These results indicate that little effect on the C dynamics of the larch plantation could be attributed to the 2-year short-term fertilization trials and/or the soil fertility in the mature coniferous plantation used in this study.  相似文献   

12.
This paper presents an integrated analysis of organic carbon (C) pools in soils and vegetation, within-ecosystem fluxes and net ecosystem exchange (NEE) in three 40-year old Norway spruce stands along a north-south climatic gradient in Sweden, measured 2001–2004. A process-orientated ecosystem model (CoupModel), previously parameterised on a regional dataset, was used for the analysis. Pools of soil organic carbon (SOC) and tree growth rates were highest at the southernmost site (1.6 and 2.0-fold, respectively). Tree litter production (litterfall and root litter) was also highest in the south, with about half coming from fine roots (<1 mm) at all sites. However, when the litter input from the forest floor vegetation was included, the difference in total litter input rate between the sites almost disappeared (190–233 g C m−2 year−1). We propose that a higher N deposition and N availability in the south result in a slower turnover of soil organic matter than in the north. This effect seems to overshadow the effect of temperature. At the southern site, 19% of the total litter input to the O horizon was leached to the mineral soil as dissolved organic carbon, while at the two northern sites the corresponding figure was approx. 9%. The CoupModel accurately described general C cycling behaviour in these ecosystems, reproducing the differences between north and south. The simulated changes in SOC pools during the measurement period were small, ranging from −8 g C m−2 year−1 in the north to +9 g C m−2 year−1 in the south. In contrast, NEE and tree growth measurements at the northernmost site suggest that the soil lost about 90 g C m−2 year−1. An erratum to this article can be found at  相似文献   

13.
Tropical rain forests worldwide are affected by anthropogenic disturbances, and secondary forests that develop afterwards are often dominated by pioneer tree species, but the consequences of different anthropogenic disturbances on nutrient cycling are poorly understood. Because most nutrient cycling in tropical rain forests occurs through litterfall and in the soil organic layer, we measured litterfall of a widespread and dominant pioneer tree, okoume (Aucoumea klaineana, Burseraceae) in Gabon, in one forest previously disturbed by logging and in another by agriculture. Litterfall of okoume trees, measured over 14 months, was 18.2 Mg ha−1 year−1 in the formerly logged forest, which was 72.6% greater than in the forest more recently disturbed by agriculture (10.6 Mg ha−1 year−1). Litter decomposition rates were more rapid in the formerly logged forest, and this may explain why litter thickness was 32% lower in the formerly logged forest, despite the greater litterfall within it. Our results highlight that two widespread anthropogenic disturbances in Gabonese rain forests have significantly different consequences on litterfall of a dominant tree and therefore are likely to have different effects on nutrient cycling and forest ecosystem function.  相似文献   

14.
喀斯特峰丛洼地不同类型森林养分循环特征   总被引:6,自引:2,他引:4  
以中国西南喀斯特峰丛洼地为研究区域用标准木法和收获法对人工林、次生林、原生林3个不同类型森林的6个代表性群落的生物量、营养元素生物循环量及循环特征进行了研究。结果表明:(1)不同类型森林群落乔木各器官的养分含量大小顺序为:叶枝根干,林下植被层和凋落物层的养分含量比较高,其含量普遍高于乔木层各组分,仅次于乔木叶片;各组分中营养元素以K、Ca最高,P、Mg最低;(2)3种类型森林间乔木层的养分积累量总规律表现为原生林(4540.30 kg/hm~2)次生林(2107.09 kg/hm~2)人工林(719.51 kg/hm~2),分别占林分养分积累量的88.30%、79.57%和62.60%;(3)3种类型森林生态系统养分总贮量相差不大,均主要集中在土壤层在各层分配格局有所差异;营养元素的年吸收量和年归还量均为次生林原生林人工林,年吸收量分别为:418.80、271.17和148.79 kg hm~(-2)a~(-1);年归还量分别为:182.98、111.43和43.37 kg hm_(-2)a~(-1);(4)不同类型森林养分利用系数总规律为人工林(0.35)次生林(0.20)原生林(0.10);循环系数则相反,为原生林(0.48)次生林(0.46)人工林(0.30);而周转时间为原生林(37.32)人工林(18.63)次生林(13.93)。喀斯特峰丛洼地土层薄,养分贮存能力差,森林养分循环能力相对较弱,沿着强、中、弱干扰递减梯度,3种类型森林养分利用效率和循环能力呈增长趋势。  相似文献   

15.
In a declining sugar maple (SM) stand, we tested the hypothesis that an increasing relative abundance of American beech (AB) and yellow birch (YB) would improve litter quality by providing a higher proportion of litterfall richer in base cations and lower in acidity. From 1989 to 2006, SM leaf fall diminished from 59% (1,718 kg ha−1 year−1) to 36% (915 kg ha−1 year−1) of the total leaf fall biomass. Overall, the increase in AB and YB litterfall compensated for the SM decrease, resulting in constant annual leaf litterfall fluxes (2,803 kg ha−1 year−1) over the period studied. However, because the leaf litter for AB and YB had Ca and Mg concentrations 2–3 times higher than did SM, Ca and Mg concentrations and fluxes in leaf litterfall significantly increased between 1989 and 2006. Leaf litterfall of AB and YB also has a higher base/acid ratio than SM. Consequently, changes in forest composition following SM decline led to a clear improvement in litterfall quality in terms of base cations content and fluxes and acid–base properties.  相似文献   

16.
通过对福建建瓯万木林自然保护区内以观光木(Tsoongiodendron odorum,TSO)和细柄阿丁枫(Altingia gracilipes,ALG)为建群种的2种天然林及杉木(Cunninghamia lanceolata,29年生)人工林凋落量与养分归还为期3a(2000~2002年)的研究表明,3种林分年均凋落量(t.hm-2)范围从杉木人工林的4.63t.hm-2到观光木林的6.74t.hm-2,叶所占比例范围为62%~69%。细柄阿丁枫林凋落量每年只出现1次峰值(3月份或4月份),观光木林的出现2次(3月份、6~8月份),而杉木林的则出现3次(3月份或4月份、6~8月份和11~12月份)。3种林分Ca和Mg年归还量大小排序与按总凋落量的不同。除杉木人工林的Ca年归还量最大外,其余养分年归还量均以观光木天然林的最大。通过凋落物各组分的养分归还中,落叶是养分归还的主体。与针叶树人工林相比,天然林的凋落量大、养分归还量高,具有良好维持地力的能力。因此,保护和扩大常绿阔叶林资源已成为南方林区实现森林可持续经营的重要措施之一。  相似文献   

17.
The management regime may have a significant impact on the productivity and dynamics of grasslands, but the causal relationships influencing grassland conservation value are still not completely understood. Changes of selected community characteristics, such as standing crop, proportion of forbs in the standing crop, litter amount, litter decomposition and seedling recruitment, were investigated in a 4 year manipulative experiment in a mountain grassland in Slovakia. The aim of the research was to compare changes in newly abandoned sites and sites where restoration measures were applied after 20 years of abandonment. The sites were located in areas containing two vegetation types of the Arrhenatherion alliance (wet Poo-Trisetetum and dry AnthoxanthoAgrostietum) with different moisture regimes. The expected increase of the standing crop after abandonment was rather slow, and more pronounced towards the end of the experiment, and in the wet meadow type (~30% increase). The restoration mowing promoted forb proportions in the biomass, but it did not decrease the standing biomass in the restored grasslands. Strong litter accumulation after abandonment was observed in subsequent years after abandonment, when the amount of litter increased about 100% in abandoned plots. Decrease in litter was also significant after the start of restoration mowing (a decrease from 258 to 159 g m−2 in wet type and from 287 to 147 g m−2 in dry type was noted). Accumulated litter was negatively correlated to seedling recruitment (r = −0.63 at the end of the experiment). The litterbag experiment showed that the wet type has a higher rate of decomposition, with 20% more biomass decomposed during the litter-bag experiment. The experiment confirmed a negative role of litter accumulation on seedling recruitment, with the number of seedlings per m2 decreasing from 413 to 321 individuals in the abandoned wet-type site. This may lead to a decrease in species richness. Mowing along with raking of mowed biomass may be a useful tool to restore degraded mountain grasslands and to remove accumulated litter from the stands.  相似文献   

18.
Seasonality in fine root standing crop and production was studied in two tropical dry evergreen forests viz., Marakkanam reserve forest (MRF) and Puthupet sacred grove (PSG) in the Coromandel coast of India. The study extended from December 89 to December 91 in MRF and from August 90 to December 91 in PSG with sampling at every 2 months. Total fine interval. Mean fine root standing crop was 134 g m−2 in MRF and 234 g m−2 in PSG. root production was 104 g m−2 yr−1 in MRF and 117 g m−2 yr−1 in PSG. These estimates lie within the range for fine roots reported for various tropical forests. Rootmass showed a pronounced seasonal pattern with unimodal peaks obtained during December in the first year and from October–December in the second year in MRF. In PSG greater rootmass was noticed from June–October than other times of sampling. The total root mass in MRF ranged from 114 to 145 g m−2 at the 13 sampling dates in the three sites. The live biomass fraction of fine roots in MRF ranged from 46 to 203 g m−2 and in PSG it ranged from 141 to 359 g mm−2 during the study periods. The dead necromass fraction of fine roots ranged from 6 to 37 g m−2 in MRF and from 12 to 66 g m−2 in PSG. Fine root production peaked during December in both the forest sites. The necromass fraction of newly produced roots was negligible. Total N was slightly greater in PSG than in MRF. Whereas total P level was almost similar in both the sites. The study revealed that season and site characteristics influenced fine root system.  相似文献   

19.
为了解中亚热带森林转换对森林生态系统碳及养分循环的影响,以中亚热带米槠天然林、森林转换后的米槠次生林和杉木人工林为对象,对3种林分的凋落物量、养分归还量和养分利用效率进行4年研究.结果 表明:米槠天然林转换为米槠次生林和杉木人工林后,年凋落物量分别下降29.0%和45.7%,凋落物氮归还量分别下降34.0%和72.7%...  相似文献   

20.
Using long-term (22 years) measurements from a young and an old-growth subtropical forest in southern China, we found that both forests accumulated carbon from 1982 to 2004, with the mean carbon accumulation rate at 227 ± 59 g C m−2 year−1 for young forest and 115 ± 89 g C m−2 year−1 for the old-growth forest. Allocation of the accumulated carbon was quite different between these two forests: the young forest accumulated a significant amount of carbon in plant live biomass, whereas the old-growth forest accumulated a significant amount of carbon in the soil. From 1982 to 2004, net primary productivity (NPP) increased for the young forest, and did not change significantly for the old-growth forest. The increase in NPP of the young forest resulted from recruitment of some dominant tree species characteristic of the subtropical mature forest in the region and an increase in tree density; decline of NPP of the old-growth forest was caused by increased mortality of the dominant trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号