共查询到20条相似文献,搜索用时 0 毫秒
1.
《The Journal of cell biology》1989,109(6):3243-3258
In this paper, we have characterized the apical and basolateral endocytic pathways of epithelial MDCK cells grown on filters. The three- dimensional organization of the endocytic compartments was analyzed by confocal microscopy after internalization of a fluorescent fluid-phase marker from either side of the cell layer. After 5 min of internalization, distinct sets of apical and basolateral early endosomes were observed lining the plasma membrane domain from which internalization had occurred. At later time points, the apical and the basolateral endocytic pathways were shown to converge in the perinuclear region. Mixing of two different fluorescent markers could be detected after their simultaneous internalization from opposite sides of the cell layer. The extent of the meeting was quantitated by measuring the amount of complex formed intracellularly between avidin internalized from the apical side and biotinylated horseradish peroxidase (HRP) from the basolateral side. After 15 min, 14% of the avidin marker was complexed with the biotinylated HRP and this value increased to 50% during a subsequent chase of 60 min in avidin-free medium. We also determined the kinetics of fluid internalization, recycling, transcytosis, and intracellular retention using HRP as a marker. Fluid was internalized with the same rates from either surface domain (1.2 x 10(-4) microns 3/min per microns 2 of surface area). However, significant differences were observed for each pathway in the amounts and kinetics of marker recycled and transcytosed. The content of apical early endosomes was primarily recycled and transcytosed (45% along Bach route after 1 h internalization), whereas delivery to late endocytic compartments was favored from the basolateral early endosome (77% after 1 h). Our results demonstrate that early apical and basolateral endosomes are functionally and topologically distinct, but that the endocytic pathways converge at later stages in the perinuclear region of the cell. 相似文献
2.
Receptor-mediated vectorial transcytosis of epidermal growth factor by Madin-Darby canine kidney cells 总被引:11,自引:4,他引:11 下载免费PDF全文
Transcellular transport of a variety of ligands may be an important mechanism by which regulatory substances reach their site of action. We have studied the transcellular transport of two 6,000-mol-wt proteins, epidermal growth factor (EGF) and insulin, across polarized Madin-Darby canine kidney (MDCK) cells grown on dual-sided chambers on a nitrocellulose filter substrate. When grown on these chambers, MDCK cells are polarized and express distinct basal and apical surfaces. MDCK cells are capable of unidirectional transport of EGF from the basal-to-apical direction, 50% of bound EGF transported in 2 h. Transport was inhibited by the addition of unlabeled EGF in a dose-dependent manner. Anti-EGF receptor Ab, which inhibited binding, also inhibited transport. No transport in the apical-to-basal direction is noted. Insulin transport is not observed in either direction. Transport correlates with the presence of ligand-specific receptors on the cell surface. Hence, EGF receptors (Ro = 48,000, Kd = 3.5 X 10(-10) M) are found only on the basal surface of the MDCK cells and neither surface expresses insulin receptors. Characterization of the EGF receptors on MDCK cells, as assessed by affinity, molecular mass, and anti-receptor antibody binding reveals that this receptor has similar characteristics to EGF receptors previously described on a variety of cells. Hence, the EGF receptor can function as a transporter of EGF across an epithelial cell barrier. 相似文献
3.
F Lang F Friedrich M Paulmichl W Schobersberger A Jungwirth M Ritter M Steidl H Weiss E W?ll E Tschernko 《Renal physiology and biochemistry》1990,13(1-2):82-93
Ion channels in Madin-Darby canine kidney cells serve transepithelial chloride transport and probably cell volume regulation. Three distinct potassium channels and one anion channel have been revealed by patch clamp studies in Madin-Darby canine kidney cells. The potassium channels are activated by an increase in intracellular calcium activity. A number of hormones activate the potassium channels by an increase in intracellular calcium activity. However, under certain conditions the hormones hyperpolarize the cell membrane without increasing intracellular calcium activity sufficiently to activate the calcium-sensitive potassium channels. Thus, the hormones may activate potassium channels via another, as yet undefined, intracellular mechanism. The anion channel is stimulated by cAMP. Another factor modifying channel activity is cell volume: cell swelling leads probably to subsequent activation of potassium and anion channels. The net result is a variable transient hyperpolarization followed by a sustained depolarization of the cell membrane. 相似文献
4.
Differential targeting of glucosylceramide and galactosylceramide analogues after synthesis but not during transcytosis in Madin-Darby canine kidney cells 总被引:1,自引:2,他引:1 下载免费PDF全文
《The Journal of cell biology》1995,131(3):645-654
A short-chain analogue of galactosylceramide (6-NBD-amino-hexanoyl- galactosylceramide, C6-NBD-GalCer) was inserted into the apical or the basolateral surface of MDCK cells and transcytosis was monitored by depleting the opposite cell surface of the analogue with serum albumin. In MDCK I cells 32% of the analogue from the apical surface and 9% of the analogue from the basolateral surface transcytosed to the opposite surface per hour. These numbers were very similar to the flow of membrane as calculated from published data on the rate of fluid-phase transcytosis in these cells, demonstrating that C6-NBD-GalCer acted as a marker of bulk membrane flow. It was calculated that in MDCK I cells 155 microns membrane transcytosed per cell per hour in each direction. The fourfold higher percentage transported from the apical surface is explained by the apical to basolateral surface area ratio of 1:4. In MDCK II cells, with an apical to basolateral surface ratio of 1:1, transcytosis of C6-NBD-GalCer was 25% per hour in both directions. Similar numbers were obtained from measuring the fraction of endocytosed C6-NBD-GalCer that subsequently transcytosed. Under these conditions lipid leakage across the tight junction could be excluded, and the vesicular nature of lipid transcytosis was confirmed by the observation that the process was blocked at 17 degrees C. After insertion into one surface of MDCK II cells, the glucosylceramide analogue C6-NBD-GlcCer randomly equilibrated over the two surfaces in 8 h. C6-NBD-GalCer and -GlcCer transcytosed with identical kinetics. Thus no lipid selectivity in transcytosis was observed. Whereas the mechanism by which MDCK cells maintain the different lipid compositions of the two surface domains in the absence of lipid sorting along the transcytotic pathway is unclear, newly synthesized C6-NBD-GlcCer was preferentially delivered to the apical surface of MDCK II cells as compared with C6-NBD-GalCer. 相似文献
5.
The transcytosis of horseradish peroxidase, as well as its poly(L-lys) and poly(D-lys) thioether conjugates, was investigated in Strain I Madin-Darby canine kidney (MDCK) cell monolayers grown on 0.4 microns pore size polycarbonate membranes in Costar Transwells. The 3 types of HRP had almost identical rates of transport during the first 2 hr of incubation. However, a significant increase of basal-to-apical transport was detected beginning at 3 hr only in Transwells containing the poly(L-lys) conjugate. This increase was inhibited by colchicine (2 microM) and by the Bowman-Birk protease inhibitor (0.1 mg/ml), but not by NH4Cl (10 mM) or chloroquine (0.1 mM). The increase was abolished either by prior trypsinization of the conjugate or by incubation at 4 degrees C. Ultrafiltration studies indicated that the transcytosed poly(L-lys) conjugate was smaller in size than the original conjugate. These results indicate that the conjugate was processed during transcytosis in a non-lysosomal proteolytic compartment, where its poly(L-lys) moiety was selectively degraded, allowing active peroxidase to be released into the apical medium. 相似文献
6.
Cheng J Thompson MA Walker HJ Gray CE Warner GM Zhou W Grande JP 《Experimental biology and medicine (Maywood, N.J.)》2006,231(3):288-295
Polycystic kidney diseases (PKD) are characterized by excessive proliferation of renal tubular epithelial cells, development of fluid-filled cysts, and progressive renal insufficiency. cAMP inhibits proliferation of normal renal tubular epithelial cells but stimulates proliferation of renal tubular epithelial cells derived from patients with PKD. Madin-Darby canine kidney (MDCK) epithelial cells, which are widely used as an in vitro model of cystogenesis, also proliferate in response to cAMP. Intracellular cAMP levels are tightly regulated by phosphodiesterases (PDE). Isoform-specific PDE inhibitors have been developed as therapeutic agents to regulate signaling pathways directed by cAMP. In other renal cell types, we have previously demonstrated that cAMP is hydrolyzed by PDE3 and PDE4, but only PDE3 inhibitors suppress proliferation by inhibiting Raf-1 activity (Cheng J, Thompson MA, Walker HJ, Gray CE, Diaz Encarnacion MM, Warner GM, Grande JP. Am J Physiol Renal Physiol 287:F940-F953, 2004.) A potential role for PDE isoform(s) in cAMP-mediated proliferation of MDCK cells has not previously been established. Similar to what we have previously found in several other renal cell types, cAMP hydrolysis in MDCK cells is directed primarily by PDE4 (85% of total activity) and PDE3 (15% of total activity). PDE4 inhibitors are more effective than PDE3 inhibitors in increasing intracellular cAMP levels in MDCK cells. However, only PDE3 inhibitors, and not PDE4 inhibitors, stimulate mitogenesis of MDCK cells. PDE3 but not PDE4 inhibitors activate B-Raf but not Raf-1, as assessed by an in vitro kinase assay. PDE3 but not PDE4 inhibitors activate the ERK pathway and activate cyclins D and E, as assessed by histone H1 kinase assay. We conclude that mitogenesis of MDCK cells is regulated by a functionally compartmentalized intracellular cAMP pool directed by PDE3. Pharmacologic agents that stimulate PDE3 activity may provide the basis for new therapies directed toward reducing cystogenesis in patients with PKD. 相似文献
7.
TGN38 recycles basolaterally in polarized Madin-Darby canine kidney cells. 总被引:3,自引:2,他引:3 下载免费PDF全文
A K Rajasekaran J S Humphrey M Wagner G Miesenbck A Le Bivic J S Bonifacino E Rodriguez-Boulan 《Molecular biology of the cell》1994,5(10):1093-1103
Sorting of newly synthesized plasma membrane proteins to the apical or basolateral surface domains of polarized cells is currently thought to take place within the trans-Golgi network (TGN). To explore the relationship between protein localization to the TGN and sorting to the plasma membrane in polarized epithelial cells, we have expressed constructs encoding the TGN marker, TGN38, in Madin-Darby canine kidney (MDCK) cells. We report that TGN38 is predominantly localized to the TGN of these cells and recycles via the basolateral membrane. Analyses of the distribution of Tac-TGN38 chimeric proteins in MDCK cells suggest that the cytoplasmic domain of TGN38 has information leading to both TGN localization and cycling through the basolateral surface. Mutations of the cytoplasmic domain that disrupt TGN localization also lead to nonpolarized delivery of the chimeric proteins to both surface domains. These results demonstrate an apparent equivalence of basolateral and TGN localization determinants and support an evolutionary relationship between TGN and plasma membrane sorting processes. 相似文献
8.
To facilitate studies of the biology of Cryptosporidium parvum, we have developed an in vitro culture system using Madin-Darby canine kidney (MDCK) cells as the host cell. Oocysts or free sporozoites were incubated 37 degrees C with monolayers of MDCK cells in supplemented RPMI 1640 medium and the cells were examined at various time intervals after initiation of the culture. High rates of infection (up to 90% of MDCK cells) were achievable. Sequential development of trophozoites, meronts, microgametocytes, and macrogametocytes was observed over a 72-h period of culture. Between 72 and 96 h we observed formation of oocyst walls, but fully sporulated oocysts were not observed. This culture system provides access to both the asexual and sexual intracellular stages of C. parvum. 相似文献
9.
Differential localization of syntaxin isoforms in polarized Madin-Darby canine kidney cells. 总被引:7,自引:5,他引:7 下载免费PDF全文
S H Low S J Chapin T Weimbs L G Kmüves M K Bennett K E Mostov 《Molecular biology of the cell》1996,7(12):2007-2018
Syntaxins, integral membrane proteins that are part of the ubiquitous membrane fusion machinery, are thought to act as target membrane receptors during the process of vesicle docking and fusion. Several isoforms of the syntaxin family have been previously identified in mammalian cells, some of which are localized to the plasma membrane. We investigated the subcellular localization of these putative plasma membrane syntaxins in polarized epithelial cells, which are characterized by the presence of distinct apical and basolateral plasma membrane domains. Syntaxins 2, 3, and 4 were found to be endogenously present in Madin-Darby canine kidney cells. The localization of syntaxins 1A, 1B, 2, 3, and 4 in stably transfected Madin-Darby canine kidney cell lines was studied with confocal immunofluorescence microscopy. Each syntaxin isoform was found to have a unique pattern of localization. Syntaxins 1A and 1B were present only in intracellular structures, with little or no apparent plasma membrane staining. In contrast, syntaxin 2 was found on both the apical and basolateral surface, whereas the plasma membrane localization of syntaxins 3 and 4 were restricted to the apical or basolateral domains, respectively. Syntaxins are therefore the first known components of the plasma membrane fusion machinery that are differentially localized in polarized cells, suggesting that they may play a central role in targeting specificity. 相似文献
10.
The effects of Leiurus quinquestriatus hebraeus (LQH) venom, mamba venom, Buthus tamulus (BT) venom, purified apamin and synthetic charybdotoxin on the membrane hyperpolarization induced by extracellular ATP were examined in Madin-Darby canine kidney cells. For this we used a membrane potential probe (bisoxonol) to determine the potential variations. The relation between bisoxonal fluorescence and membrane potential was established by treating Madin-Darby canine kidney cells suspended in solutions containing various external sodium concentrations with gramicidin. Extracellular ATP induced a rapid hyperpolarization that was blocked by LQH venom and synthetic charybdotoxin. BT venom also blocked the response but at a much higher concentration than that of LQH. Mamba venom (Dendroaspis polylepis) and apamin did not modify the ATP-induced hyperpolarization. We concluded that the ATP induced hyperpolarization was due to the augmentation of the potassium conductance probably through Ca(2+)-activated K+ channels sensitive to charybdotoxin but not to mamba venom. The interaction previously described between charybdotoxin and dendrotoxin (the main toxin of mamba venom) was not observed in our case. 相似文献
11.
The action of epinephrine on Madin-Darby canine kidney cells 总被引:1,自引:0,他引:1
We have used cultured monolayers of Madin-Darby canine kidney (MDCK) cells, which form epithelial layers of high transepithelial resistance, grown on Millipore filters, for transport studies. In the absence of hormones net ion transport is of small magnitude and is consistent with a net absorptive flow (apical to basal) of Na+. Epinephrine, effective only from the basolateral cell surface, stimulates a net secretion (basal to apical) of Cl-. A substantial portion of net Cl- secretion is inhibited by loop diuretics such as furosemide applied to the basolateral cell aspects. The participation of a diuretic-sensitive cotransport system for Na+, K+, and Cl-, similar to that found in other cells, in transepithelial Cl- flux is postulated. The action of catecholamines on MDCK cell adenylate cyclase and on a Ca2+-activated K+ conductance is described. 相似文献
12.
Madin-Darby canine kidney (MDCK) cells, which do not normally express the proteoglycan (PG) serglycin, were stably transfected with cDNA for human serglycin fused to a polyhistidine tag (His-tag). Clones with different levels of serglycin mRNA expression were generated. One clone with lower and one with higher serglycin mRNA expression were selected for this study. 35S-labelled serglycin in cell fractions and conditioned media was isolated using HisTrap affinity chromatography. Serglycin could also be detected in conditioned media using western blotting. To investigate the possible importance of serglycin linked to protease secretion, enzyme activities using chromogenic substrates and zymography were measured in cell fractions and serum-free conditioned media of the different clones. Cells were cultured in both the absence and presence of phorbol 12-myristate 13-acetate (PMA). In general, enzyme secretion was strongly enhanced by treatment with PMA. Our analyses revealed that the clone with the highest serglycin mRNA expression, level of HisTrap isolated 35S-labelled serglycin, and amount of serglycin core protein as detected by western blotting, also showed the highest secretion of proteases. Transfection of serglycin into MDCK cells clearly leads to changes in secretion levels of secreted endogenous proteases, and could provide further insight into the biosynthesis and secretion of serglycin and potential partner molecules. 相似文献
13.
Ochratoxin A (OTA) is a nephrotoxin which blocks plasma membrane anion conductance in Madin-Darby canine kidney (MDCK) cells. Added to the culture medium, OTA transforms MDCK cells in a manner similar to exposure to alkaline stress. By means of video-imaging and microelectrode techniques, we investigated whether OTA (1 mol/liter) affects intracellular pH (pH.), Cl– (Cl
i
–
) or cell volume of MDCK cells acutely exposed to normal (pHnorm=7.4) and alkaline (pHalk=7.7) conditions. At pHnorm, OTA increased Cl
i
–
by 2.6±0.4 mmol/liter (n=14, P<0.05) but had no effect on pH
i
. At pHalk, application of OTA increased Cl
i
–
by 8.6±2.6 mmol/liter (n=10, P< 0.05) and raised pH
i
by 0.11±0.03 (n= 8, P<0.05). The Cl–HCO
3
–
exchange inhibitor DNDS (4,4-dinitro-stilbene-2, 2-disulfonate; 10 mol/liter) eliminated the OTA-induced changes of pH
i
and Cl
i
–
. OTA did not affect cell volume under both pHnorm and pHalk conditions.We conclude that the OTA-induced blockade of plasma membrane anion conductance increases Cl
i
–
without changing cell volume. The driving force of plasma membrane Cl–/HCO
3
–
exchange dissipates, leading to a rise of pH
i
when cells are exposed to an acute alkaline load. Thus, OTA interferes with pH
i
and Cl
i
–
homeostasis leading to morphological and functional alterations in MDCK cells.The work was supported by the Deutsche Forschungsgemeinschaft (DFG, Si 170/7-1).We thank the Zeiss Company (Oberkochen, Germany) for providing the Attofluor video-imaging system for the intracellular Ca2+ measurements.This study was carried out with the technical assistance of Sigrid Mildenberger and Ruth Freudinger. 相似文献
14.
C Huang R L Wykle L W Daniel M C Cabot 《The Journal of biological chemistry》1992,267(24):16859-16865
Intact cells and cell-free systems were employed to characterize phospholipase D (PLD) activity in Madin-Darby canine kidney (MDCK) cells. In cells prelabeled with [3H]glycerol, 12-O-tetradecanoylphorbol-13-acetate (TPA) elicited phosphatidylcholine (PC) hydrolysis by PLD, as shown by the prolonged formation of [3H]phosphatidylethanol (PEt) and an accompanying decrease in [3H]PC. In contrast, bradykinin elicited rapid formation of [3H]PEt (approximately 1 min) accompanied by a decrease in [3H]phosphatidylinositol (PI). When the agonists were administered simultaneously, [3H]PEt formation was biphasic. In cells prelabeled with [3H] choline, at times less than 1 min, bradykinin failed to induce significant change in [3H]choline release. Bradykinin-induced formation of [3H]PEt in the [3H]glycerol-labeled cells was strictly dependent on extracellular Ca2+, whereas TPA-induced formation of [3H]PEt did not require extracellular Ca2+. Cell-free assays for PLD were used to assess the enzyme location, substrate specificity, and cofactor requirements. The PC-PLD activity (PEt formation) against [3H]stearoyl-PC was primarily localized in the 440 x g pellet (membrane- and nuclear-associated), preferred PC as a substrate, required detergent, and was not influenced by Ca2+ at low concentrations but was inhibited by Ca2+ in excess of 0.5 mM. The PI-PLD activity against [3H]stearoyl-PI was found largely in the 100,000 x g supernatant (cytosol), was strictly Ca(2+)-dependent, and did not require detergent. From these data, we conclude that MDCK cells contain two PLD subtypes: 1) a membrane-associated, PC-selective enzyme that responds to TPA resulting in prolonged hydrolysis of PC (the PC-PLD is Ca(2+)-independent, but requires detergent); 2) a cytosolic, PI-selective enzyme that responds rapidly but transiently to bradykinin (the PI-PLD requires Ca2+ but not detergent). 相似文献
15.
Insulin-like growth factor-mediated phosphorylation and protooncogene induction in Madin-Darby canine kidney cells. 总被引:1,自引:0,他引:1
We have characterized the role of tyrosine phosphorylation in protooncogene induction mediated by insulin-like growth factors I and II (IGF-I and IGF-II) in the Madin-Darby canine kidney (MDCK) cell line. These cells possess few, if any, insulin receptors, thus allowing determination of the effects of these growth factors in the absence of any secondary signal mediated through the insulin receptor. We found that IGF-I produced a specific stimulation of tyrosine kinase activity of the 97-kDa beta-subunit of the IGF-I receptor, resulting in autophosphorylation of the receptor and an increase in kinase activity toward a synthetic peptide substrate. This was associated with a gradual decrease in the level of phosphorylation of pp120, the major constitutive phosphotyrosine-containing protein of MDCK cells, and an increase in the ratio of serine to tyrosine phosphorylation. This was followed by a rapid, but transient, induction of c-fos gene expression, with no change in the levels of c-myc mRNA. Cycloheximide treatment resulted in a superinduction of both c-fos and c-myc and prevented any further stimulation by IGF-I. IGF-II did not stimulate tyrosine phosphorylation of its own receptor, but was 25% as active as IGF-I in stimulating phosphorylation of the IGF-I receptor. Despite this, IGF-II did not significantly enhance the expression of either nuclear protooncogene. Insulin also produced a delayed stimulation of IGF-I receptor phosphorylation, but was unable to stimulate biological effects in these cells. Under these conditions neither of the IGFs nor insulin produced any significant stimulation of thymidine incorporation into DNA. These data indicate that the IGF-I receptor can be activated upon binding of IGF-I, and to a lesser extent IGF-II, in intact cells to mediate cellular events. The nature of the signal generated by the IGF-I receptor appears to vary depending on the ligand that occupies it. 相似文献
16.
Simultaneous determinations of water and antipyrine permeations in monolayers of Madin-Darby canine kidney (MDCK) cells grown on a permeant support were done to study the relationships between water transport and membrane fluidity in these epithelial cells. The changes in permeation of the lipophilic non-electrolyte antipyrine were used to probe the modifications in membrane fluidity. In controls, the apparent diffusional permeability coefficient for water (PDw) was three times higher than the antipyrine's one, PDAp (4.2.10(-5) vs. 1.4.10(-5) cm s-1). Addition of vasopressin or dibutyryl cyclic AMP to the monolayers induced a biphasic increase in antipyrine permeation with peak values at t = 2 min, 3-4-fold that of controls. Variations in water permeation were of similar amplitude and obeyed the same time course, leaving the water to antipyrine permeation ratios unchanged. Compound H7, an inhibitor of protein kinases, blunted the increase in permeation for both antipyrine and water. Finally, addition of the fluidizing agent benzyl alcohol to the monolayers resulted in a parallel increase in PDAp and PDw. These results suggest that the physical state of membrane lipids may control water permeation in MDCK cells. 相似文献
17.
Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells 总被引:18,自引:31,他引:18 下载免费PDF全文
G van Meer E H Stelzer R W Wijnaendts-van-Resandt K Simons 《The Journal of cell biology》1987,105(4):1623-1635
To study the intracellular transport of newly synthesized sphingolipids in epithelial cells we have used a fluorescent ceramide analog, N-6[7-nitro-2,1,3-benzoxadiazol-4-yl] aminocaproyl sphingosine (C6-NBD-ceramide; Lipsky, N. G., and R. E. Pagano, 1983, Proc. Natl. Acad. Sci. USA, 80:2608-2612) as a probe. This ceramide was readily taken up by filter-grown Madin-Darby canine kidney (MDCK) cells from liposomes at 0 degrees C. After penetration into the cell, the fluorescent probe accumulated in the Golgi area at temperatures between 0 and 20 degrees C. Chemical analysis showed that C6-NBD-ceramide was being converted into C6-NBD-sphingomyelin and C6-NBD-glucosyl-ceramide. An analysis of the fluorescence pattern after 1 h at 20 degrees C by means of a confocal scanning laser fluorescence microscope revealed that the fluorescent marker most likely concentrated in the Golgi complex itself. Little fluorescence was observed at the plasma membrane. Raising the temperature to 37 degrees C for 1 h resulted in intense plasma membrane staining and a loss of fluorescence from the Golgi complex. Addition of BSA to the apical medium cleared the fluorescence from the apical but not from the basolateral plasma membrane domain. The basolateral fluorescence could be depleted only by adding BSA to the basal side of a monolayer of MDCK cells grown on polycarbonate filters. We conclude that the fluorescent sphingomyelin and glucosylceramide were delivered from the Golgi complex to the plasma membrane where they accumulated in the external leaflet of the membrane bilayer. The results also demonstrated that the fatty acyl labeled lipids were unable to pass the tight junctions in either direction. Quantitation of the amount of NBD-lipids delivered to the apical and the basolateral plasma membranes during incubation for 1 h at 37 degrees C showed that the C6-NBD-glucosylceramide was two- to fourfold enriched on the apical as compared to the basolateral side, while C6-NBD-sphingomyelin was about equally distributed. Since the surface area of the apical plasma membrane is much smaller than that of the basolateral membrane, both lipids achieved a higher concentration on the apical surface. Altogether, our results suggest that the NBD-lipids are sorted in MDCK cells in a way similar to their natural counterparts. 相似文献
18.
M. Paulmichl E. Wll H. Weiss S. Waldegger F. Lang 《Journal of cellular physiology》1991,148(2):314-319
Following exposure to a number of hormones, the cell membrane in Madin-Darby Canine Kidney (MDCK) cells is hyperpolarized by increase of intracellular calcium activity. The present study has been performed to elucidate the possible role of calmodulin in the regulation of intracellular calcium activity and cell membrane potential. To this end trifluoperazine has been added during continuous recording of cell membrane potential or intracellular calcium. Trifluoperazine leads to a transient increase of intracellular calcium as well as a sustained hyperpolarization of the cell membrane by activation of calcium sensitive K+ channels. Half-maximal effects are observed between 1 and 10 mumol/L trifluoperazine. A further calmodulin antagonist, chlorpromazine, (50 mumol/L), similarly hyperpolarizes the cell membrane. The effects of trifluoperazine are virtually abolished in the absence of extracellular calcium. Pretreatment of the cells with either pertussis toxin or phorbol-ester TPA does not interfere with the hyperpolarizing effect of trifluoperazine. In conclusion, calmodulin is apparently involved in the regulation of calcium transfer across the cell membrane but not in the stimulation of K+ channels by intracellular calcium. 相似文献
19.
Asymmetric distribution of muscarinic acetylcholine receptors in Madin-Darby canine kidney cells 总被引:1,自引:0,他引:1
Nadler Laurie S.; Kumar Geetha; Hinds Thomas R.; Migeon Jacques C.; Nathanson Neil M. 《American journal of physiology. Cell physiology》1999,277(6):C1220
We have characterized the muscarinic AChreceptors (mAChRs) expressed in Madin- Darby canine kidney (MDCK)strain II epithelial cells. Binding studies with themembrane-impermeable antagonist N-[3H]methylscopolaminedemonstrated that mAChRs are ~2.5 times more abundant on thebasolateral than on the apical surface. Apical, but not basolateral,mAChRs inhibited forskolin-stimulated adenylyl cyclase activity inresponse to the agonist carbachol. Neither apical nor basolateralmAChRs exhibited detectable carbachol-stimulated phospholipase Cactivity. Carbachol application to the apical or the basolateralmembrane resulted in a threefold increase in intracellularCa2+ concentration, which wascompletely inhibited by pertussis toxin on the apical side andpartially inhibited on the basolateral side. RT-PCR analysis showedthat MDCK cells express the M4 and M5 receptor mRNAs. These datasuggest that M4 receptors reside on the apical and basolateral membranes of polarized MDCK strain IIcells and that the M5 receptor mayreside in the basolateral membrane of a subset of cells. 相似文献
20.
RhoB-dependent modulation of postendocytic traffic in polarized Madin-Darby canine kidney cells 总被引:1,自引:0,他引:1
Rondanino C Rojas R Ruiz WG Wang E Hughey RP Dunn KW Apodaca G 《Traffic (Copenhagen, Denmark)》2007,8(7):932-949
The Rho family of GTPases is implicated in the control of endocytic and biosynthetic traffic of many cell types; however, the cellular distribution of RhoB remains controversial and its function is not well understood. Using confocal microscopy, we found that endogenous RhoB and green fluorescent protein-tagged wild-type RhoB were localized to early endosomes, and to a much lesser extent to recycling endosomes, late endosomes or Golgi complex of fixed or live polarized Madin-Darby canine kidney cells. Consistent with RhoB localization to early endosomes, we observed that expression of dominant-negative RhoBN19 or dominant-active RhoBV14 altered postendocytic traffic of ligand-receptor complexes that undergo recycling, degradation or transcytosis. In vitro assays established that RhoB modulated the basolateral-to-apical transcytotic pathway by regulating cargo exit from basolateral early endosomes. Our results indicate that RhoB is localized, in part, to early endosomes where it regulates receptor egress through the early endocytic system. 相似文献